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Abstract:

This report will be deals with optimization of the load shedding corrective control of the long-term voltage instability.  The hybrid model framework will be used to generate the characteristic of the load shedding corrective control.  The questions of how much and when the loads needed to be shed in order to stabilize the system will be discussed.  The gradient method or the method of steepest descent will be used to find the minimum load shed.
I. Introduction:

There is a tendency that power transmission systems of today are operating closer and closer to theirs limits.  With the limiting factors of these transmission systems, it is common that the voltage of the system will be unstable.  As a consequence, at least some 15 major incidents of voltage collapses occurred worldwide during the 1970s and 1980s [1].  Therefore, in an event that the system is approaching blackout, some corrective controls need to be made.  The undervoltage load shedding is one of many corrective mechanisms that can be used to prevent such blackout and to bring back the nominal voltage of the system.  


Load shedding, however, should be implemented in a very careful way in order to satisfy most customers.  No loads should be shed more than the necessary amount to get to the voltage back to its stability.  Therefore, it is important to make the most benefit from such a drastic control action as shedding load.  And this raises three fundamental questions such as, where, when, and how much load should be shed.  However, only two questions, when and how much, will be focused in this report.  The discussion of where the loads should be shed can be found in [2].  In order to optimize the amount of load being shed and the time when shedding the gradient method will be used with the supplement of the trajectory sensitivities of the voltage to the amount of shed load and time at the load being shed.


The structure of this report has been organized as follows.  Section II will deal with the specifics model of load and power system.  Section III and IV will be addressed the hybrid model implementation and simulation examples, respectively.  The optimization and method of being to minimize the amount of load is discussed in section V.  The conclusion will be made in section VI, and the report will end with the future work in section VII.   

II. System and Model Representation:
The behavior of power system involves complex interaction between continuous dynamics and events of discrete nature.  These complex phenomena can be analyzed using hybrid models that systematically capture interactions among the various components of the system.  

A. Hybrid Model Framework:

The model consisting of differential, switched algebraic, and state-reset (DSAR) equations below can be used to capture the interactions between continuous dynamics and discrete events that typify hybrid systems [3].
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Where x includes continuous and discrete states and y is the vector of algebraic states.

Away from the event, yd,i, the system dynamics are smoothly according to the differential-algebraic model:
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At the switching event (3), some equations in g will be changed and the new set of g-equations must be satisfied.  

At the reset events (4), the states of the system will be changed discretely.

B. Dynamic Load Model Response:

The typical loads in power system will response to the voltage step in the form as in figure 1 below.
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Figure1: Response of Dynamic Load Model to the Step Voltage Drop

When there is step drop in the voltage, the demand power will be drop as well.  Following the jump, demand power will recover to a steady-state value in time Tp [4].  

The load model in this report will be assumed to recover to its steady-state value exponentially. And a differential equation that captures this exponential recovery model behavior is in [5] as:
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Where Ps is called static load function and could have the exponential form 
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is called the Dynamic load function.  Its possible form is of
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The above differential equation (7) can be converted to normal form by introducing the state variable 
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and can be rewritten as:
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Where 
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 is a new variable in the form 
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This state variable 
[image: image19.wmf]p

x

will be implemented in the simulation for load dynamic model. 

III. Hybrid Model Implementation

Before the load shedding corrective control of large system can be studied, the simple system is used to develop and illustrate the basic ideas.  This simple test system consists of one generator bus, which the voltage will be held constant, and one load bus.  At the load bus, there is a shunt capacitor for load compensation.  Two identical lines in parallel are connected between two buses, as in figure 2.
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Figure2: Two-Bus Test System
In order to force the system into a voltage unstable state, one of the transmission lines will be disconnected.  This will create the first discontinuous event in the system.  Following the first event, corrective mechanism, in this case load shedding will be taken place after and it will create the second event for the system.  

A. Differential Equation:

All state variable are defined as the following:
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 is the state variable of the load model 
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as in previous section.
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 is static power Ps(V) as in equation (8).
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 is a as in equation (8).
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With the states defined, the differential equations of the form 
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where 
y1 is the power Pd 
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Note that the 
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 is differential equation of the dynamic load model in the previous part and 
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is the time keeping of the system


B. Switching Algebraic equation:

Before the events specified above occur, the system is smooth.  Power at load bus is balanced as in equation (11).  However, when the time reaches to the load shedding time, the second event, some load has been shed.  Switched algebraic equations, equations (2) and (3) are changed as:
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Where 
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 is the reactive power assumed to be zero.  

Note before 
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 the power demand is balance and equal to the power supplied.  However, when 
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, some amount load has been shed.  And the new power balance equation is formed. 
IV. Simulation Example:

In this section, different scenarios are set up to study the characteristic of the simple system.  These different scenarios are organized as follow.  First, the voltage unstable state system is considered without any load shedding corrective control.  Then the load shedding corrective control will be present.  The different amount of load being shed at specific time simulation example is shown.  Next the amount of load being shed will be fixed, and the different time of the shedding take place is given.  

 All scenarios are begun with one of the transmission lines in figure2 is disconnected at time = 10 seconds to force the system into a voltage unstable state.    

A. No Load Shedding Corrective Control:

When time = 10, there is a step drop at the load bus.  With the characteristic of dynamic load, it will try to recover to its steady-state power level.  The response voltage at load bus to the recovery is as below.
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Figure3: System Without Load Shedding Corrective Control 

From Figure3, during the state of unstable voltages, the system transmission capability does not match the system loading and the long-term equilibrium has been lost.  Without any corrective control, the voltage will be collapsed.  

B. Different Amount of Load Shedding at a Time:

Again at time = 10 seconds, there is a disturbance in voltage.  After the disturbance, load shedding corrective control has been applied to the system with different amount of load being shed, 0.05, 0.1, 0.2, 0.3, and 0.4, at time = 100 seconds.  The voltage response to the load shedding control is shown below:
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Figure4: The Voltage Response to Load Shedding at Time=100s

From Figure4, the lowest line is the voltage response to a 0.05 of load being shed.  It can be seen that shedding this amount of load will not be able to stabilize the voltage of the system.  Therefore, at some point in time, the voltage will be collapsed.  Therefore, in order to stabilize the long-term voltage, more loads are needed to be shed.  From the Figure4, the middle line is the voltage response to a 0.2 of load being shed.  At this amount of load shed, the voltage will be stabilized at a steady-state value, 0.86.  However, the nominal voltage before the disturbance cannot be restored.  In order to restore the voltage to its value before, at least 0.4 of load need to be taken out.

C. An Amount of Being Shed at Different Time:

In this section the time issue is studied.  The same amount of load will be shed at different time from 20 seconds to 80 seconds after the step voltage drop at time 10 seconds.  The response is shown in Figure5.  
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Figure5: Voltage Response of 0.4 of Load Being Shed at Different Time

From the figure, the voltage collapses before time at 80 seconds.  Shedding load at time 80 seconds will not be able to restore voltage back to its steady-state value.  Therefore, in order to prevent the voltage collapse, load shedding corrective control needs to take place fast enough.  Note that when enough loads are shed before the voltage is collapses, the nominal voltage before the disturbance can be restored.  Therefore, at this point, the shedding time does not play an important low in minimization of load shedding.  However, with other corrective control implemented in the system, the shedding delay will play a big part in minimized the load shed, i.e. it may be advantageous to let other control act first [6].  Also, the relationship between the minimal amount of load shedding and the shedding time is addressed in [2].  

V. Optimization:

This report uses Gradient Method or the Method of Steepest Descent as an optimization technique [7] to optimize amount of load to be shedding and shedding time in order to restore the voltage back to its nominal value before the disturbance in voltage.    For this purpose, the cost function 
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can be defined as 
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Where 
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is the voltage at the final time, and
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is the voltage before the disturbance occurs.

However, from the result in Simulation Example Section, the shedding time has no effect on the voltage recovery as long as the shedding is operated before the system collapses.  Therefore, instead of having multidimensional case, the optimization is simplified as a scalar case with amount of load as a parameter.  The cost function is simplified as
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Generally, in order to minimum cost function C subject to (, (* is searched from the initial approximation (0 to the successive (1, (2, … until some stopping conditions are satisfied.  The successive (k+1 is given from 
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Where acc is the accelerating factor.

From the cost function in equation (16),
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Where 
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 is the voltage sensitivity with respect to amount of load being shed       evaluated at final time.

And w is the weighting factor.
A. Optimization Implementation and Result:

From the test system in Figure2, one of the transmission lines is disconnected at time = 10 seconds.  At time = 100 seconds, different amount of loads are shed as in figure4.  For each value of the load being shed, the voltage sensitivity is calculated and plots as follow
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Figure6: Voltage Sensitivity with Respect to Amount of Load Being Shed

From the voltage sensitivity with respect to load shed, the derivative the cost function with respect to ( can be found.  The minimum amount of load shed can be calculated as in equation (17) with the acc = 0.01.  (* calculated from equation (17) is 0.408.  This value matches with the value from the plot of the cost function C and amount off load shed ( shown below:
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Figure7: Cost Function (C) and Load Shed (()
V. Conclusion:
In this report, the optimization of the load shedding corrective control has been investigated as a tool to prevent voltage collapse in the system.  A simply but general test case of power system has been studied.  Since the behavior of the power system involves complex interactions between continuous dynamic and events of discrete nature, the test case has been modeled with the hybrid model framework.  The model consists of differential, switching algebraic, and state-reset (DSAR) equations.  From the simulation results of the test system, if there is enough amount of load is shed from the system, the voltage collapse will be avoided.  Also with different amounts of load shed, the voltage will recover to different steady-state levels voltage.  However, the time when the load needed to be shed will not affect the system as long as it is taken place before the voltage collapse.  From this information, the multidimensional case of the optimization is replaced by a simple scalar case and the gradient method is used to find the minimum value of the load to be shed.  

VII. Future Work:

Future work needs to be developed.  More complicated system, multi-bus and loads systems, has to be implemented.  With more buses and loads in the system, the locations of the load to be shed will have an effect on the minimum amount of the load to be shed in order to restore the long-term equilibrium of the system.  Also, with the many loads in the system, the shedding time will become an important factor to the optimization problem, i.e. the more effective load should be shed before the less effective load.  

Also, so far, the events of the test system have been assumed to be unchanged as parameters vary.  With this assumption, [8,9] concludes that if cost function is continuous and smooth in its arguments then the solution to minimization of cost function subject to parameters exists and continuously differentiable in terms of parameters.  This optimization problem can be solved using gradient-based methods.  However, with the multi-bus and loads systems the orders of events might change when the parameters vary.  The cost function now may be discontinuous.  The optimization problems then take on a combinatorial nature.  The local minimum of each continuous section of cost function needs to be searched in order to find the global optimization [10].
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