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On Switching Stabilizability for Continuous-Time
Switched Linear Systems

Yueyun Lu and Wei Zhang

Abstract—This technical note studies switching stabilization
problems for continuous-time switched linear systems. We con-
sider four types of switching stabilizability defined under different
assumptions on the switching control input. The most general
switching stabilizability is defined as the existence of a measurable
switching signal under which the resulting time-varying system is
asymptotically stable. Discrete switching stabilizability is defined
similarly but requires the switching signal to be piecewise constant
on intervals of uniform length. In addition, we define feedback
stabilizability in Filippov sense (respectively, sample-and-hold
sense) as the existence of a feedback law under which closed-loop
Filippov solution (respectively, sample-and-hold solution) is as-
ymptotically stable. It is proved that the four switching stabiliz-
ability notions are equivalent and their sufficient and necessary
condition is the existence of a piecewise quadratic control-
Lyapunov function that can be expressed as the pointwise mini-
mum of a finite number of quadratic functions.

Index Terms—Control-Lyapunov function, sliding motion,
switching stabilization.

I. INTRODUCTION

This technical note studies switching stabilization problems for
continuous-time switched linear systems (SLSs). Existing works in
this area mostly focus on deriving sufficient conditions for switching
stabilizability. These conditions often guarantee the existence of cer-
tain forms of control-Lyapunov functions (CLFs). Examples include
quadratic CLFs [1], piecewise quadratic CLFs [2], composite CLFs
that are obtained by taking the pointwise min, or pointwise max, or
convex hull of a finite number of quadratic functions [3]. Despite
the extensive results on sufficient conditions, establishing effective
necessary conditions for switching stabilizability remains an open
problem of fundamental importance.

To establish necessary conditions, it is important to note that switch-
ing stabilizability can be defined in many ways depending on the
assumptions on the switching control input σ. One can require σ to
be piecewise constant [4], or to have an average or minimum dwell
time bigger than some threshold value [5], or to be generated by a state-
feedback switching law [3]. Among the cases using feedback switching
laws, switching stabilizability depends further on the solution notion
used to define closed-loop trajectories, such as classical solution,
Caratheodory solution, Filippov solution, or sample-and-hold solution
[6]. Therefore, the study of switching stabilizability depends crucially
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on the assumptions on the admissible switching input and the adopted
solution notion. Unfortunately, the complication arising from different
definitions of switching stabilizability has not been adequately studied
in the literature.

We consider four types of switching stabilizability. The most gen-
eral switching stabilizability is defined as the existence of a measurable
switching signal under which the resulting time-varying system is
asymptotically stable. Discrete switching stabilizability is then defined
by admitting only piecewise constant signals with switching intervals
of uniform length. On the other hand, we also consider switching stabi-
lizability under state-feedback switching laws. We call a SLS feedback
stabilizable in Filippov sense (resp. sample-and-hold sense) if there
exists a feedback law under which closed-loop Filippov solution (resp.
sample-and-hold solution) is asymptotically stable.

We will introduce and study all the four switching stabilizability
notions. The main contribution is the equivalence of the following
statements for a continuous-time SLS:

i) The system is switching stabilizable;
ii) The system is feedback stabilizable in Filippov sense;

iii) The system is feedback stabilizable in sample-and-hold sense
with bounded sampling rate;

iv) The system is discrete switching stabilizable;
v) There exists a piecewise quadratic CLF that can be expressed as

the pointwise minimum of a finite number of quadratic functions.

The above result represents a significant contribution to the field
of switched systems. Most existing works focus on developing suffi-
cient conditions for feedback stabilizability in Filippov sense [1]–[3],
[7], some of which even need to exclude sliding motions [2]. In
fact, sufficient and necessary conditions are not available even for
the well studied feedback stabilization problems in Filippov sense,
not to mention other stabilizability notions. In contrast, we prove a
unified sufficient and necessary condition for all the four switching
stabilizability definitions. The result provides a fundamental insight
that the class of piecewise quadratic CLFs is sufficiently rich to
study switching stabilization problems under various assumptions on
the switching control input. It justifies many existing works that
have adopted quadratic or piecewise quadratic CLFs for simplicity or
heuristic reasons [1]–[3], [7].

II. SWITCHING STABILIZABILITY DEFINITIONS

We consider the following continuous-time switched linear system
(SLS):

ẋ(t) = Aσ(t)x(t), σ(t) ∈ Q Δ
= {1, . . . ,M} (1)

where x(t) ∈ R
n denotes the continuous state of the system, σ(t) de-

notes the switching control signal that determines the active subsystem at
time t∈R+, and {Ai}i∈Q are constant matrices. Note that for any mea-
surable switching signal σ : R+→Q, the overall switched vector field,

f(t, x(t))
Δ
=Aσ(t)x(t), is time-varying and continuous in statex(t), for

which a Caratheodory solution always exists [6, Proposition S1]. We
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denote x(·; z, σ) : R+ → R
n as a Caratheodory solution of system (1)

under a measurable switching signal σ with initial state z ∈ R
n.

The study of switching stabilizability depends crucially on the as-
sumptions on the switching input. The switching input can be restricted
to certain class of time-domain signals, or can be generated by certain
class of state-feedback laws. We will consider both cases. Let Sm be
the set of measurable switching signals, Sp be the set of piecewise
constant switching signals. Denoted by Sp[τD] the set of switching
signals with interval between consecutive discontinuities no smaller

than τD. Let S+
p

Δ
= ∪τD∈R+

Sp[τD]. The most general definition of
switching stabilizability is defined on the set of measurable switching
signals Sm.

Definition 1 (Switching Stabilizability): System (1) is called switch-
ing stabilizable if for each ε > 0, there exists a δ > 0 such that
whenever ‖z‖ < δ, there exists a measurable σ ∈ Sm under which the
state trajectory x(·; z, σ) satisfies ‖x(t; z, σ)‖ < ε, for all t ∈ R+ and
x(t; z, σ) → 0 as t → ∞.

Definition 1 is very general in the sense that it considers all
measurable switching signals. If we focus on state-feedback switching
laws, the definition of switching stabilizability depends further on the
adopted solution notion of the closed-loop system. Assume that the
state x(t) is available at all time t ∈ R+, and the switching control is
determined through a state-feedback switching law ν : Rn → Q. Then
the corresponding closed-loop system can be written as

ẋ(t) = Aν(x(t))x(t). (2)

Although each subsystem vector field is continuous, the switching
law ν may introduce discontinuities in the closed-loop vector field.
In general, the differential equation (2) may not have a classical
or Caratheodory solution [6]. Filippov solution notion [8] is often
adopted to handle the discontinuities on the right hand side of (2).
We denote x(·; z, ν) : R+ → R

n as a Filippov solution [6, p.13–14]
of the closed-loop system (2) under a measurable switching law ν with
initial state z ∈ R

n. Switching stabilizability can also be defined as
the existence of a switching law under which the closed-loop system
is asymptotically stable in the Filippov sense.

Definition 2 (Feedback Stabilizability in Filippov Sense): System
(1) is called feedback stabilizable in Filippov sense if there exists
a measurable switching law ν : Rn → Q such that for each ε > 0,
there exists a δ > 0 for which whenever ‖z‖ < δ, any closed-loop
Filippov trajectory x(·;z, ν) satisfies that ‖x(t; z, ν)‖ < ε, ∀ t ∈ R+,
x(t; z, ν) → 0 as t → ∞.

Definition 2 is very useful for switching stabilization problems due
to the crucial importance of Filippov solution to switched systems. It
includes trajectories with sliding motions, which are elegant abstrac-
tions of trajectories of the nonsmooth closed-loop system. In fact, most
existing studies on switching stabilization adopt Definition 2 to derive
various sufficient conditions for switching stabilizability. Sample-and-
hold (abbrev. S-H) solution (or π-solution) is another widely used
solution notion for discontinuous dynamical systems [6, p.22]. We
denote xπ(·; z, ν) as the π-solution of the closed-loop system (2)
under a measurable switching law ν with initial state z ∈ R

n. One
may interpret S-H solution as representing the behavior of sampling
under a fixed feedback law. The feedback control is evaluated only
at sampling times with the values being held until the next sampling
time. Feedback stabilizability in the context of S-H solution means
asymptotic stability of the sampled closed-loop system, which in
general may involve an unbounded sampling rate as the trajectory
approaches to the origin. In this technical note, we are interested in
the case where asymptotic stability can be obtained by sampling with
bounded rate (i.e., nonvanishing intersampling time).

Fig. 1. “stab.”—stabilizability; “exp.”—exponential; pm-PQCLF: Definition 6.

Definition 3 (Feedback Stabilizability in S-H Sense With Bounded
Sampling Rate): System (1) is called feedback stabilizable in S-H
sense with bounded sampling rate if there exists a feedback law ν :
R

n → Q and a constant h0 > 0 such that whenever d(π) < h0, the
closed-loop π-trajectory xπ(·; z, ν) satisfies ∀ ε > 0, ∃δ > 0 such that
whenever ‖z‖ < δ, ‖xπ(t; z, ν)‖ < ε, ∀ t ∈ R+ and xπ(t; z, ν) → 0
as t → ∞.

Switching stabilizability defined in Definition 3 clearly implies the
existence of a piecewise constant stabilizing signal σ ∈ Sp[h] for
all h ∈ (0, h0). This is different, but closely related to the discrete
switching stabilizability defined below.

Definition 4 (Discrete Switching Stabilizability): System (1) is
called discrete switching stabilizable if there exists a constant h0 > 0
such that for any h ∈ (0, h0), there exists a σ : R+ → Q with σ(t) =
σk ∈ Q, ∀ t ∈ [kh, (k + 1)h), ∀k ∈ N under which the state trajec-
tory x(·; z, σ) satisfies ∀ ε > 0, ∃δ > 0 such that ‖z‖ < δ implies that
‖x(t; z, σ)‖ < ε, ∀ t ∈ R+ and x(t; z, σ) → 0 as t → ∞.

We call the stabilizability in Definition 1, 2, 3 and 4 exponential
if ∃C, γ > 0 so that the solution x(·) : R+ → R

n with x(0) = z
satisfies ‖x(t)‖ ≤ Ce−γt‖z‖, ∀ t ∈ R+, ∀ z ∈ R

n.
The goal of this technical note is to show the four switching stabi-

lizability definitions are all equivalent to the existence of a piecewise
quadratic control-Lyapunov function (CLF). Furthermore, such a CLF
can be expressed as the pointwise minimum of a finite number of
quadratic functions. To better unfold the proof of the main result, we
first give a preview of the logical flow of all the arguments we will
establish. The rest of the technical note is then dedicated to show the
diagram in Fig. 1 commutes, from which the equivalence of all the key
concepts can be concluded.

III. CONNECTION TO DISCRETE SWITCHING STABILIZABILITY

The goal of this section is to show that the general switching
stabilizability defined in Definition 1 implies exponential discrete
switching stabilizability (Definition 4).

It is well known that asymptotic controllability implies feedback
stabilizability in S-H sense for general nonlinear control systems [9].
However, such a result cannot be directly applied to switched systems
as the open-loop vector field is required to be continuous in control. In
fact, even if we have such a result for switched systems, it still does not
imply discrete switching stabilizability due to the possibly unbounded
growth of sampling rate close to the origin. As a result, sampling
interval will vanish and the corresponding discrete-time system is not
well defined. Therefore, nonvanishing intersampling time is essential
for establishing the connection to discrete-time switching stabilization
problems.
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In general, intersampling time has to tend to zero to stabilize the
sampled closed-loop system. One exception is homogeneous system
whose open-loop vector field satisfies g(ax,u) = ag(x,u), ∀ a ≥ 0.
For such systems, it is shown in [10] that asymptotic controllability
implies feedback stabilizability in S-H sense with bounded sampling
rate. However, the result cannot be directly applied here as g is
required to be continuous in both x and u in [10], while the open-
loop vector field of system (1) is not continuous in σ. To deal with the
discontinuities due to the switching control σ, we consider a relaxed
system that is continuous in control.

The technique of embedding switched system into a larger family
of nonlinear systems with relaxed continuous control has been used to
solve switched optimal control problems [11]. It is shown by the so-
called chattering lemma that trajectories of the relaxed system can be
approximated by those of the switched system with error bound of ar-
bitrary accuracy. Our derivation of the connection between continuous-
time and discrete-time switching stabilizability is also based on such
embedding technique. It turns out that we require an error bound that is
much stronger than the one provided by the chattering lemma in [11].
Next, we will prove a new chattering lemma for switching stabilization
problems.

Denote Up
Δ
= {α ∈ {0, 1}M :

∑M
i=1 αi = 1} and Ur

Δ
= {α ∈

[0, 1]M :
∑M

i=1 αi = 1}. We refer to system (1) as a pure system (P),
which can be equivalently written as

(P) : ẋ(t) =
∑
i∈Q

αi(t)Aix(t), α(t) ∈ Up.

Define the corresponding relaxed system (R) as

(R) : ẋ(t) =
∑
i∈Q

αi(t)Aix(t), α(t) ∈ Ur.

Let x(·; z, αp) : R+ → R
n be the state trajectory of (P) under a pure

control signal αp : R+ → Up and x(·;z, αr) : R+ → R
n be the state

trajectory of (R) under a relaxed control signal αr : R+ → Ur. We
call a relaxed control signal αr : R+ → Ur exponentially stabilizing
if ∃C, γ > 0 s.t. ‖x(t; z, αr)‖ ≤ Ce−γt‖z‖, ∀ t ∈ R+,∀ z ∈ R

n. The
new chattering lemma proves an error bound proportional to the norm
of initial state.

Lemma 1: For any exponentially stabilizing relaxed control signal
αr : [0, T ] → Ur and any ε > 0, there exists a pure control signal αp :
[0, T ] → Up where αp ∈ S+

p such that ‖x(t; z, αp)− x(t; z, αr)‖ <
ε‖z‖, ∀ t ∈ [0, T ],∀ z ∈ R

n.
Proof: Denote φ(t) � x(t; z, αp) and φ̃(t) � x(t;z, αr). Given

relaxed control signal αr : [0, T ] → Ur, ε > 0 and initial state z ∈
R

n, the goal is to construct a pure control signal αp : [0, T ] → Up

where αp ∈ §+p such that ‖φ(t)− φ̃(t)‖ < ε‖z‖, ∀ t ∈ [0, T ]. We first
partition [0, T ] into equal length subintervals and then apply the
following construction strategy for each subinterval. Let h > 0 be the
length of subinterval (we will decide its upper bound later). On each
subinterval [kh, (k + 1)h), k ∈ N, αp sequentially takes value from
the set Up of M elements, i.e.,

αp
i (t) =

{
1, t ∈ [tk,i−1, tk,i)
0, otherwise

∀i = 1, · · · ,M (3)

where tk,0 = kh and tk,i are defined recursively by

tk,i = tk,i−1 +

∫ (k+1)h

kh

αr
i (τ )dτ,∀ i = 1, · · · ,M. (4)

By construction, Δtk,i � tk,i − tk,i−1 > 0, ∀k ∈ N, i ∈ Q and thus
αp ∈ §+p . Similar as the proof in [11], the error can be divided into two

terms, i.e., ‖φ(t)− φ̃(t)‖ ≤ E1 +E2, where

E1 �
∥∥∥
∫ t

0

M∑
i=1

αp
i (τ )Ai

(
φ(τ )− φ̃(τ )

)
dτ

∥∥∥

E2 �
∥∥∥
∫ t

0

M∑
i=1

(
αp
i (τ )− αr

i (τ )
)
Aiφ̃(τ )dτ

∥∥∥.

Next, we derive the upper bounds for E1 and E2. By matrix norm
inequality and αp ∈ Up,

E1 ≤
∫ t

0

M∑
i=1

‖αp
i (τ )Ai

(
φ(τ )− φ̃(τ )

)
‖dτ

≤
∫ t

0

M∑
i=1

αp
i (τ )‖Ai‖‖φ(τ )− φ̃(τ )‖dτ

≤ L1

∫ t

0

‖φ(τ )− φ̃(τ )‖dτ, where L1 � max
i∈Q

‖Ai‖.

Due to the construction of αp in (3), we have i)
∫ (k+1)h

kh

∑M
i=1

αp
i (τ )Aiφ̃(τ )dτ =

∑M
i=1

∫ tk,i

tk,i−1
Aiφ̃(τ )dτ . It follows from (4) that

ii)
∫
[tk,i−1,tk,i)

(1− αr
i (τ ))dτ =

∫
[kh,(k+1)h)\[tk,i−1,tk,i)

αr
i (τ )dτ .

Let φ̃Δ(t) � φ̃(t)− φ̃(tk). Since αr is exponentially stabilizing,
∃ C > 0 s.t. ‖φ̃(t)‖ ≤ C‖z‖, ∀ t ∈ R+ and thus iii) ‖φ̃Δ(t)‖ ≤
hL1C‖z‖, ∀t ∈ [kh, (k + 1)h). Based on i), ii) and iii),

E2 ≤
∑
k

∥∥∥
∫ (k+1)h

kh

M∑
i=1

(
αp
i (τ )Aiφ̃(τ )− αr

i (τ )Aiφ̃(τ )
)
dτ

∥∥∥

≤
∑
k

M∑
i=1

∥∥∥
∫
[tk,i−1,tk,i)

(1− αr
i (τ ))Aiφ̃(τ )dτ−

∫
[kh,(k+1)h)\[tk,i−1,tk,i)

αr
i (τ )Aiφ̃(τ )dτ

∥∥∥

≤
∑
k

M∑
i=1

∫ (k+1)h

kh

‖Ai‖‖φ̃Δ(τ )‖dτ ≤ T

h
Mh2L2

1C‖z‖.

Let κ � TML2
1C. By choosing h < ε

κ
e−L1T , the rest of the proof

follows from Gronwall inequality. �
Remark 1: The new chattering lemma differs from the original

version in the following aspects: i) The error bound is any desired
accuracy times the norm of initial state rather than just the desired
accuracy; ii) The choice of switching signals is from the set §+p rather
than the set §m; iii) It is under the assumption of relaxed control signal
being exponentially stabilizing. In fact, the above three properties play
important roles in establishing the connection to exponential discrete
switching stabilizability.

The relaxed system (R) is a homogeneous system, whose vector
field is continuous with respect to both state and the control input αr .
It is proved in [10, Proposition 4.4] that asymptotic controllability of
homogeneous system implies exponential stability of sampled closed-
loop system with sufficiently small but nonvanishing intersampling
time. The existence of exponentially stable trajectories of (R) allows
us to construct exponentially stabilizing switching signals from the set
S+
p based on Lemma 1.
Lemma 2: If system (1) is switching stabilizable, then it is expo-

nentially switching stabilizable under a switching signal σ : R+ → Q
where σ ∈ S+

p .
Proof: Consider the pure system (P) and the relaxed system

(R) defined before. Obviously, (R) is asymptotically controllable
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given (P) is switching stabilizable. Furthermore, (R) is exponen-
tially feedback stabilizable in S-H sense with bounded sampling rate
[10, Proposition 4.4]. Let ν :Rn→Ur be the stabilizing feedback law
of (R). The goal is to find an exponentially stabilizing signal σ∈S+

p of
(P). We now fix a nonvanishing sampling schedule π = {tk}k∈N

and
consider a relaxed control signal defined as αr(t) = ν(xπ(tk; z, ν)),
∀ t ∈ [tk, tk+1),∀ k ∈ N. As αr is exponentially stabilizing, there
exists C > 0, γ > 0 such that ‖x(t; z, αr)‖ ≤ Ce−γt‖z‖, ∀ z ∈ R

n,
∀ t ∈ R+. Let the finite horizon T > (2 log(2C)/γ) and ε = Ce−γT .
By Lemma 1, we can construct a pure control signal αp,0 : [0, T ]→Up

where αp,0 ∈ S+
p such that ‖x(t; z, αp,0)− x(t; z, αr)‖ < ε‖z‖,

∀ t ∈ [0, T ], ∀ z ∈ R
n. Then, the state trajectory of (P) under αp,0

satisfies ‖x(t; z, αp,0)‖≤2Ce−γt‖z‖, ∀ t∈ [0, T ]. We next iteratively
apply the bound on intervals of length T to obtain the exponential
convergence on R+. Let αp : R+ → Up be the concatenation of αp,k :
[kT, (k+1)T )→Up, k∈N. For t∈ [kT, (k+1)T ), ‖x(t; z, αp)‖≤
(2C)k+1e−γkT ‖z‖ < e−((k/(k+1))γ−(log(2C)/T ))t‖z‖. In general,
for any t ∈ R+, ‖x(t; z, αp)‖ < e−γ′t‖z‖ where γ′ = (γ/2)−
(log(2C)/T ) ∈ (0, γ). The stabilizing signal σ : R+ → Q can be
obtained from αp as follows: σ(t) = i, if αp

i (t) = 1, ∀ t ∈ R+. As
αp,k ∈ S+

p , ∀ k ∈ N, we have αp ∈ S+
p and thus σ ∈ S+

p . �
Now we have found a switching signal σ ∈ S+

p that exponentially
stabilizes the system. However, the stabilizing switching signal σ may
not have a uniform intersampling time. It remains to show that if we
sample the signal with a fixed intersampling time that is sufficiently
small and hold the signal until the next sampling, the corresponding
state trajectory is also exponentially stable. This will then imply
discrete switching stabilizability.

Theorem 1: If system (1) is switching stabilizable, then it is expo-
nentially discrete switching stabilizable.

Proof: By Lemma 2, there exists a switching signal σ0 :
R+ → Q where σ0 ∈ S+

p under which the state trajectory x(·; z, σ0)
is exponentially stable, i.e., ∃C0 > 0, γ > 0, s.t. ‖x(t; z, σ0)‖ ≤
C0e

−γt‖z‖, ∀ t ∈ R+, ∀ z ∈ R
n. Let σh : R+ → Q be the sam-

pled signal of σ0 with sampling intervals of uniform length

h, i.e., σh(t)
Δ
= σ0(kh), ∀ t ∈ [kh, (k + 1)h), ∀ k ∈ N. Let φ0(t)

Δ
=

x(t; z, σ0), φh(t)
Δ
= x(t; z, σh). The rest of the proof has two ingre-

dients: i) the exponential convergence of the error between φ0 and φh

on a finite horizon and ii) the extension of the exponential convergence
of φh from a finite horizon to R+.

To show i), one can follow the proof of Lemma 1 by dividing
the error into two terms and bounding the first term with integral of
the error and the second term with constant times h‖z‖. We briefly
discuss the second term here. Since σ0 ∈ S+

p , there are at most N <
∞ switches on a finite interval and thus i.1) σh and σ0 differ on
intervals of length at most Nh. As σ0 is exponentially stabilizing,

i.2) ‖φ0(t)‖ ≤ C0‖z‖, ∀ t ∈ R+. Based on i.1) and i.2), E2
Δ
=∫ t

0
‖(Aσh(τ) −Aσ0(τ))φ0(τ )‖dτ ≤ L2NhC0‖z‖.
To show ii), one can follow the proof of Lemma 2 by iteratively

applying the bound on intervals of length T . By i), for sufficiently
small h, ‖φh(t)‖ ≤ 2C0e

−γt‖z‖, ∀ t ∈ [0, T ], z ∈ R
n. By choos-

ing T > (2 log(2C0)/γ), ‖φh(t)‖ < e−γ′t‖z‖, ∀ t ∈ R+,∀ z ∈ R
n

where γ′ = (γ/2)− (log(2C0)/T ) ∈ (0, γ). �
The above theorem indicates that switching stabilizability implies

exponential switching stabilizability of discrete-time systems obtained
by sampling the original system with sufficiently small and fixed
intersampling time. Although such a result appears to be natural, its
proof is highly nontrivial due to the possibility of wild behaviors of a
measurable stabilizing switching signal σ ∈ Sm and the discontinuity
of the switched vector field with respect to the switching input σ. In
fact, the result does not hold for general switched nonlinear systems,
for which the existence of a stabilizing switching signal σ ∈ Sm

does not imply the existence of a σ ∈ S+
p with switching intervals of

uniform length.

IV. CONVERSE CONTROL-LYAPUNOV FUNCTION

THEOREM FOR SWITCHED LINEAR SYSTEMS

In this section, we will develop a converse CLF theorem for the
switching stabilizability in Definition 1 where the switching control
σ is only required to be measurable. This is more general than the
definition used in many other works [13] for SLSs that require σ to be
piecewise constant.

A. Control-Lyapunov Function

Control-Lyapunov function (CLF) is an important tool to study
stabilization problems. This technical note focuses on an important
class of nonsmooth CLFs, namely, pointwise minimum piecewise
quadratic CLFs.

Definition 5 (Pointwise Minimum Piecewise Quadratic Function
(pm-PQF)): Let Pj , j ∈ Nm be symmetric matrices, i.e., P T

j =
Pj , ∀ j ∈ Nm. The function defined by

V (x)
Δ
= min

j∈Nm

xTPjx, x ∈ R
n (5)

is called a pm-PQF if Ωj �= ∅, ∀ j ∈ Nm, where Ωj
Δ
= {x ∈ R

n :
xTPjx < xTPkx, ∀ k �= j}.

A pm-PQF is clearly a piecewise smooth function, for which
directional derivative exists everywhere [14, p.43].

Lemma 3 ([14]): For any pm-PQF g : Rn → R, the limit

Dg(x; η)
Δ
= limδ↓0(1/δ)(g(x+ δη)− g(x)) exists, ∀x, η ∈ R

n.
We are now ready to define CLFs based on pm-PQFs where condi-

tions are given in terms of directional derivative.
Definition 6 (Pointwise Minimum Piecewise Quadratic Control-

Lyapunov Function (pm-PQCLF)): A pm-PQF V :Rn→R+ is called
a pm-PQCLF if there exists a continuous function W : Rn → R+ such
that the following conditions hold:

V (x) > 0,W (x) > 0, ∀x �= 0, V (0) = 0 (6)

Lβ = {x : V (x) ≤ β} is bounded for each β (7)

min
i∈Q

DV (x; fi(x)) ≤ −W (x), ∀x ∈ R
n. (8)

For a discrete-time SLS, it has been shown that switching sta-
bilizability implies the existence of a pm-PQCLF [15]. We will
prove a similar converse pm-PQCLF theorem for continuous-time
switching stabilizability. The proof relies on the connection between
continuous-time and discrete-time switching stabilizability established
in the previous section. Consider the discrete-time switched linear
system (DTSLS) obtained by sampling system (1) with intervals of
length h:

x(k + 1) = eAσ(k)hx(k), σ(k) ∈ Q, k ∈ N. (9)

Denote xh(·; z, σ) : N → R
n as the solution of DTSLS (9) under a

switching sequence σ : N → Q with initial state z ∈ R
n. As shown in

[16], pm-PQCLFs for DTSLSs can be constructed from finite-horizon
value function defined below.

Definition 7 (Value Function): Denoted byJh
N (z, σ)

Δ
=
∑N

k=0 ‖xh(k;
z, σ)‖2 the N -horizon cost function of system (9) with initial state
z under switching sequence σ = {σk}Nk=0. The N -horizon value
function of system (9) is defined as V h

N (z) = minσ Jh
N (z, σ).

It can be easily shown that the value function is a pm-PQF.
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Lemma 4 ([16]): The N -horizon value function of system (9) takes
the form of V h

N (z) = minP∈HN
zTPz where HN is a finite set of

positive definite matrices.
The converse result for switching stabilizability of DTSLSs is

developed in terms of finite-horizon value functions. It suggests that
the finite-horizon value function V h

N will eventually become a pm-
PQCLF as the horizon N increases.

Theorem 2 ([15]): If system (9) is exponentially switching stabiliz-
able, there exist constants N0 < ∞, κ > 0 such that for any N ≥ N0,
the N-horizon value function V h

N satisfies

min
i∈Q

{
V h
N

(
eAihz

)
− V h

N(z)
}
≤ −κ‖z‖, ∀ z ∈ R

n. (10)

Note that condition (10) can be considered as a discrete-time version
of condition (8). As we will show next, the former implies the latter by
proper choice of h and N .

B. Converse pm-PQCLF Theorem

We now develop a converse CLF result for the most general switch-
ing stabilizability (Definition 1). According to Theorem 1, switching
stabilizability implies exponential switching stabilizability of a collec-
tion of DTSLSs (9) with sufficiently small h. Then, Theorem 2 ensures
that the finite-horizon value function V h

N is a pm-PQCLF for DTSLS
(9). We want to show that V h

N is also a pm-PQCLF for system (1). The
main challenge lies in the dependency of V h

N on h.
Lemma 5: If system (1) is exponentially discrete switching stabiliz-

able, it admits the finite-horizon value function V h
N with sufficiently

small h and sufficiently large N as a pm-PQCLF.
Proof: Obviously, V h

N satisfies condition (6) and (7). We are
left to show that it also satisfies the decreasing condition (8). By
the assumption of exponential discrete switching stabilizability,
there exist constants h0 > 0, C > 0, γ > 0, κ > 0 such that
for any DTSLS (9) with h ∈ (0, h0), there exists a switching
sequence σ under which the state trajectory satisfies ‖xh(k; z, σ)‖ ≤
Ce−γhk‖z‖, ∀ z ∈ R

n, ∀ k ∈ N. Furthermore, there exists a N < ∞
such that mini∈Q{V h

N (eAihz)− V h
N (z)} ≤ −κh‖z‖, ∀ z ∈ R

n.
Since V h

N = minP∈HN
zTPz

min
i∈Q

{
zT

(
eAih

)T
P ′eAihz − zTPz

}
≤ −κh‖z‖, where

P
Δ
= argmin

P∈HN

zTPz,P ′ Δ
= argmin

P∈HN

zT
(
eAih

)T
PeAihz.

By Taylor expansion, eAih = I +Aih+ o(h2), which gives

min
i∈Q

{
zT (P ′ − P )z + hzT

(
AT

i P
′ + P ′Ai

)
z
}
≤ −κh‖z‖.

Note that DV h
N (z;Aiz) = zT (AT

i P + PAi)z. Then

min
i∈Q

DV h
N (z;Aiz) + min

i∈Q

{
1

h
zT (P ′ − P )z

+ zT
(
AT

i (P
′ − P ) + (P ′ − P )Ai

)
z

}
≤ −κ‖z‖. (11)

Let ΔP
Δ
= P ′ − P . We next discuss the order of ‖P‖ and ‖ΔP‖

for their dependency on h. We claim that i) ‖P‖ = O((1/h)) and
ii) ‖ΔP‖ = O(1). The proof goes as follows: i) By monotonicity
of value function in terms of horizon, V h

N(z) = zTPz = O(1/

(1− e−γh)) · ‖z‖. Thus, ‖P‖ = O(1/(1 − e−γh)) → O(1/h) as
h → 0. ii) Again by monotonicity property, |V h

N (eAihz)− V h
N (z)| =

|zT (eAih)TP ′eAihz − zTPz| = O(1/(1 − e−γh)) · ‖eAihz − z‖.
It then gives ‖(eAih)TP ′eAih − P‖ = O(1/(1 − e−γh)) ·O(h).
Note that ‖(eAih)TP ′eAih − P‖ = ‖ΔP + h(AT

i P
′ + P ′Ai)

+o(h2)‖ ≥ ‖ΔP‖ − h‖AT
i P

′ + P ′Ai‖, where the inequality is due
to matrix norm triangle inequality. By reorganizing terms, we have
‖ΔP‖ ≤ O(1/(1 − e−γh)) ·O(h)+ h‖AT

i P
′+P ′Ai‖= O(1/(1 −

e−γh)) ·O(h) +O(h) ·O(1/(1 − e−γh)) → O(1) as h → 0, where
the equality is due to the order of ‖P‖ discussed in i). Based
on the property of pointwise minimum that zTΔPz ≥ 0 and the
fact that ‖ΔP‖ = O(1) we just proved, there exists a sufficiently
small h > 0 such that zT ((1/h)ΔP +AT

i ΔP +ΔPAi)z > 0,
∀ z ∈ R

n, ∀ i ∈ Q. In other words, mini∈Q{(1/h)zTΔPz +
zT (AT

i ΔP +ΔPAi)z} ≥ 0. Together with (11) we have mini∈Q
DV h

N (z;Aiz) ≤ −κ‖z‖, ∀ z ∈ R
n, which completes the proof. �

Theorem 3 (Converse pm-PQCLF Theorem): If system (1) is switch-
ing stabilizable, then it admits a pm-PQCLF.

Proof: If system (1) is switching stabilizable, then it is exponen-
tially discrete switching stabilizable (Theorem 1). Furthermore, the V h

N

with sufficiently small h and sufficiently large N is a pm-PQCLF for
system (1) (Lemma 5). �

Theorem 3 provides a formal justification for many existing works
that have adopted quadratic or piecewise quadratic CLFs for simplicity
or heuristic reasons [1]–[4], [7], [13], [17]. It allows us to only focus on
pm-PQCLFs in the study of switching stabilizability for continuous-
time SLSs.

V. EQUIVALENT CHARACTERIZATIONS

FOR SWITCHING STABILIZABILITY

The goal of this section is to prove the equivalence of the four
switching stabilizability definitions and their sufficient and necessary
condition as the existence of a pm-PQCLF. We first introduce several
lemmas to show some key pairwise relations among them.

Lemma 6: If system (1) is feedback stabilizable in Filippov sense,
then it is switching stabilizable.

Proof: Assume system (1) is feedback stabilizable in Filip-
pov sense. There exist a stabilizing feedback law ν : Rn → Q and
a constant T > 0 such that ‖x(t; z, ν)‖ ≤ (1/2)‖z‖, ∀ t ≥ T, ∀ z ∈
R

n. We now fix the finite time horizon T and construct a stabilizing
switching signal σ : R+ → Q recursively on intervals of length T .

Let φ(·) Δ
= x(·;z, σ) : R+ → R

n be the state trajectory of system (1)
under σ. Since the velocity of a Filippov solution can always be
written as the convex combination of subsystem vector fields, i.e.,
ẋ(t; z, ν) =

∑
i∈Q αi(t)Aix(t; z, ν), where

∑
i∈Q αi(t) = 1, ∀ t ∈

R+, we can think of x(·; z, ν) : R+ → R
n as a stabilizing trajec-

tory of the relaxed system (R). By Lemma 1, ∀ z ∈ R
n, ε > 0,

∃σ(z, ε, ν) ∈ S+
p s.t. ‖x(t; z, σ(z, ε, ν))− x(t; z, ν)‖ ≤ ε‖z‖, ∀ t ∈

[0, T ], where the parenthesis in σ(z, ε, ν) is used to emphasize the

dependency of σ on z, ε, ν. Let σk
Δ
= σ|[kT,(k+1)T ] : [0, T ] → Q be

the restriction of σ on [kT, (k + 1)T ]. Consider the Filippov solu-
tion (also a relaxed trajectory) starting from the end point of the
trajectory under σ on the last interval, i.e. x(·;φ(kT ), ν). By as-
sumption, ‖x(T ;φ(kT ), ν)‖ ≤ (1/2)‖φ(kT )‖. By Lemma 1, ∃σk :
[0, T ] → Q where σk ∈ S+

p s.t. ‖x(t;φ(kT ), σk)− x(t;φ(kT ), ν)‖
≤ (1/2k+1)‖φ(kT )‖, ∀ t ∈ [0, T ]. Thus, ‖φ((k + 1)T )‖ ≤ ((1/2) +
(1/2k+1))‖φ(kT )‖, ∀ k ∈ N where φ(0) = z. By construction,
the state trajectory under σ satisfies ‖φ(t)‖ ≤ Π

�t/T�−1
k=0 ((1/2) +

(1/2k+1))‖z‖ ≤ (3/4)�t/T�−1‖z‖ → 0 as t → ∞. Since σk ∈
S+
p , ∀ k ∈ N, we verified that σ ∈ S+

p . �
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One sufficient condition for feedback stabilizability in Filippov
sense is the existence of a pm-PQCLF provided in [3, Corollary 1].
Combined with the converse pm-PQCLF theorem and the above
lemma, we can claim the equivalence of switching stabilizability,
feedback stabilizability in Filippov sense and the existence of a pm-
PQCLF. It remains to establish their relation to exponential feedback
stabilizability in S-H sense with bounded sampling rate.

Lemma 7: If system (1) admits a pm-PQCLF, then it is exponen-
tially feedback stabilizable in sample-and-hold sense with bounded
sampling rate.

Proof: Let V be a pm-PQCLF. There exists 0 < C−
V <C+

V <∞
such that C−

V ‖z‖2 ≤ V (z) ≤ C+
V ‖z‖2,∀ z ∈ R

n. According to
condition (8), there exists κ > 0 such that mini∈Q DV (z;Aiz) ≤
−3κV (z), ∀ z ∈ R

n. For each κ > 0, we can find an h0 such that
0 < h0 ≤ κC−

V /maxi∈Q,k∈Nm ‖AT
i (A

T
i Pk + PkAi) + (AT

i Pk +
PkAi)Ai‖ and 1− 2κh0 ≤ e−2κh0 . Let the switching law ν :
R

n → Q be ν(z) = argmini∈Q DV (z;Aiz), ∀ z ∈ R
n. Consider

a sampling schedule π = {tk}k∈N with d(π) < h0. It follows from
the definition of sample-and-hold solution that for any τ ∈ (0, h0),
V (xπ(τ ; z, ν)) = V (z) +

∫ τ

0
DV (eAν(z)tz; Aν(z)e

Aν(z)tz) dt =

V (z) + τDV (eAν(z)tz;Aν(z)e
Aν(z)tz) for some t ∈ (0, τ ), where

the last equality is due to Mean Value Theorem. For 0 < t < τ < h0,
the directional derivative in the last equation can be bounded by
DV (eAν(z)tz; Aν(z)e

Aν(z)tz) ≤ DV (z; Aν(z)z) + t · V (z)/C−
V ·

‖AT
ν(z)(A

T
ν(z)Pk+PkAν(z))+(AT

ν(z)Pk+PkAν(z))Aν(z)‖≤−2κV (z).
Thus, the value of V along closed-loop π-solution satisfies
V (xπ(τ ; z, ν))≤(1−2κτ)V (z)≤e−2κτV (z), ∀ z∈R

n, ∀ τ ∈(0, h0).
By iteratively applying the above inequality on intervals
[tk, tk+1], k ∈ N of length less than h0, we have V (xπ(t; z, ν)) ≤
e−2κtV (z),∀ t ∈ R+, ∀ z ∈ R

n. By the bound of V , ‖xπ(t; z, ν)‖ ≤
Ce−κt‖z‖, ∀ t ∈ R+, ∀ z ∈ R

n, where C
Δ
= (C+

V /C−
V )(1/2). �

We are now ready to state the main result of this technical note,
namely, the equivalence among all the four switching stabilizability
definitions and the existence of a pm-PQCLF. The proof of the main
result is illustrated by the diagram in Fig. 1.

Theorem 4: The following statements are equivalent for continuous-
time switched linear system (1):

i) It is switching stabilizable;
ii) It is feedback stabilizable in Filippov sense;

iii) It is exponentially feedback stabilizable in sample-and-hold
sense with bounded sampling rate;

iv) It is exponentially discrete switching stabilizable;
v) It admits a pm-PQCLF.

Proof: It suffices to show the diagram in Fig. 1 commutes. All the
links have been established. ii) ⇒ i): Lemma 6; i) ⇒ iv): Theorem 1;
iv) ⇒ v): Lemma 5; v) ⇒ ii): [3, Corollary 1]; v) ⇒ iii): Lemma 7;
iii) ⇒ iv): It trivially holds by choosing sampling schedule π with
intersampling time of uniform length. �

VI. CONCLUSION

This technical note studies switching stabilization problems for
continuous-time switched linear systems. We show the equivalence

of the four switching stabilizability definitions and the existence of
a pm-PQCLF. Such a result unifies the study of switching stabiliz-
ability under different assumptions on the switching control input.
It also justifies many existing stabilization results that have used
piecewise quadratic CLF for simplicity or heuristic reasons. Future
work will focus on developing efficient algorithms to construct the
proposed pm-PQCLF and the corresponding stabilizing feedback
switching law.
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