
A Robust Algorithm for Online Switched System

Identification ∗

Zhe Du , Necmiye Ozay , and Laura Balzano

Electrical and Computer Engineering, University of Michigan
{zhedu,necmiye,girasole}@umich.edu

Abstract

In this paper, we consider the problem of online identification of Switched AutoRegressive eX-
ogenous (SARX) systems, where the goal is to estimate the parameters of each subsystem and
identify the switching sequence as data are obtained in a streaming fashion. Previous works in this
area are sensitive to initialization and lack theoretical guarantees. We overcome these drawbacks
with our two-step algorithm: (i) every time we receive new data, we first assign this data to one
candidate subsystem based on a novel robust criterion that incorporates both the residual error and
an upper bound of subsystem estimation error, and (ii) we use a randomized algorithm to update
the parameter estimate of chosen candidate. We provide a theoretical guarantee on the local conver-
gence of our algorithm. Though our theory only guarantees convergence with a good initialization,
simulation results show that even with random initialization, our algorithm still has excellent per-
formance. Finally, we show, through simulations, that our algorithm outperforms existing methods
and exhibits robust performance.
Keywords: System identification, Online identification algorithm, Convergence analysis

1 Introduction

A SARX system is a special type of hybrid system composed of multiple subsystems/modes each with
different parameters. At each time step only one subsystem is dominating and the dominant subsystem
may switch over time. Given system inputs and outputs at each time step, our goal is to identify the
switching sequence (discrete states) as well as to estimate the parameters of the subsystems every time
we receive new data. This is a problem involving both clustering and estimation.

In additional to applications in adaptive control, SARX system identification has been applied to
video and texture segmentation [13, 10, 11]. Due to the autoregressive nature of SARX model, it can
also be applied to earthquake record analysis [7], brain electrical activity mapping [9], meteorological
objects identification [3], and financial time series analysis [4].

1.1 Prior Work

There have been many studies on the switched system identification problem in the offline/batch
setting. A type of algebraic method was proposed in [14], which uses Veronese embedding to decouple
the task of estimating the system parameters and switching sequence, and an exact solution is provided
when the process and data are noise-free. Furthermore, the case when system orders are not necessarily

∗This work is supported by DARPA grant N66001-14-1-4045, DARPA grant 16-43-D3M-FP-037 and NSF Grant
ECCS-1508943.

1

ar
X

iv
:1

80
5.

01
11

1v
1

 [
cs

.S
Y

]
 3

 M
ay

 2
01

8

equal or known is discussed in [8]. For systems with noise and measurements corrupted by outliers,
[10] extends the algebraic method by converting it to a rank minimization problem that is relaxed to
a semi-definite program. Methods utilizing sparsity are proposed in [1, 11].

As opposed to the offline/batch setting, where we have access to all the data at once, there are
many problems in which the data appears in a streaming (online) fashion. That is, at each time step,
we receive data with which we need to identify current dominant subsystem as well as give the latest
estimate of the system parameters. Note that naively employing an offline algorithm by using all the
data in the past at each step would be computationally intractable. The majority of online algorithms
use a two-step approach that alternates between determining the switching sequence and updating the
parameter estimates. The work in [13] is one of the first to study online identification of switched
systems using an extension of the offline algebraic method [14]. In the algorithms proposed in [2],
[5], candidate estimates are built for each of the subsystems first. Then, every time a new data point
arrives, the discrete state is determined by assigning the data to one of the candidates according to
some criterion, and then the estimate of chosen candidate is updated with the new data. The algorithm
in [2] first identifies the discrete states based on prior or posterior residual error, and then updates the
estimate using recursive least squares. The algorithm in [5] identifies the discrete states by minimizing
prior residual error similarly and then update the estimates with a modified Outer Bounding Ellipsoid
(OBE) algorithm.

1.2 Contributions and Outline

We observe that in two-step algorithms, choosing a candidate based on minimum residual error can
be sensitive to candidate initializations, since when a new subsystem dominates, it might “take-over”
a partially convergent candidate estimate if there is no candidate yet closer to its true parameters.

The main contribution of our paper is a more robust two-step algorithm that can effectively over-
come this issue. We initialize candidate estimates for each of the subsystems. Every time we receive
new data, we determine the discrete state by assigning this data to one of candidates based on a
robust criterion that incorporates both residual error and an upper bound of estimation error. After
we assign the data to a candidate, we update the selected candidate using a variant of the randomized
Kaczmarz algorithm proposed in [12] or normalized least mean squares (NLMS) [6]. We provide partial
and local convergence results for our algorithm. In our partial convergence analysis we assume that
we can always make correct assignments, i.e. identify the discrete state correctly, thus the parameter
estimation updated for the candidates can be treated as if we are using data from a single subsystem.
In local convergence analysis, we assume all candidate estimates have “good enough” initializations,
and show that with some probability no misassignment will ever be made and prove the convergence
of parameter estimates. Our numerical simulations verify the convergence result and show obvious
improvements of our algorithm over state of the art.

The paper is organized as follows: in Section 2, we present the problem formulation of online
SARX system identification; Section 3 briefly discusses the drawbacks of existing algorithms; Section
4 introduces our algorithm; Section 4 gives the theoretical analyses of our algorithm; some discussions
and extensions are provided in Section 6; simulation evaluation are given in Section 7.

2 Problem Formulation

2.1 SARX System

A SARX system is defined by the following expression:

yt =
∑na

j=1
aj(zt)yt−j +

∑nc

k=1
ck(zt)ut−k + nt (1)

2

where ut ∈ R and yt ∈ R are the input and output of the system, and nt ∈ R is an additive noise term.
The discrete state zt ∈ {1, . . . ,m} ≡ [m] indexes the dominant/active subsystem at time t, and {zt}t
denotes the switching sequence. Coefficients {aj(zt)}na

j=1 and {cj(zt)}nc
j=1 are the parameters of sub-

system zt. Let φy,t = [yt−1, . . . , yt−na]
ᵀ
,φu,t = [ut−1, . . . , ut−nc]

ᵀ
,φt = [φ

ᵀ
y,t,φ

ᵀ
u,t]
ᵀ
, and furthermore,

let wzt = [a1(zt), . . . , ana(zt), c1(zt), . . . , cnc(zt)]
ᵀ
. With this notation, the SARX system dynamics (1)

can be written in vector form:
yt = w

ᵀ
ztφt + nt . (2)

Let n = na + nc be the system order, which can also be viewed as the ambient dimension of our
problem.

2.2 Assumptions

In this work, we make the following assumptions, where Assumption 1 and the noise upper bound in
Assumption 2 are needed for the algorithm to work. (Case where noise is unbounded is discussed in
Section 6.2.) Assumption 2 to Assumption 5 are mainly for analysis purposes.

Assumption 1. The model orders na, nc on RHS of (1), and the number of subsystems, m, are
known.

Assumption 2. The noise nt is random with E[nt] = 0 and E[n2t] = σ2n. |nt| ≤ nmax and nmax is
known. nt is independent of input ut.

Assumption 3. For all t, ‖φt‖ ≤ φmax. We also assume a lower bound on the SNR: for all t, ‖φt‖
|nt| ≥

Smin.

Assumption 4. There exists smax ≥ smin > 0 such that ∀ S ⊂ N+ with cardinality NR (defined in
Section 4),

s2minIn �
∑

t∈S
φtφ

ᵀ
t � s2maxIn . (3)

Assumption 5. If subsystem i generates data pair {φt, yt}, i.e. yt = w
ᵀ
i φt + nt, then ∀j 6= i,

|wᵀjφt −w
ᵀ
iφt| ≥ ψ.

Assumption 4 is similar to persistent excitation conditions in the literature, and it plays a critical
role in the convergence rate. Assumption 5 guarantees there is no ambiguous data, since if data pair
{φt, yt} satisfies both yt = w

ᵀ
1φt and yt = w

ᵀ
2φt, then even with the true parameters w1 and w2, we

cannot tell which system generates yt.

2.3 Goal

The goal of online system identification is as follows. After we collect the data pair {φt, yt} at each time
step, we want to identify discrete state zt and estimate parameters of the subsystem that generates yt.

3 Drawbacks of Existing Algorithms

Existing algorithms e.g. [2], [5], commonly have a two-step structure after candidate estimate for each
of the subsystem is initialized: (1) every time new data is available, it is assigned to the candidate
with minimum prior/posterior residual error; (2) the parameter estimate of the chosen candidate is
updated with this data. We will show that using only residual error as the criterion to assign data can
be unreliable.

Fig. 1 shows a toy example of what could go wrong with the above mentioned algorithms. There
are 3 subsystems, and red circles illustrate their true parameter vectors in the ambient space; the

3

Figure 1: Demonstration of potential drawback of existing algorithms.

3 candidate estimates are initialized at the three dark blue points in the left box. Assume from
t = 1 to 10, subsystem 1 is dominant (left box), and from t = 11 to 20, subsystem 2 is dominant (right
box). Considering the positions and true and estimated parameters, it’s likely that from t = 1 to 10
data generated by subsystem 1 will be assigned to candidate 1 since it’s the closest candidate. When
t = 10, candidate 1 is an improved estimate of system 1 parameters, given by the light blue point in
the left box. At time t = 11, subsystem 2 becomes dominant. Considering the current positions of all
candidates, candidate 1 is still closest to subsystem 2, so it’s likely that data generated by subsystem 2
will also be assigned to candidate 1, and we could expect candidate 1 will start to drift from subsystem
1 parameter values toward subsystem 2, given by the trajectory in the right box. In this sense, all
previous efforts used to let candidate 1 learn subsystem 1 will be wasted.

In our algorithm, the basic idea to solve this drawback is to take the accuracy of the candidate
estimates into account and be more cautious when assigning data to candidates with higher accuracy.
The details will be discussed in Section 4.1.

4 Our Algorithm

In this paper we propose Algorithm 1 for online identification of SARX models. This is also a two-step
algorithm, but with an improved data assignment to consider not only the residual but also system
estimation accuracy. This section gives an overview of the algorithm steps.

Lines 1 to 4 show initialization. ŵi,0 is the initial estimate for candidate i, and ci is number

of assignments to candidate i. ΦR
i,t∈RnxNR ,yRi,t∈RNR ,ΦC

i,t∈RnxNC , ŴC
i,t∈RnxNC ,hCi,t∈RNC , εui,t are the

corresponding window variables for candidate i at time t, which will be explained in details later in this
section. NR and NC are the number of columns of ΦR

i,t and ΦC
i,t respectively, which are also the window

lengths for the randomized Kaczmarz algorithm and error upper bound estimation respectively.
At each time step, via Lines 6 to 13, we assign the data to one of the candidates using a new

criterion to determine the discrete state. Then, we update the chosen candidate estimate using an idea
similar to the randomized Kaczmarz algorithm in [12] in Lines 14 to Line 24.

4.1 Making Assignment/Identifying the Discrete State

With data pair {φt, yt}, we compute the normalized residual error ri for each candidate in Line 8,
where ŵi,t−1 is the estimate of candidate i at time t− 1. We then compute the potential new estimate
w̃i,t for each candidate if we were to use {φt, yt} to update ŵi,t−1.

The assignment criterion is given in Line 11. The criterion has two components: the first term is
the normalized residual error ri and the second term measures whether w̃i,t has a larger estimation
error than ŵi,t−1. The variables α, β and ν are tuning parameters. Variable εui,t−1 is an estimate of
upper bound on the magnitude of candidate i’s estimation error εi,t−1 ≡ w − ŵi,t−1 with respect to

4

Algorithm 1: Our Main Algorithm

1 Initialize NR, NC(NR ≥ n,NC ≥ N2
R), α, β, ν

2 for i = 1, . . . ,m do

3 ŵi,0 = 0n×1, ci = 0, ΦR
i,t = 0n×NR

, yRi,t = 0NR×1,

4 ΦC
i,t = 0n×NC

, ŴC
i,t = 0n×NC

, hCi,t = 0NC×1, ε
u
i,0 =∞

5 for t = 1, 2, . . . do
6 Receive {φt, yt}.
7 Compute normzlized residual errors and potential new estimates for all candidates:
8 ri = |yt − ŵ

ᵀ
i,t−1φt| · ‖φt‖−1 ∀i ∈ [m]

9 w̃i,t=ŵi,t−1−‖φt‖−2φt(ŵ
ᵀ
i,t−1φt−yt) ∀i ∈ [m]

10 Choose a candidate to assign data:

11 ẑt = arg mini ri ·max
(

1, α
‖w̃i,t−ŵi,t−1‖
2(εui,t−1+ν)

)β
12 Update counter and window varaibles:
13 cẑt = cẑt + 1

14 ΦR
ẑt,t=[ΦR

ẑt,t−1[:, 2:end],φt], yRẑt,t=[yRẑt,t−1[2:end]; yt]

15 Update estimate of chosen candidate:
16 if cẑt < NR then
17 φ∗t = φt, y

∗
t = yt, η

∗
t = ‖φt‖−2

18 else

19 Sample lt∈[NR] w.p.‖ΦR
ẑt,t

[:, lt]‖2/‖ΦR
ẑt,t
‖2F

20 φ∗t=ΦR
ẑt,t

[:, lt], y
∗
t=yRẑt,t[lt], η

∗
t=‖φ∗t ‖−2

21 ŵẑt,t = ŵẑt,t−1 − η∗tφ∗t (ŵ
ᵀ
ẑt,t−1φ

∗
t − y∗t)

22 Update error upper bound and window variables:

23 ΦC
ẑt,t
,ŴC

ẑt,t
,hCẑt,t, ε

u
ẑt,t

=UpdateUpperBound

24 ∀i 6= ẑt, {ŵi,t,Φ
R
i,t,y

R
i,t,Φ

C
i,t,Ŵ

C
i,t,h

C
i,t, ε

u
i,t} = {ŵi,τ ,Φ

R
i,τ ,y

R
i,τ ,Φ

C
i,τ ,Ŵ

C
i,τ ,h

C
i,τ , ε

u
i,τ}τ=t−1

some true system parameter w. The main difference between our algorithm and previous two-step
algorithms mentioned in Section 3 is the incorporation of the second term, which makes assignment
more robust.

Figure 2: Idea of our algorithm

The idea behind the criterion is straightforward: letting α=1, β=1, ν=0, and replacing εui,t−1 with

‖εi,t−1‖, the second part of the criterion becomes max
(

1,
‖w̃i,t−ŵi,t−1‖

2‖εi,t−1‖

)
. The numerator ‖w̃i,t − ŵi,t−1‖

5

is the magnitude of variation if we update the estimate ŵi,t−1 of candidate i with {φt, yt}. We could
see that if the estimation error of w̃i,t doesn’t increase compared with the error of ŵi,t−1, then we
must have ‖w̃i,t − ŵi,t−1‖ ≤ 2‖εi,t−1‖. And if ‖w̃i,t − ŵi,t−1‖ > 2‖εi,t−1‖, then the estimation error

must get larger. Therefore, max
(

1,
‖w̃i,t−ŵi,t−1‖

2‖εi,t−1‖

)
works against candidates whose error would increase

if we update using {φt, yt}. The max operator shows that as long as ‖w̃i,t − ŵi,t−1‖ ≤ 2‖εi,t−1‖, we
don’t penalize any further. Since we don’t know the true estimation error ‖εi,t−1‖, we replace it with
its estimated upper bound εui,t−1 (we will show under some conditions, this is a valid upper bound in
Theorem 9) computed in Algorithm 2.

This idea is illustrated with Fig. 2. Consider the same experimental setup as the toy example in
Section 3. At time t = 11, candidate 1 will be within the ball region (denoted with the red dotted
circle) estimated by upper bound εu. Once the potential update magnitude of candidate 1 exceeds
the diameter 2εu of this region, which implies its estimation accuracy will become worse if we update
candidate 1 with this data, so candidate 1 should be penalized when making the assignment.

We note that ‖w̃i,t − ŵi,t−1‖≤2‖εi,t−1‖ is only a necessary but not sufficient condition to ensure
non-increasing estimation error. Even though we are relying on a necessary condition, our algorithm
empirically achieves significantly improved performance over previous algorithms.

4.2 Candidate Estimate Updates

After the assignment is made, from Line 14 to Line 21 we update the estimate of the candidate ẑt
to which the data has been assigned. Our updating approach is based on the randomized Kaczmarz
method with a sliding window of data. We define window variables ΦR

i,t,y
R
i,t to store previous NR

data {φ, y} assigned to candidate i. If we have collected NR data, i.e. cẑt ≥ NR, we update the
estimate with randomly picked historical data {φ∗t , y∗t }; otherwise we simply update using current
data {φ∗t , y∗t } = {φt, yt}. The idea behind the update rule is that we project the current estimate
ŵẑt,t−1 onto the solution space of {φ∗t , y∗t } such that y∗t = ŵ

ᵀ
ẑt,t

φ∗t .

4.3 Computation of Error Upper Bound

We update the error upper bound estimate εuẑt,t and related window variables ΦC
ẑt,t
,ŴC

ẑt,t
,hCẑt,t of the

chosen candidate in Line 23. The details of this update are given in Algorithm 2. If the window is not
full, i.e. cẑt<NC , we simply follow the previous upper bound estimate, i.e. ∞; otherwise, we update
according to a slightly complicated rule whose justification is given in Theorem 9.

5 Theoretical Results

Our main theorems are Theorem 12 and Theorem 17, which show the partial and local convergence
guarantees for the algorithm respectively. Note that the proofs for all the lemmas, theorems, and
corollaries are provided at the appendices.

To ease the exposition, we introduce some notation and concepts that are frequently used later:

• In Algorithm 1, we sample a column index lt from the matrix ΦR
i,t in Line 19 of Algorithm 1.

Since ΦR
i,t is a matrix with columns being data vectors collected at different time, we essentially

sampled a time index. Let rt(lt) denote the true time corresponding to the collecting time of
data of column lt.

• Let r(i, t) denote number of times subsystem i is dominant up to time t.

• Setup(A): Assume hybrid SARX system only involves 1 subsystem, namely, subsystem i with
parameter wi. Then ŵi,t is the only candidate estimate. We let εi,t = wi − ŵi,t denote the
estimation error.

6

Algorithm 2: UpdateUpperBound

1 Update window variables for chosen candidate:

2 ΦC
ẑt,t

= [ΦC
ẑt,t−1[: , 2 : end] , φ∗t]

3 ŴC
ẑt,t

= [ŴC
ẑt,t−1[: , 2 : end] , ŵẑt,t]

4 hCẑt,t = [hCẑt,t−1[2 : end] ; η∗t]

5 Update the error upper bound for chosen candidate:
6 if cẑt < NC then
7 εuẑt,t = εuẑt,t−1
8 else

9 ∆Ŵ = ŵẑt,t1
ᵀ
NC×1 − ŴC

ẑt,t

10 ∆ŵ = ŵẑt,t − ŵẑt,t−NC

11 H = diag(hCẑt,t)

12 A = (ΦC
ẑt,t

HΦC
ẑt,t

ᵀ
)−1ΦC

ẑt,t
H

13 b = (ΦC
ẑt,t

HΦC
ẑt,t

ᵀ
)−1

[
∆ŵ −ΦC

ẑt,t
H�

(
ΦC
ẑt,t
,∆Ŵ

)]
14 Let V = {[±nmax,±nmax, . . . ,±nmax]

ᵀ
NC
}

15 εuẑt,t = maxn∈V ‖An− b‖
Remark: �(A,B)≡ [a

ᵀ
1b1, a

ᵀ
2b2, . . . , a

ᵀ
nbn]

ᵀ
, where ai, bi are the ith columns of matrices A,B

5.1 Preliminary Results

In Section 5.1, we first present several lemmas that serve as the building blocks for later theorems.

Lemma 6. ∀i, after ci ≥ NR, since ΦR
i,tΦ

R
i,t

ᵀ
=
∑

φφ
ᵀ
, and following Assumption 4, we know the

singular values of ΦR
i,t is upper and lower bounded by smax and smin selectively. Following this, the

following results hold trivially

(i) Let Fmax =
√
nsmax, Fmin =

√
nsmin, then we have

Fmin ≤ ‖ΦR
i,t‖F ≤ Fmax (4)

(ii) Let κ(ΦR
i,t)=‖ΦR

i,t‖F ‖ΦR
i,t
−1‖2, κmax=

√
((n−1)s2max+s2min)/s2min, and κmin=

√
n, where −1 denotes

the right inverse, then we have
κmin ≤ κ(ΦR

i,t) ≤ κmax (5)

(iii) Let ξ(ΦR
i,t)=‖ΦR

i,t‖F /‖ΦR
i,t‖2, ξmax =

√
n, and ξmin =

√
(s2max + (n− 1)s2min)/s2max, then we have

ξmin ≤ ξ(ΦR
i,t) ≤ ξmax (6)

Lemma 7. Following Assumption 2, we have

(i) E[nrt(lt)] = 0,E[n2rt(lt)] = σ2n

(ii) nrt(lt) and φrt(lt) are uncorrelated

(iii) NR

F 2
max

σ2n ≤ E

[
n2rt(lt)

‖φrt(lt)‖2

]
≤ NR

F 2
min

σ2n (7)

7

The following Lemma 8 is extension of result in [12].

Lemma 8. For any random vector z ∈ Rn, we have

κ−2maxE[‖z‖2] ≤ E

(φ
ᵀ
rt(lt)

z

‖φrt(lt)‖

)2
 ≤ ξ−2minE[‖z‖2] (8)

5.2 Valid Upper Bound

The following theorem gives justification for error upper bound εuẑt,t computed from Line 9 to Line 15
in Algorithm 2. However, this is a restrictive result, as it requires that the candidate ẑt is updated with
data from the same subsystem for last NC steps, i.e. the elements in ΦC

ẑt,t
,ŴC

ẑt,t
,hCẑt,t are collected

from the same subsystem.

Theorem 9. Assume at some time t, ẑt = zt = i, ci ≥ NC , and ΦC
ẑt,t
,ŴC

ẑt,t
,hCẑt,t are constructed from

data entirely from subsystem i, then εui,t is a valid upper bound for εi,t, i.e. εui,t ≥ ‖εi,t‖ = ‖wi − ŵi,t‖.

5.3 Partial Convergence Results

In this section, we list the results regarding partial convergence where we assume there is no misassign-
ment, i.e. data generated from the same subsystem can all be assigned to one particular candidate.
In this sense, to analyze the convergence properties, it suffices to consider the case where there is only
one subsystem in the hybrid model, and one corresponding candidate, i.e. Setup(A).

Lemma 10 provides the convergence analysis at the beginning phase of the algorithm, when t < NR

and Algorithm 1 executes Line 17. Then Lemma 11 provides the convergence analysis for the second
phase of the algorithm, when t ≥ NR and Algorithm 1 executes Line 19 and 20. Finally, we have the
partial convergence result Theorem 12 simply by combining Lemma 10 and Lemma 11.

Lemma 10. With Setup(A), we have

σ2n
φ2max

≤ E
[
‖εi,NR−1‖

2
]
≤ ‖εi,0‖2 +

NR − 1

S2
min

(9)

Lemma 11. With Setup(A), for t ≥ NR we have

E
[
‖εi,t‖2

]
≤
(
1− κ−2max

)t−NR+1 E
[
‖εi,NR−1‖

2
]

+NR
κ2max

F 2
min

[
1−

(
1− κ−2max

)t−NR+1
]
σ2n (10)

E
[
‖εi,t‖2

]
≥
(
1− ξ−2min

)t−NR+1 E
[
‖εi,NR−1‖

2
]

+NR
ξ2min

F 2
max

[
1−

(
1− ξ−2min

)t−NR+1
]
σ2n (11)

Theorem 12 (Partial Convergence). WLOG, assume for any i, data generated by subsystem i will all
be assigned to candidate i. Let εi,t = wi − ŵi,t denote the estimation error of candidate i at time t.
Then ∀i, t such that r(i, t) ≥ NR, we have

E
[
‖εi,t‖2

]
≤
(
1−κ−2max

)r(i,t)−NR+1
(
‖εi,0‖2+

(NR − 1)

S2
min

)
+NR

κ2max

F 2
min

[
1−

(
1− κ−2max

)r(i,t)−NR+1
]
σ2n

(12)

E
[
‖εi,t‖2

]
≥
(
1− ξ−2min

)r(i,t)−NR+1 σ2n
φ2max

+NR
ξ2min

F 2
max

[
1−

(
1− ξ−2min

)r(i,t)−NR+1
]
σ2n (13)

If as t → ∞, we have r(i, t) → ∞, i.e. subsystem i can dominate infinitely often, then as t → ∞, we
shall have

NR
ξ2min

F 2
max

σ2n ≤ E
[
‖εi,t‖2

]
≤ NR

κ2max

F 2
min

σ2n (14)

8

5.4 Local Convergence Results

In this section, we present results regarding local convergence. Lemma 16 shows that when all candi-
dates have accurate enough estimates, then the next assignment will be correct. Lemma 15, which is
derived from Lemma 14, gives a lower bound on the probability that the estimates will stay accurate
enough during the algorithm assuming assignments are correct. By Lemma 15 and Lemma 16, we
could obtain the local convergence result Theorem 17.

For Lemma 14 to hold, we need a technical assumption given below to guarantee that estimation
errors form a supermartingale, which allows us to use supermartingale maxima inequality to get the
probability bound in Lemma 14. Note that Assumption 13 is not mandatory for the algorithm to work,
instead, it’s solely for analysis purposes. Also note that if there is no noise, even though Assumption 13
fails, the estimation errors still form a supermartingale, which enables us to proceed with the analysis.
Local convergence for the noiseless case is provided in Corollary 18.

Assumption 13. Assume there is an upper bound on the SNR: ∀t, ‖φt‖
|nt| ≤ Smax, which satisfies

Smax ≤ κmaxSmin.

Lemma 14. Assume Assumption 13 holds. With Setup(A), for ∀t ≥ NR and some ε′ > 0, we have

P

 t⋂
τ=NR

{
‖εi,τ‖2 ≤ ε′2

} ≥ 1−
E
[
‖εi,NR−1‖2

]
ε′2

(15)

Lemma 15. Assume Assumption 13 holds. With Setup(A), for some ε′ > 0, assume ‖εi,0‖ ≤ ε0 such

that

√
NR

(
ε20 + NR

S2
min

)
≤ ε′, then for ∀t we have

P

(
t⋂

τ=1

{
‖εi,τ‖2 ≤ ε′2

})
≥1− 2

√
NR

ε′2

(
ε20 +

NR

S2
min

)
(16)

Lemma 16. Let ε′ = 1
2φmax

(
ψ − nmax

νSmin
− 3nmax

)
, α = 2, and β = 1. Assume at time t, candidates

are one-to-one ε′-close to subsystems. WLOG, we could assume ∀i, ‖εi,t−1‖ ≡ ‖wi − ŵi,t−1‖ ≤ ε′.
Furthermore, we assume that all assignments prior to time t are made correctly, i.e. ∀s < t, ẑs = zs.
Then at time t, we will also assign data correctly, i.e. ẑt = zt.

Theorem 17 (Local Convergence). Assume Assumption 13 holds. Let ε′ = 1
2φmax

(
ψ − nmax

νSmin
− 3nmax

)
,

α = 2, and β = 1. Let εi,t = wi − ŵi,t denote the estimation error of candidate i at time t. WLOG,

assume ∀i, ‖εi,0‖ ≤ ε0 such that

√
NR

(
ε20 + NR

S2
min

)
≤ ε′. Then ∀i, t such that r(i, t) ≥ NR, with proba-

bility at least 1−2m

√
NR
ε′2

(
ε20 + NR

S2
min

)
, we have the following results: (i). We can correctly identify the

switching sequence, i.e. ∀t, ẑt = zt. In another way, ∀i, t, {φt, yt} from subsystem i will be assigned to
candidate i. (ii). Results for (12), (13) and (14) will hold.

Corollary 18 (Local Convergence Without Noise). Let nt = 0, i.e. there is no noise. Let ε′= ψ
2φmax

,
α=2, and β=1. Let εi,t=wi − ŵi,t denote the estimation error of candidate i at time t, and assume
∀i, ‖εi,0‖ ≤ ε0 such that

√
NRε20 ≤ ε′.

Then ∀i, t such that r(i, t) ≥ NR, with probability at least 1 − 2m
√

NR
ε′2 ε

2
0, we have the following

results: (i). We can correctly identify the switching sequence, i.e. ∀t, ẑt = zt. In another way, ∀t,∀i,

9

{φt, yt} from subsystem i will be assigned to candidate i. (ii). we have the following convergence
results: ∀i, t such that r(i, t) ≥ NR

E
[
‖εi,t‖2

]
≤
(
1− κ−2max

)r(i,t)−NR+1 ‖εi,0‖2 (17)

If as t→∞, we have r(i, t)→∞, i.e. subsystem i can dominate infinitely often, then as t→∞, we have
E
[
‖εi,t‖2

]
=0.

6 Discussions and Extensions

6.1 Poles, Condition Number, and Convergence Rate

Systems with poles close to the unit circle are not preferable as they are close to be unstable. In
algorithm convergence analysis, Hessian matrix or objective function with large condition number is
usually not preferable as the convergence rate tends to get small. In this section, we will show how
these two facts meet consistently in our algorithm. That is, as the system poles getting closer to the
unit circle, the condition number of Hessian matrix will get larger, and the convergence rate of upper
bound in (12) will get smaller.

To study the convergence rate, it suffices to study a single subsystem without any switching. We
drop the subsystem subscript, and let εt = w − ŵt denote the estimation error. Since the goal of this
section is to provide insight into the relations between poles, condition number, and convergence rate,
so several steps involve approximation. And when study how poles affect the condition number, we
only consider a toy system with order 3, since it is challenging to find nice analytical expressions for
systems with higher order.

First we consider how condition number influences convergence the rate of upper bound in (12).

6.1.1 Condition Number vs. Convergence Rate

The expression for single ARX system is given by yt =
∑na

j=1 ajyt−j +
∑nc

k=1 ckut−k + nt = w
ᵀ
φt + nt

following our notations in Section 2. In Assumption 4, we have s2minIn �
∑

t∈S φtφ
ᵀ
t � s2maxIn. We

will see this equation is related to the correlation matrix R ≡ E[φtφ
ᵀ
t], if it exists.

In [6], we could know for the ARX system given above, if (i) poles of system are within the unit
circle, and (ii) noise is white Gaussian and input is wide-sense stationary, then there exists R such
that limt→∞ E[φtφ

ᵀ
t] = R.

When NR is large, according to law of large numbers, equation (3) and the result above, we have
limmin(S)→∞

∑
t∈S φtφ

ᵀ
t ≈ NRR. We let λmax, λmin denote the maximum and minimum eigenvalue

of R. Now dropping the “lim” and replace “≈” with “=”, we could get NRλminIn �
∑

t∈S φtφ
ᵀ
t �

NRλmaxIn. So NRλmin and NRλmax are equivalent to s2min and s2max defined in Assumption 4. Then
according to Lemma 6, we could have κmax =

√
(n−1)λmax/λmin+1 and ξmin =

√
(n−1)λmin/λmax+1.

So, for the asymptotic convergence upper bounds in (10), (12), and (17) which all involve κmax, when
the condition number of R, λmax/λmin, increases, κmax will increase, and the convergence rate in upper
bounds will decrease.

6.1.2 Poles vs. Condition Number

We consider a toy example of system with order 3: yt = a1yt−1 + a2yt−2 + c1ut−1 + nt = w
ᵀ
φt + nt

where w ≡ [a1, a2, c1] and φt ≡ [yt−1, yt−2, ut−1]. We assume all poles are within the unit circle,

10

ut ∼ N (0, σ2u), nt ∼ N (0, σ2n), ut ⊥ nt, ut ⊥ us, nt ⊥ ns,∀t, s, and σu � σn. Following [6], we have

R = E
[
φtφ

ᵀ
t

]
=

r(0) r(1) 0
r(1) r(0) 0

0 0 σ2u

 (18)

where r(0), r(1) can be computed by solvingr(0)
r(1)
r(2)

 =

 1 −a1 −a2
−a1 1−a2 0
−a2 −a1 1

−1 σ2n+c1σ
2
u

0
0

 (19)

So, we have

R = E
[
φtφ

ᵀ
t

]
=

(a2 − 1)c (−a1)c 0
(−a1)c (a2 − 1)c 0

0 0 σ2u

 (20)

where c= σ2
n+c1σ

2
u

(a2+1)(a1+a2−1)(a1−a2+1) . We will drop σ2n in the following computation as σu � σn. The
eigenvalues of R are given by

λ1 = − c1σ
2
u

(a2 + 1)(a1 + a2 − 1)
(21)

λ2 =
c1σ

2
u

(a2 + 1)(a1 − a2 + 1)
(22)

λ3 = σ2u (23)

Note that the poles p1, p2 satisfy p1 + p2 = a1 and p1p2 = −a2, so we have

λ1 =
c1σ

2
u

(1− p1p2)(1− p1)(1− p2)
(24)

λ2 =
c1σ

2
u

(1− p1p2)(1 + p1)(1 + p2)
(25)

λ3 = σ2u (26)

Let c1 ≥ 1, since p1, p2 < 1, we can see the condition number of R will have the following lower bound

λmax

λmin
≥ λ1
λ3

=
1

(1− p1p2)(1− p1)(1− p2)
(27)

It’s easy to see as poles get closer to the unit circle, this lower bound will get larger and the condition
number is likely to increase as well.

6.1.3 Poles vs. Convergence Rate

Finally, by combining the two results we just showed, we could see as the system poles getting closer
to unit circle, the convergence rate of upper bound in (12) will decrease.

There are two comments regarding this conclusion. (i) Even though this result only involves the rate
of upper bound, empirical results show the true convergent rate follow accordingly; (ii) Our algorithm
favors stable system which is a little counterintuitive as unstable system tends to have higher SNR.

11

6.2 Unbounded Noise and Monte Carlo Method

Note that we compute the error upper bound εuẑt,t in Line 15 of Algorithm 2 by finding the maximum
‖An− b‖ from cube vertices V defined by the noise magnitude upper bound nmax. However, if nmax is
unknown or the noise itself is unbounded, e.g. Gaussian, Algorithm 2 is not applicable to evaluate εuẑt,t.
In this case, if we could have samples of noise instead, an alternative approach is to use Monte Carlo
method to evaluate εuẑt,t. Specifically, if we have Nt samples of noise vector nt (defined in the proof for

Theorem 9) given by {n(i)
t }

Nt
i=1, we could let εuẑt,t = max ‖An

(i)
t − b‖. Due to the Monte Carlo nature,

this is not necessarily a valid upper bound. In another way, the result in Theorem 9 doesn’t hold, i.e.
εuẑt,t < ‖εẑt,t‖. Practically, algorithm still has satisfactory performance when using this Monte Carlo
method, but theoretically, this may not guarantee local convergence since local convergence result
Theorem 17 implicitly Theorem 9, i.e. εuẑt,t ≥ ‖εẑt,t‖ , to hold for every time step.

If we prefer the theoretical guarantees to practical implementation, by subtly designing the number
of Monte Carlo samples Nt at time t, there could be some probability guarantee to ensure εuẑt,t is a
valid upper bound at every time step.

For ease of illustration, we assume there is only one subsystem, then we could drop the subsystem
index subscript, and replace εuẑt,t with εut , εẑt,t with εt. And we assume the Monte Carlo method starts
at time 1. Then we have the following theorem:

Theorem 19. If we use Monte Carlo method above to compute εut , for some ζ1, ζ2 ∈ (0, 1), let Nt ≥
ζ2t
2ζ2t1

, then

P

(
P

(∞⋂
t=1

{‖εt‖≤εut }

)
≥ 1− ζ1

1− ζ1

)
≥ 1− exp(−ζ2)

1− exp(−ζ2)
(28)

In another word, the probability that every εut is a valid upper bound is large with a large probability.

The proof for this theorem is again in the appendices. We can immediately see from Theorem 19
that in order to make the probabilities large, the number of Monte Carlo samples need to increase
exponentially with respect to time, which makes implementation intractable when time is long.

6.3 Extension to MIMO Case

So far we have been a considering SISO system in (1), where all the yt and ut are scalars. However,
our algorithm can be applied to MIMO systems with some transformation of the system equation, and
we will provide a potential direction in this section.

Let yt ∈ Rny ,ut ∈ Rnu , then the MIMO SARX system is given by

yt =

na∑
j=1

Aj(zt)yt−j +

nc∑
k=1

Ck(zt)ut−k + nt (29)

where {Aj(zt)}na
j=1, {Cj(zt)}nc

j=1 are the parameters of subsystem zt. Let Wzt = [A1(zt), . . . ,Ana(zt),

C1(zt), . . .Cnc(zt)]
ᵀ
, φt = [y

ᵀ
t−1, . . . ,y

ᵀ
t−na

,u
ᵀ
t−1, . . . ,u

ᵀ
t−nc

]
ᵀ
. Let wzt,i denote the ith column of Wzt ,

and let yt,i, nt,i denote the ith element in yt and nt. Then the MIMO system can be broken into a set
of equations: ∀i ∈ [ny],

yt,i = w
ᵀ
zt,iφt + nt,i (30)

which has the same form as (1). So we could modify our algorithm to estimate each wzt,i in a parallel
way, then combine them to estimate Wzt .

12

6.4 Multiple NC’s and Forgetting Factor

6.4.1 Multiple NC ’s

Note that in Algorithm 2, we have window variables ΦC
i,t ∈ RnxNC ,ŴC

i,t ∈ RnxNC ,hCi,t ∈ RNC for some
window length NC to compute the error upper bound εuẑt,t. Theorem 9 says when all data stored in
the window are from the same subsystem, then εuẑt,t will be a valid error upper bound with respect this
subsystem. However, if there enters some outlier data (data generated by subsystem that is different
from the subsystem that generates the majority of data in the window variables), εuẑt,t computed using
window variables might be an invalid upper bound. If the window length is too large, since the window
is sliding, the effect of outlier will stay a longer time, but the correction effect of the majority of the
inlier data might reduce the effect of outlier. On the contrary, if the window length is too small, the
effect of outlier will quickly vanish, but the correction effect from the inlier data will reduce as well
and we may have even worse εuẑt,t during the stay of outlier.

Practically, we could use multiple NC ’s and corresponding window variables. Each set of window
variables compute εuẑt,t separately, and we pick the maximum of them as the final decision. In this
way, the disadvantages of large and small window lengths might cancel out each other thus making
εuẑt,t more robust to misassignment.

6.4.2 Forgetting Factor

One interesting fact about our algorithm is, in Line 19 of Algorithm 1, instead of using the latest
data, we pick randomly from previous data to update the estimates. This idea is initially proposed
in [12]. The reason we incorporate this randomization into the algorithm is to acquire the asymptotic
convergence result via Assumption 4, Lemma 6, Lemma 7, and Lemma 8.

If no randomization scheme is utilized, the algorithm on a single subsystem is equivalent to the
Kaczmarz algorithm or the normalized least mean squares (NLMS) algorithm in [6]. This type of
algorithm, however, does not have satisfactory convergence results yet. One linear convergence result
provided in [6] is valid only when the step size in estimate update is very small, which makes it
little practical use. The difficulty to derive nice convergence results is that nearby data φt could
be highly correlated, which can be seen from the definition, and updating the estimate with data in
chronological order aggravates the situation. The randomized scheme picks data for update randomly
and independently, which brings independence into the algorithm and makes analysis tractable.

Empirically, if we don’t incorporate the random selection in Line 19, and always use latest data as
Line 17, the performance can sometimes be slightly better. This is potentially because when sampling
previous data vectors, it’s likely that we sample one data multiple times possibly due to its large norm,
and, generally speaking, previously used data may not provide as much information as some new data.

One potential way to balance between establishing theoretical results and exploiting new data is
to incorporate a forgetting factor γ. Specifically, in Line 19, we sample data according to the following
distribution

P (lt = i)

{
γ‖ΦR

ẑt,t
[: , i]‖2 1

F if i = NR

(1− γ)‖ΦR
ẑt,t

[: , i]‖2 1
F if if i < NR

(31)

where γ > 0.5, and F = γ‖ΦR
ẑt,t

[: , NR]‖2 + (1 − γ)
∑NR−1

i=1 ‖ΦR
ẑt,t

[: , i]‖2 is the normalization factor.
With this distribution, we can see the probability of choosing the latest data (lt = NR) is larger
compared with the distribution in Algorithm 1. As γ gets closer to 1, we are more likely to sample the
latest data.

As for the convergence result, it suffices to only consider how the building block lemmas will
change with this new distribution, and the main theorems will follow these lemmas. In the building
block lemmas, only the expectations in Lemma 7 (iii), and Lemma 8 involve the data sampling process.
With the new sampling distribution, it’s not difficult to see (7) and (8) will become

13

γ̃−1
NR

F 2
max

σ2n ≤ E

[
n2rt(lt)

‖φrt(lt)‖2

]
≤ γ̃ NR

F 2
min

σ2n (32)

γ̃−1κ−2maxE[‖z‖2]≤E

(φ
ᵀ
rt(lt)

z

‖φrt(lt)‖

)2
≤γ̃ξ−2minE[‖z‖2] (33)

where γ̃ = γ
1−γ > 1. The rest of the lemmas, theorems, corollaries follow from these new results.

7 Numerical Results

In this section, we use simulation examples to evaluate the theoretical results as well as the performance
of our algorithm.

7.1 Evaluation of Asymptotic Convergence Bounds

Since it is not convenient to visualize the convergence bounds for SARX system with multiple sub-
systems, and (10) and (11) give tighter performance than (13) and (14), we will evaluate the lower
and upper asymptotic convergence bounds in (10) and (11) on single ARX system by comparing the
bounds with the actual convergence behavior.

Consider a specific system

yt = 0.7yt−1 − 0.12yt−2 + ut−1 + nt (34)

where nt ∼ N (0, σ2n), σn = 10−4, ut ∼ N (0, 1). According to Section 6.1, the correlation matrix is
given by

R =

1.67 1.04 0
1.04 1.67 0

0 0 1

 (35)

, and its minimum and maximum eigenvalues are λmin = 0.63 and λmax = 2.71.
Since it’s difficult to have exact knowledge of κmax and ξmin, we will use the approximate values

defined in Section 6.1, i.e. κmax =
√

(n−1)λmax/λmin+1 and ξmin =
√

(n−1)λmin/λmax+1. And
similarly, we could have Fmax =

√
nNRλmax and Fmin =

√
nNRλmin.

We set NR = 10 and simulation time horizon T = 1000. To evaluate the expectation E
[
‖εi,t‖2

]
in (10) and (11), we run the algorithm 50 times with different realizations of input ut, noise nt, and
random data selection in Line 19 of Algorithm 1, and take the average of estimation errors as the
expectation.

The simulation results are given in Fig. 3. We can see the estimation error E
[
‖εi,t‖2

]
can be

successfully bounded by the upper and lower bound in (10) and (11).

7.2 Robust Behavior of our Algorithm

7.2.1 Single Realization Experiment

First we evaluate our algorithm and compare it with the OBE algorithm in [5] using SARX system
given below

• Subsystem 1: yt = 0.2yt−1 + 0.24yt−2 + 2ut−1 + nt

• Subsystem 2: yt = 0.7yt−1 − 0.12yt−2 + 1ut−1 + nt

14

0 100 200 300 400 500

10-5

100

Figure 3: Evaluation of convergence bounds

• Subsystem 3: yt = −1.4yt−1 − 0.53yt−2 + 1ut−1 + nt

• Subsystem 4: yt = 1.7yt−1 − 0.72yt−2 + 0.5ut−1 + nt

where ut∼N (0, 1). nt follows N (0, σ2n) truncated to region [−3σn, 3σn] where σn=10−4, so noise is
bounded with nmax=3σn.

To fully evaluate the performance, we consider 3 different switching patterns of subsystems: (i)
Slow Switching (SS): subsystem 1 dominates from 1 to 500, subsystem 2 dominates from 501 to 1000,
subsystem 3 dominates from 1001 to 1500, and subsystem 4 dominates from 1501 to 2000. (ii) Minimum
Dwell Time (MD): each subsystem dominates 30 time steps, and then the time it takes to switch to a
new subsystem is a random variable following the geometric distribution with parameter 1/16. When
the subsystem switches, all subsystems are equally likely to be switched to, and after the switching,
this process restarts again. (iii) Fast Switching (FS): at every time step, every subsystem dominates
with equal probabilities.

In our algorithm, we set NR=3, NC=20, α=4, β=3, ν=10−4, and simulation time horizon T = 2000.
The candidates are initialized with standard multivariate Gaussian distribution. After the algorithms
completes all T time steps, we first relabel the candidates with a bijective mapping h(·) : [m] → [m]
such that

∑
i∈[m] ‖wi − ŵh(i),T ‖ is minimized. In the following, the candidates are referring to the

relabeled candidates.
We compute all the estimation errors, i.e. εi,t = wi−ŵi,t, ∀i, t, which measure the distance between

candidate i and subsystem i during the algorithm.
Fig. 4 depicts the simulation results. The dots in the plots represent each ‖εẑt,t‖, ∀t, which means

there is only one dot plotted for one time step. Different colors correspond to different candidates and
corresponding true subsystems. For example, if there exists a blue dot at time t = 1400, this means
we assign data generated at time t = 1400 to candidate 3, and current error between candidate 3 and
subsystem 3 is given by the y-axis value of the dot.

From the plots, we see that our algorithm converges more quickly than the OBE algorithm. Since
none of the colors have a sharp increase in error, we could claim the phenomenon described in Section
3 is effectively avoided in these realizations. For the OBE algorithm, the performance is obviously
worse: in the FS case, none of the candidates even converge, and the algorithm even stops halfway
due to numerical instability. In the plots for SS-OBE, we can see the undesired phenomenon described
in Section 3: candidate 2 has converged to the vicinity of subsystem 2 from t = 501 to t = 1000, but
after time t ≥ 1500, the error goes large again. This is because we are assigning data generated by
subsystem 4 to candidate 2, making candidate 2 move towards subsystem 4. From these plots, we see

15

0 500 1000 1500 2000

10-4

10-2

100

(a)

0 500 1000 1500 2000

10-4

10-2

100

(b)

0 500 1000 1500 2000

10-4

10-2

100

(c)

0 500 1000 1500 2000

10-4

10-2

100

(d)

0 500 1000 1500 2000

10-4

10-2

100

(e)

0 500 1000 1500 2000

10-4

10-2

100

(f)

Figure 4: Estimation errors of OBE algorithm and our algorithm: (a) SS-OBE; (b) MD-OBE; (c) FS-OBE; (d)
SS-Ours; (e) MD-OBE; (f) FS-Ours

that our algorithm outperforms OBE algorithm for all switching patterns.

7.2.2 Multiple Realizations Experiment

Since a single realization cannot comprehensively evaluates the performance, we further compare our
algorithm with the OBE algorithm using multiple realizations. Specifically, we consider 9 exper-
iment setups, given by all the combinations of switching patterns {SS, MD, FS} and noise level
σn ∈ {10−1, 10−2, 10−3}, and for each of the experiment setup, we run M=100 realizations. Each
subsystem parameters are generated randomly in each realization: we first sample 2 real poles on
[−1, 1] uniformly, and then compute the parameters from the sampled poles. The rest of the setups,
e.g. number and orders of subsystems, algorithm parameters, etc., follow the previous single realization
experiment.

For realization i, we define the two metrics: FE(i) = 1
m

∑m
j=1 ‖εj,T ‖ and CER(i) = 1

T

∑T
t=1 1{zt 6=

ẑt}. FE measures the final estimation error and CER is the classification error rate. Table 1 lists
the average FE and CER values over all 100 realizations. We could see, our algorithm exhibits better
performance in each setup.

8 Conclusions

In this paper, we introduced a robust algorithm to solve online switched system identification problem.
Our algorithm follows the conventional two-step framework, but the modified assignment criterion
leads to a more robust assignment process. After we assign the data to some candidate, we update
the candidate estimate based on the idea of randomized Kaczmarz algorithm. We showed partial
and local convergence results. The partial convergence result is: assuming there is no misassignment,
then the estimation error converges geometrically to some quantity related to noise variance in the
expectation square sense. The local convergence result is: assuming all candidates have good enough
initialization, with some probability, it can be guaranteed that no misassignment will be made, and

16

Table 1: Results for Multiple Realizations Experiment

Ours OBE Ours OBE

FE FE CER CER

SS, 10−1 8.4x10−1 8.7x10−1 56.3% 59.1%

SS, 10−2 2.8x10−2 8.2x10−1 22.1% 55.5%

SS, 10−3 9.0x10−2 8.2x10−1 8.35% 56.4%

MD, 10−1 4.3x10−1 5.2x10−1 47.5% 50.3%

MD, 10−2 4.0x10−2 2.8x10−1 11.3% 31.3%

MD, 10−3 9.4x10−3 2.4x10−1 4.91% 28.8%

FS, 10−1 2.6x10−1 6.8x10−1 39.3% 53.9%

FS, 10−2 6.0x10−2 1.5x10−1 11.7% 22.1%

FS, 10−3 5.8x10−2 1.8x10−1 8.93% 18.9%

the estimation error will converge geometrically as in the partial result. Numerical results verify the
asymptotic convergence bounds we developed, and shows the efficiency of our proposed algorithm in
comparison with the existing OBE algorithm.

For future work, there are several aspects that we would focus on.

• As for theories, we would seek to relax Assumption 13, and analyze the local convergence in a
more general setting. Also, we could relax even further to analyze the global convergence without
good initialization requirement.

• We plan to apply our algorithm to advanced and real world examples to further evaluate its
applicability.

• Our current algorithm finds the upper bound of estimation error by searching all the cube vertices
V defined in Algorithm 2, which leads to heavy computation burden when NC is large. In the
future, we would seek a way to estimate the error more efficiently without sacrificing theoretical
guarantees.

• Since so far we don’t consider the case in which we have control over the system input, another
interesting extension would be designing certain input, possibly closed-loop or open loop but
with certain distribution, given which the system parameters can be learned faster.

Acknowledgement

The authors thank Yan Shuo Tan for suggesting the use of super-martingale theory, which proved to
be crucial in the local convergence analysis.

References

[1] L. Bako. Identification of switched linear systems via sparse optimization. Automatica, 47(4):668–
677, Apr. 2011.

[2] L. Bako, K. Boukharouba, E. Duviella, and S. Lecoeuche. A recursive identification algorithm for
switched linear/affine models. Nonlinear Analysis: Hybrid Systems, 5(2):242–253, May 2011.

17

[3] V. Bezruck, Y. N. Belov, O. Voitovych, K. Netrebenko, V. Tikhonov, G. Rudnev, G. Khlopov,
and S. Khomenko. Application of autoregressive model for recognition of meteorological objects.
In Radar Symposium (IRS), 2010 11th International, pages 1–3. IEEE, 2010.

[4] J. H. Cochrane. Time series for macroeconomics and finance. Manuscript, University of Chicago,
2005.

[5] A. Goudjil, M. Pouliquen, E. Pigeon, and O. Gehan. Convergence analysis of a real-time identifi-
cation algorithm for switched linear systems with bounded noise. In Decision and Control (CDC),
2016 IEEE 55th Conference on, pages 2957–2962, 2016.

[6] S. Haykin and B. Widrow, editors. [Simon Haykin] Least-Mean-Square Adaptive Filters. Wiley
series in adaptive and learning systems for signal processing, communication, and control. Wiley-
Interscience, Hoboken, N.J, 2003.

[7] F. Kozin. Autoregressive moving average models of earthquake records. Probabilistic Engineering
Mechanics, 3(2):58–63, 1988.

[8] Y. Ma and R. Vidal. Identification of deterministic switched ARX systems via identification of
algebraic varieties. In International Workshop on Hybrid Systems: Computation and Control,
pages 449–465. Springer, 2005.

[9] T. Ogawa, H. Sonoda, S. Ishiwa, and Y. Shigeta. An application of autoregressive model to pattern
discrimination of brain electrical activity mapping. Brain topography, 6(1):3–11, 1993.

[10] N. Ozay, C. Lagoa, and M. Sznaier. Set membership identification of switched linear systems with
known number of subsystems. Automatica, 51:180–191, Jan. 2015.

[11] N. Ozay, M. Sznaier, C. M. Lagoa, and O. I. Camps. A Sparsification Approach to Set Membership
Identification of Switched Affine Systems. IEEE Trans. on Aut. Control, 57(3):634–648, Mar. 2012.

[12] T. Strohmer and R. Vershynin. A randomized kaczmarz algorithm with exponential convergence.
Journal of Fourier Analysis and Applications, 15(2):262–278, 2009.

[13] R. Vidal. Recursive identification of switched ARX systems. Automatica, 44(9):2274–2287, Sept.
2008.

[14] R. Vidal, S. Soatto, Y. Ma, and S. Sastry. An algebraic geometric approach to the identification
of a class of linear hybrid systems. In Decision and Control, 2003. Proceedings. 42nd IEEE
Conference on, volume 1, pages 167–172. IEEE, 2003.

A Proofs for Preliminary Results in Section 5.1

A.1 Proof for Lemma 7

Proof Let [NR] = {1, . . . , NR}. From Assumption 2, ∀t,E[nt] = 0,E[n2t] = σ2n, and since ∀i ∈ [NR],
rt(i) is a deterministic time step, so we have E[nrt(i)] = 0 and E[n2rt(i)] = σ2n. Therefore,

E[nrt(lt)] = E[E[nrt(lt)|Φ
R
ẑt,t
, lt = i]]

= E[E[nrt(i)|Φ
R
ẑt,t
, lt = i]]

= E[E[nrt(i)|Φ
R
ẑt,t

]]

= E[nrt(i)]

= 0

(36)

18

where the third equality holds since given ΦR
ẑt,t

, whether lt is chosen to be i is independent of nrt(i).
Similarly,

E[n2rt(lt)] = E[E[n2rt(lt)|Φ
R
ẑt,t
, lt = i]]

= E[E[n2rt(i)|Φ
R
ẑt,t
, lt = i]]

= E[E[n2rt(i)|Φ
R
ẑt,t

]]

= E[n2rt(i)]

= σ2n

(37)

So (i) is proved.
From Assumption 2, we know ∀t, ut and nt are independent, so nt is also independent of φt from (1).

Since ∀i ∈ [NR], rt(i) is a deterministic time step, we know nrt(i) is independent of φrt(i). Therefore

E[φrt(lt)nrt(lt)] = E[E[φrt(lt)nrt(lt)|Φ
R
ẑt,t
, lt = i]]

= E[E[φrt(i)nrt(i)|Φ
R
ẑt,t
, lt = i]]

= E[E[φrt(i)nrt(i)|Φ
R
ẑt,t

]]

= E[φrt(i)nrt(i)]

= E[φrt(i)]E[nrt(i)]

= 0

= E[φrt(lt)]E[nrt(lt)]

(38)

Therefore, nrt(lt) and φrt(lt) are uncorrelated, and (ii) is proved.
From (i) and (ii), we can see

E

[
n2rt(lt)

‖φrt(lt)‖2

]
= E[n2rt(lt)]E

[
1

‖φrt(lt)‖2

]

= σ2nE

[
E

[
1

‖φrt(lt)‖2

∣∣∣∣∣ΦR
ẑt,t

]]

= σ2nE

 ∑
i∈[NR]

1

‖φrt(i)‖2
P (lt = i|ΦR

ẑt,t
)


= σ2nE

 ∑
i∈[NR]

1

‖φrt(i)‖2
‖φrt(i)‖

2

‖ΦR
ẑt,t
‖2F


= σ2nE

[
NR

‖ΦR
ẑt,t
‖2F

]

= σ2nNRE

[
1

‖ΦR
ẑt,t
‖2F

]

(39)

From Lemma 6, we have Fmin ≤ ‖ΦR
i,t‖F ≤ Fmax, so (iii) is proved.

A.2 Proof for Lemma 8

Proof First we prove the lower bound. Let ΦR
ẑt,t
−1

denote the right inverse of ΦR
ẑt,t

, then accordingly

19

ΦR
ẑt,t
−1ᵀ

is the left inverse of ΦR
ẑt,t

ᵀ
. As for ‖ΦR

ẑt,t
−1‖2, by definition of matrix norm, we have, for ∀ z,

‖ΦR
ẑt,t
−1‖2 = ‖ΦR

ẑt,t
−1ᵀ‖2 ≥

‖ΦR
ẑt,t
−1ᵀ

ΦR
ẑt,t

ᵀ
z‖

‖ΦR
ẑt,t

ᵀ
z‖

(40)

which gives

‖ΦR
ẑt,t

ᵀ
z‖2 ≥ ‖z‖2

‖ΦR
ẑt,t
−1‖22

(41)

Expanding LHS and dividing both sides by ‖ΦR
ẑt,t
‖2F , we have

∑
i∈[NR]

1

‖ΦR
ẑt,t
‖2F

(
φ
ᵀ
rt(i)

z
)2
≥ ‖z‖2

‖ΦR
ẑt,t
‖2F ‖Φ

R
ẑt,t
−1‖22

(42)

Use the definition κ(ΦR
ẑt,t

) = ‖ΦR
ẑt,t
‖F ‖ΦR

ẑt,t
−1‖2 in Lemma 6, then

∑
i∈[NR]

‖φrt(i)‖
2

‖ΦR
ẑt,t
‖2F

(
φ
ᵀ
rt(i)

z

‖φrt(i)‖

)2

≥ κ(ΦR
ẑt,t

)−2‖z‖2 (43)

Note that the LHS is equal to E
[

(
φ

ᵀ
rt(lt)

z

‖φrt(lt)
‖)

2

∣∣∣∣ z,ΦR
ẑt,t

]
, so

E

(φ
ᵀ
rt(lt)

z

‖φrt(lt)‖

)2
∣∣∣∣∣∣ z,ΦR

ẑt,t

 ≥ κ(ΦR
ẑt,t

)−2‖z‖2 (44)

Now taking expectation of both sides again and using smoothing property of expectation, we have

E

(φ
ᵀ
rt(lt)

z

‖φrt(lt)‖

)2
 ≥ E

[
κ(ΦR

ẑt,t
)−2‖z‖2

]
(45)

From Lemma 6, we have κ(ΦR
i,t) ≤ κmax, so

E

(φ
ᵀ
rt(lt)

z

‖φrt(lt)‖

)2
 ≥ κ−2maxE

[
‖z‖2

]
(46)

As for the upper bound, note that for ∀z,

‖ΦR
ẑt,t
‖2 = ‖ΦR

ẑt,t

ᵀ
‖2 ≥

‖ΦR
ẑt,t

ᵀ
z‖

‖z‖
(47)

which gives

‖ΦR
ẑt,t

ᵀ
z‖2 ≤ ‖z‖2‖ΦR

ẑt,t
‖22 (48)

Then using similar technique as the proof for lower bound, we could have

E

(φ
ᵀ
rt(lt)

z

‖φrt(lt)‖

)2
 ≤ ξ−2minE[‖z‖2] (49)

20

B Proofs for Valid Upper Bound Results in Section 5.2

B.1 Proof for Theorem 9

Proof From the setup statement in Theorem 9, we could see that to show the theorem, it suffices to
consider there’s only one subsystem, namely subsystem i, in the hybrid SARX model. Then, ci = t,
and the setup condition in theorem statement can be met automatically when t ≥ NC .

When t ≥ NC , i.e. ci ≥ NC : the data φ∗t , y
∗
t , η
∗
t we choose to update the candidate in Line 21 of

Algorithm 1 is formed in Line 20, where we sample a column index lt from the matrix ΦR
i,t in Line 19

of Algorithm 1. Since ΦR
i,t is a matrix with columns being data vectors collected at different time, we

essentially sampled a time index. Let rt(lt) denote the true time index corresponding to the column lt
we sample at time t. So φ∗t = φrt(lt), y

∗
t = yrt(lt). In addition, we let n∗t = nrt(lt).

Plugging definition εi,t = wi − ŵi,t and system equation y∗t = w
ᵀ
iφ
∗
t + n∗t into update rule ŵt =

ŵt−1 − η∗tφ∗t (ŵ
ᵀ
t−1φ

∗
t − y∗t), we could have

εi,t = (I − η∗tφ∗tφ∗t
ᵀ
)εi,t−1 − η∗tφ∗tn∗t

= εi,t−1 − η∗tφ∗tφ∗t
ᵀ
εi,t−1 − η∗tφ∗tn∗t

(50)

Replacing the first term εi,t−1 on the RHS of (50) by εi,t−1 = εi,t−2−η∗t−1φ∗t−1φ∗t−1
ᵀ
εi,t−1−η∗t−1φ∗t−1n∗t−1

and repeat this procedure recursively, we could finally have

εi,t = εi,t−NC
−
t−(NC−1)∑

j=t

η∗jφ
∗
jφ
∗
j
ᵀ
εi,j−1 −

t−(NC−1)∑
j=t

η∗jφ
∗
jn
∗
j (51)

Consider the LHS of (51), by addition and subtraction, we could see

εi,t =

t−(NC−1)∑
j=t

η∗jφ
∗
jφ
∗
j
ᵀ
εi,t + εi,t −

t−(NC−1)∑
j=t

η∗jφ
∗
jφ
∗
j
ᵀ
εi,t (52)

Combining (51) and (52), we have

t−(NC−1)∑
j=t

η∗jφ
∗
jφ
∗
j
ᵀ
εi,t =

(ŵi,t − ŵi,t−NC
)−

t−(NC−1)∑
j=t

η∗jφ
∗
jφ
∗
j
ᵀ
(ŵi,t − ŵi,j−1)

 − t−(NC−1)∑
j=t

η∗jφ
∗
jn
∗
j

(53)
Now using the notations and operator defined in Line 9 to Line 13 in Algorithm 2, and let nt =
[nt−(NC−1), . . . , nt−1, nt]

ᵀ
we have a neat form:

ΦC
i,tHΦC

i,t

ᵀ
εi,t =

[
∆ŵ −ΦC

i,t�
(
ΦC
i,t,∆Ŵ

)]
−ΦC

i,tHnt (54)

Now, we want to show the invertibility of matrix ΦC
i,tHΦC

i,t

ᵀ
. Define

Φ̃=
[√

η∗t−(NC−1)φ
∗
t−(NC−1), . . . ,

√
η∗t−1φ

∗
t−1,

√
η∗tφ

∗
t

]
nxNC

(55)

, then we could see that

ΦC
i,tHΦC

i,t

ᵀ
=

t−(NC−1)∑
j=t

η∗jφ
∗
jφ
∗
j
ᵀ

= Φ̃Φ̃
ᵀ

(56)

21

, so it suffices to show Φ̃ has n linearly independent columns. Note that η∗ > 0 and ΦC
i,t = [φ∗t−(NC−1),

. . . ,φ∗t−1,φ
∗
t], so it further suffices to show ΦC

i,t has n linearly independent columns.

Since ΦC
i,t is composed of NC columns sample from different matrices ΦR

i,t ∈ Rn×NR from time
t− (NC − 1) to t, then the condition NC ≥ N2

R requirement in Algorithm 1 guarantees that there are
at least NR columns in ΦC

i,t such that their generating time are different. Then from Assumption 4,

we know these n columns must be linearly independent, and so are the corresponding columns in Φ̃.

Therefore, ΦC
i,tHΦC

i,t

ᵀ
is invertible.

With this result, (54) becomes:

εi,t = (ΦC
i,tHΦC

i,t

ᵀ
)−1

[
∆ŵ −ΦC

i,t�
(
ΦC
i,t,∆Ŵ

)]
− (ΦC

i,tHΦC
i,t

ᵀ
)−1ΦC

i,tHnt (57)

then using definition of A and b in Algorithm 2, we have

εi,t = b−Ant (58)

Since ‖nt‖∞ ≤ nmax, if we define the set of vertices V = {[±nmax,±nmax, . . . ,±nmax]
ᵀ
NC
}, then it’s

easy to see
‖b−Ant‖ ≤ max

n∈V
‖An− b‖ (59)

And since εui,t ≡ maxn∈V ‖An− b‖, we could finally see

εui,t ≥ ‖εi,t‖ (60)

C Proofs for Partial Convergence in Section 5.3

C.1 Proof for Lemma 10

Proof According Algorithm 1, when t ≤ NR − 1, we know ci < NR, and the update rule is given by
ŵi,t = ŵi,t−1−η∗tφt(ŵ

ᵀ
i,tφt−yt). Since εi,t = wi−ŵi,t and w

ᵀ
iφt+nt = yt, we can derive the following

error dynamics through simple algebra:

εi,t = (I − η∗tφtφ
ᵀ
t)εi,t−1 − η∗tφtnt (61)

Notice that in Algorithm 1, we set η∗t = ‖φt‖−2, so

εi,t =

(
I − φtφ

ᵀ
t

‖φt‖2

)
εi,t−1 −

φtnt
‖φt‖2

(62)

Taking norm squares of both sides,

‖εi,t‖2 =

∥∥∥∥(I − φtφ
ᵀ
t

‖φt‖2

)
εi,t−1
‖εi,t−1‖

∥∥∥∥2 ‖εi,t−1‖2 +
n2t
‖φt‖2

(63)

of which the cross term vanishes because it’s equal to 0. Now consider the first term in (63),∥∥∥∥(I − φtφ
ᵀ
t

‖φt‖2

)
εi,t−1
‖εi,t−1‖

∥∥∥∥2
=

ε
ᵀ
i,t−1
‖εi,t−1‖

(
I − φtφ

ᵀ
t

‖φt‖2

)
εi,t−1
‖εi,t−1‖

=1−
(

φ
ᵀ
t εi,t−1

‖φt‖‖εi,t−1‖

)2

(64)

22

Plugging (64) into (63), then

‖εi,t‖2 =

[
1−

(
φ
ᵀ
t εi,t−1

‖φt‖‖εi,t−1‖

)2
]
‖εi,t−1‖2 +

n2t
‖φt‖2

(65)

Since 0 ≤ (
φ

ᵀ
t εi,t−1

‖φt‖‖εi,t−1‖)
2 ≤ 1, we have

n2t
‖φt‖2

≤ ‖εi,t‖2 ≤ ‖εi,t−1‖2 +
n2t
‖φt‖2

(66)

Since ‖φt‖2 ≤ φ2max and ‖φt‖
|nt| ≥ Smin according to Assumption 3, then

n2t
φ2max

≤ ‖εi,t‖2 ≤ ‖εi,t−1‖2 +
1

S2
min

(67)

Now taking expectation of both sides of (67),

σ2n
φ2max

≤ E
[
‖εi,t‖2

]
≤ E

[
‖εi,t−1‖2

]
+

1

S2
min

(68)

Now if we apply (68) recursively, we could finally prove (9) in the lemma.

C.2 Proof for Lemma 11

Proof From Algorithm 1, when t ≥ NR, ci ≥ NR. And to update estimate, we first sample a column
index lt from the matrix ΦR

i,t in Line 19 of Algorithm 1. Since ΦR
i,t is a matrix with columns being data

vectors collected at different time, we essentially sampled a time index. Let rt(lt) denote the true time
index corresponding to the column lt we sample at time t. So the corresponding φ∗t , y

∗
t are actually

φrt(l) , yrt(lt). And we have the update rule ŵi,t = ŵi,t−1 − η∗tφrt(lt)(ŵ
ᵀ
t−1φrt(lt) − yrt(lt)). So following

(63) in proof for Lemma 10, we have

‖εi,t‖2 =

1−

(
φ
ᵀ
rt(lt)

εi,t−1

‖φrt(lt)‖‖εi,t−1‖

)2
 ‖εi,t−1‖2 +

n2rt(lt)

‖φrt(lt)‖2
(69)

Now take expectation of both sides of (69),

E[‖εi,t‖2] = E
[
‖εi,t−1‖2

]
− E

(φ
ᵀ
rt(lt)

εi,t−1

‖φrt(lt)‖

)2
+ E

[
n2rt(lt)

‖φrt(lt)‖2

]
(70)

Applying Lemma 8 and Lemma 7(iii), we have{
E
[
‖εi,t‖2

]
≥
(
1− ξ−2min

)
E
[
‖εi,t−1‖2

]
+ NR

F 2
max

σ2n
E
[
‖εi,t‖2

]
≤
(
1− κ−2max

)
E
[
‖εi,t−1‖2

]
+ NR

F 2
min
σ2n

(71)

Finally, apply (71) recursively, we could end up getting (11) and (10) in Lemma 11

C.3 Proof for Theorem 12

Proof When there is only one subsystem, Lemma 10 and Lemma 11 selectively characterize the
behavior of estimation error when t < NR and t ≥ NR. By combining them and replacing the
universal time index t in Lemma 10 and Lemma 11 with the individual time index r(i, t) for subsystem
i, we can have this theorem.

23

D Proofs for Local Convergence in Section 5.4

D.1 Proof for Lemma 14

Proof Let χt be “All data {φ, y} assigned to candidate i up to time t and all the data {φ∗, y∗} we
used to update ŵi up to time t”. Then we can see χt ⊂ χt+1 and

E
[
‖εi,t‖2

∣∣χt] = E
[
‖wi − ŵi,t‖2

∣∣χt] = ‖wi − ŵi,t‖2 = ‖εi,t‖2 (72)

where the second equality holds since knowing χt we know update process of ŵi,0, ŵi,1, . . . , ŵi,t com-
pletely. (72) says the randomness of ‖εi,t‖2 completely comes from χt.

When t ≥ NR, (69) characterizes the error dynamics, and we restate it here:

‖εi,t‖2 = ‖εi,t−1‖2 −

(
φ
ᵀ
rt(lt)

εi,t−1

‖φrt(lt)‖

)2

+
n2rt(lt)

‖φrt(lt)‖2
(73)

Now take E[·|χt−1] on both sides of (73), we have

E
[
‖εi,t‖2|χt−1

]
=‖εi,t−1‖2−E

(φ
ᵀ
rt(lt)

εi,t−1

‖φrt(lt)‖

)2
∣∣∣∣∣∣χt−1

+ E

[
n2rt(lt)

‖φrt(lt)‖2

∣∣∣∣∣χt−1
]

(74)

First consider E

[(
φ

ᵀ
rt(lt)

εi,t−1

‖φrt(lt)
‖

)2
∣∣∣∣∣χt−1

]
, we have

E

(φ
ᵀ
rt(lt)

εi,t−1

‖φrt(lt)‖

)2
∣∣∣∣∣∣χt−1


=E

(φ
ᵀ
rt(lt)

εi,t−1

‖φrt(lt)‖

)2
∣∣∣∣∣∣χt−1, εi,t−1


=E

(φ
ᵀ
rt(lt)

εi,t−1

‖φrt(lt)‖

)2
∣∣∣∣∣∣ΦR

i,t−1, εi,t−1


(75)

where the first equality holds as εi,t−1 is nonrandom given χt−1; the second equality holds for the fol-
lowing reason: ΦR

i,t−1 can be determined from χt−1, and φrt(lt) is drawn from ΦR
i,t−1 in an independent

experiment, so φrt(lt) depends on χt−1 only through ΦR
i,t−1. Note that RHS in (75) can follow similar

argument from (44) to (49), then

κ−2max‖εi,t−1‖2 ≤ E

(φ
ᵀ
rt(lt)

εi,t−1

‖φrt(lt)‖

)2
∣∣∣∣∣∣χt−1

 ≤ ξ−2min‖εi,t−1‖
2 (76)

Then consider E
[

n2
rt(lt)

‖φrt(lt)
‖2

∣∣∣∣χt−1]. By Assumption 3, we have

E

[
n2rt(lt)

‖φrt(lt)‖2

∣∣∣∣∣χt−1
]
≤ 1

S2
min

(77)

Applying (77) and (76) to (74), we have

E
[
‖εi,t‖2|χt−1

]
≤
(
1− κ−2max

)
‖εi,t−1‖2 +

1

S2
min

(78)

24

Now we want to show E
[
‖εi,t‖2|χt−1

]
≤ ‖εi,t−1‖2. The general form of (73) for ∀t is

‖εi,t‖2 =

1−

(
φ∗t
ᵀ
εi,t−1

‖φ∗t ‖‖εi,t−1‖

)2
 ‖εi,t−1‖2 +

n∗t
2

‖φ∗t ‖2
(79)

where φ∗t is defined in Line 17 and 20 in Algorithm 1, and we let n∗t denote the noise corresponding to

data {φ∗t , y∗t }. Since
(

φ∗t
ᵀ
εi,t−1

‖φ∗t ‖‖εi,t−1‖

)2
≤1 and by Assumption 13, then ∀t

‖εi,t‖2 ≥
n∗t

2

‖φ∗t ‖2
≥ 1

S2
max

≥ 1

κ2maxS
2
min

(80)

So for ∀t ≥ 2,

‖εi,t−1‖2 ≥
1

κ2maxS
2
min

(81)

Following (81), (78) gives
E
[
‖εi,t‖2|χt−1

]
≤ ‖εi,t−1‖2 (82)

So, we can see {‖εi,t‖2, t ≥ NR − 1} is a supermartingale with respect to {χt, t ≥ NR − 1}. Finally,
using supermartingale maxima inequality, we have (15) directly.

D.2 Proof for Lemma 15

Proof In the first phase of the algorithm when t ≤ NR − 1, using (68) recursively, we have

E
[
‖εi,t‖2

]
≤ ‖εi,0‖2 +

t

S2
min

≤ ε20 +
NR

S2
min

(83)

Define εa such that ε2a =

√
ε′2NR

(
ε20 + NR

S2
min

)
, then from the condition in the statement of Lemma 15,

we can see ε2a ≤ ε′2. According to Markov inequality, we have

P
(
‖εi,t‖2 ≤ ε2a

)
≥ 1− 1

ε2a

(
ε20 +

NR

S2
min

)
(84)

Then using union bound, we have

P

(
NR−1⋂
τ=1

{
‖εi,τ‖2 ≤ ε2a

})
≥ 1− NR

ε2a

(
ε20 +

NR

S2
min

)
(85)

25

Now for t ≥ NR, we have

P

(
t⋂

τ=1

{
‖εi,τ‖2 ≤ ε′2

})

≥P

NR−1⋂
τ=1

{
‖εi,τ‖2 ≤ ε2a

}
,

t⋂
τ=NR

{
‖εi,τ‖2 ≤ ε′2

}
=P

(
NR−1⋂
τ=1

{
‖εi,τ‖2 ≤ ε2a

})
· P

 t⋂
τ=NR

{
‖εi,τ‖2 ≤ ε′2

} ∣∣∣∣∣‖εi,NR−1‖
2 ≤ ε2a,

NR−2⋂
τ=1

{
‖εi,τ‖2 ≤ ε2a

})

≥
[
1− NR

ε2a

(
ε20 +

NR

S2
min

)][
1− ε2a

ε′2

]
≥1− NR

ε2a

(
ε20 +

NR

S2
min

)
− ε2a
ε′2

=1− 2

√
NR

ε′2

(
ε20 +

NR

S2
min

)

(86)

where the first inequality holds since ε2a ≤ ε′2; the third inequality holds by applying (85) and (15) in
Lemma 14; the last line holds by plugging in the definition of εa.

D.3 Proof for Lemma 16

Proof In Line 11 of Algorithm 1, we make assignment according to

ẑt = arg min
i

ri ·max

(
1, α
‖w̃i,t − ŵi,t−1‖

2(εui,t−1 + ν)

)β
(87)

So, if data {φt, yt} is generated by subsystem i, i.e. zt = i, and we want it to be assigned to candidate
i according to Line 9 in Algorithm 1, it suffices to have ∀j 6= i

rj ·max

(
1, α
‖w̃j,t − ŵj,t−1‖

2(εuj,t−1 + ν)

)β
> ri ·max

(
1, α
‖w̃i,t − ŵi,t−1‖

2(εui,t−1 + ν)

)β
(88)

From Line 9 in Algorithm 1, we can see ‖w̃i,t − ŵi,t−1‖ = ‖φt‖−1|ŵ
ᵀ
i,t−1φt− yt|. So, (88) is equivalent

to

rj ·max

(
1, α
‖φt‖−1|ŵ

ᵀ
j,t−1φt − yt|

2(εuj,t−1 + ν)

)β
> ri ·max

(
1, α
‖φt‖−1|ŵ

ᵀ
i,t−1φt − yt|

2(εui,t−1 + ν)

)β
(89)

Since the LHS of (89) is larger than or equal to rj , to show (89), it suffices to show

rj > ri ·max

(
1,
α

2
·
‖φt‖−1|ŵ

ᵀ
i,t−1φt − yt|

εui,t−1 + ν

)β
(90)

26

Note that we could have the following

‖φt‖−1|ŵ
ᵀ
i,t−1φt − yt|

εui,t−1 + ν

=‖φt‖−1
|nt + ε

ᵀ
i,t−1φt|

εui,t−1 + ν

≤‖φt‖−1
|nt|+ ‖εi,t−1‖‖φt‖

εui,t−1 + ν

=
|nt|

‖φt‖(εui,t−1 + ν)
+
‖εi,t−1‖
εui,t−1 + ν

≤ |nt|
‖φt‖(‖εi,t−1‖+ ν)

+ 1

(91)

where the first line holds since yt = w
ᵀ
iφt + nt, and εi,t−1 = wi − ŵi,t−1; the last line holds since

εui,t−1 > ‖εi,t−1‖ from Theorem 9. Since we let α = 2, β = 1, to ensure (90) holds, it suffices to ensure
the following holds:

rj > ri

(
|nt|

‖φt‖(‖εi,t−1‖+ ν)
+ 1

)
(92)

Since ri = ‖φt‖−1|yt − ŵ
ᵀ
i,t−1φt|, rj = ‖φt‖−1|yt − ŵ

ᵀ
j,t−1φt|, εj,t−1 = wj − ŵj,t−1 and yt = w

ᵀ
iφt + nt,

we have

ri = ‖φt‖−1|nt + ε
ᵀ
i,t−1φt| (93)

rj = ‖φt‖−1|nt + (wi −wj)
ᵀ
φt + ε

ᵀ
j,t−1φt| (94)

So, (92) is equivalent to

|nt + (wi −wj)
ᵀ
φt + ε

ᵀ
j,t−1φt| > |nt + ε

ᵀ
i,t−1φt|

(
|nt|

‖φt‖(‖εi,t−1‖+ ν)
+ 1

)
(95)

Note that in (95), we can see

LHS ≥ |(wi −wj)
ᵀ
φt| − |nt| − |ε

ᵀ
j,t−1φt| (96)

RHS ≤ |nt|+ |ε
ᵀ
i,t−1φt|+

(|nt|+ ‖εi,t−1‖‖φt‖|)|nt|
‖φt‖(‖εi,t−1‖+ ν)

= |nt|+|ε
ᵀ
i,t−1φt|+

‖εi,t−1‖|nt|
‖εi,t−1‖+ν

+
|nt|2

‖φt‖(‖εi,t−1‖+ν)

< |nt|+ |ε
ᵀ
i,t−1φt|+ |nt|+

|nt|2

‖φt‖ν

= 2|nt|+ |ε
ᵀ
i,t−1φt|+

|nt|2

‖φt‖ν

(97)

Considering (96) and (97), we can see to ensure (95) holds, it suffices to let

|εᵀi,t−1φt|+ |ε
ᵀ
j,t−1φt|+ 3|nt| − |(wi −wj)

ᵀ
φt|+

|nt|2

‖φt‖ν
≤ 0 (98)

From Assumption 2, 3, 5, we have ‖φt‖ ≤ φmax, |nt| ≤ nmax, |(wi−wj)
ᵀ
φt| ≥ ψ,

|nt|
‖φt‖

≤ 1
Smin

. Applying

these bounds to (98), we can see to ensure (95) holds, it suffices to let

(‖εi,t−1‖+ ‖εj,t−1‖)φmax + 3nmax − ψ +
nmax

Sminν
≤ 0 (99)

27

So, to ensure (99) holds, it suffices to have ∀i ∈ [m]

‖εi,t−1‖ ≤
1

2φmax

(
ψ − nmax

νSmin
− 3nmax

)
= ε′ (100)

Tracing all the way back, we can see when (100) holds for ∀i ∈ [m], (88) would hold, therefore we
could assign data {φt, yt} generated by subsystem i to candidate i, i.e. ẑt = zt.

D.4 Proof for Theorem 17

Proof For ease of explanation, we let Correct Assignment Always (CAA) be the event of correct
assignment at every time step, which is exactly result (i). Note that in the claims of this theorem, result
(ii) is a direct consequence of result (i) according to Theorem 12. To prove this theorem, it suffices to

prove CAA happens with probability at least 1− 2m

√
NR
ε′2

(
ε20 + NR

S2
min

)
It’s difficult to evaluate CAA

directly, so we will evaluate CAA only on the perfect event trajectory (PET): “at every time
step (including 0), all candidates have accurate enough estimate after updates such that we can make
correct assignment at next time step according to Lemma 16; at every time step, we can make correct
assignment”. Since CAA occurs whenever PET occurs, a lower bound on P (PET) would also be a
lower bound on P (CAA). We will show that to evaluate P (PET), it suffices to study each candidate
separately and then combine them altogether. We will illustrate this with a toy example and then
generalize it to general cases.

Table 2: Perfect Event Trajectory (PET)

Time Indices Correct Assign Accurate Enough Estimation After Update

(t = 0): NA ‖ε1,0‖2, ‖ε2,0‖2 ≤ ε′2

(t = 1):
wp1−→ ẑ1 = 1 −→ ‖ε1,1‖2, ‖ε2,1‖2 ≤ ε′2 after update of ŵ1,0

...

(t = t1 − 1):
wp1−→ ẑt1−1 = 1 −→ ‖ε1,t1−1‖2, ‖ε2,t1−1‖2 ≤ ε′2 after update of ŵ1,t1−2

(t = t1):
wp1−→ ẑt1 = 2 −→ ‖ε1,t1‖2, ‖ε2,t1‖2 ≤ ε′2 after update of ŵ1,t1−1

...

(t = t2 − 1):
wp1−→ ẑt2−1 = 2 −→ ‖ε1,t2−1‖2, ‖ε2,t2−1‖2 ≤ ε′2 after update of ŵ1,t2−2

(t = t2):
wp1−→ ẑt2 = 1 −→ ‖ε1,t2‖2, ‖ε2,t2‖2 ≤ ε′2 after update of ŵ1,t2−1

...

Assume there are only two subsystems 1 and 2 in the hybrid SARX system. Subsystem 1 dominates
at time {1, 2, . . . , t1 − 1, t2, t2 + 1, . . .} and subsystem 2 dominates at {t1, t1 + 1, . . . , t2 − 1}. This is to
say, there is a switching from 1 to 2 at time t1, and 2 back to 1 at time t2. Now, consider the PET
in Table 2. In this table, time indices are listed on the left of the vertical separator, and the events
occur at different time steps are listed on the right. The “Correct Assign” column lists the events of
making correct assignment at different time steps. The “Accurate Enough Estimation After Update”

column lists the events of accurate enough (below ε′) estimation after update. “
wp1−→” means event

{‖ε1,t−1‖2, ‖ε2,t−1‖2 ≤ ε′2 after update of ŵi,t−2 for some i} at time t− 1 will lead to event {ẑt = zt},
i.e. making correct assignment at time t, with probability 1, whose justification is given in Lemma 16.
“−→” means with certain probability, current correct assignment will make estimates accurate enough
after update. From Table 2, we can see the randomness in PET only come from all the events in
the “Accurate Enough Estimation After Update” column. In another way, to evaluate P (PET), it’s

28

equivalent to evaluate the probability that for every time step, after updating estimate with data from
correct subsystem, the new estimation error will be smaller than ε′2. To see things more clearly, the
events we want to evaluate have the following properties

1. At time t = 1, 2, . . . , t1 − 1, only ‖ε1,t‖2 is changing while ‖ε2,t‖2 = ‖ε2,0‖2 is unchanged. And
we always have ‖ε1,t‖2, ‖ε2,t‖2 ≤ ε′2

2. At time t = t1, t1 + 1, t2 − 1, only ‖ε2,t‖2 is changing while ‖ε1,t‖2 = ‖ε1,t1−1‖2 is unchanged.
And we always have ‖ε1,t‖2, ‖ε2,t‖2 ≤ ε′2

3. At time t = t2, t2 + 1, . . . , only ‖ε1,t‖2 is changing while ‖ε2,t‖2 = ‖ε2,t2−1‖2 is unchanged. And
we always have ‖ε1,t‖2, ‖ε2,t‖2 ≤ ε′2

4. Additionally, we have ‖ε1,0‖2, ‖ε2,0‖2 ≤ ε′2

Now consider the following fictitious Scenario (A): with ‖ε1,0‖2, ‖ε2,0‖2 ≤ ε′2, let Φ1 and Φ2 denote
the data we assigned to candidate 1 ŵ1,t and candidate 2 ŵ2,t respectively; then we first update ŵ1,0

using Φ1 and then update ŵ2,0 with Φ2 as if there is always only one subsystem during this course.
With the properties listed above, we can see P (PET) = P (C1

⋂
C2) where Ci is the event “candidate

i always have error smaller than ε′2 in Scenario (A)”. Since C1, C2 corresponds to applying algorithm
to single subsystem, we can see P (C1) and P (C2) can be lower bounded by the probability in Lemma
15. Therefore, we have

P (CAA) ≥ P (PET) ≥ 1− P (Cc1)− P (Cc2) ≥ 1− 2 · 2

√
NR

ε′2

(
ε20 +

NR

S2
min

)
(101)

Now for the more general SARX model with m subsystems, we could generalize the argument
above, and end up getting

P (CAA) ≥ P (PET) ≥ 1−m · 2

√
NR

ε′2

(
ε20 +

NR

S2
min

)
(102)

Finally, with the argument we made at the beginning of the proof, we can see the proof for this theorem
is done.

D.5 Proof for Corollary 18

Proof When there is no noise, Assumption 13 which is the building block to the local convergence
result Theorem 17 is no longer valid as Smin and Smax will both go to ∞ and κmax ≥ Smax

Smin
is no longer

well defined. However, in this case, we can prove variants of Lemma 14 and Lemma 15 without relying
on Assumption 13.

Specifically, in the proof of Lemma 14, if nt = 0, the last term 1
S2
min

in (78) would vanish and we

proved the supermartingale directly and thus Lemma 14 holds without relying on Assumption 13. And
in the proof of Lemma 15, all the term NR

S2
min

would vanish due to the absence of noise. So the claim of

Lemma 15 would be assume ‖εi,0‖ ≤ ε0 such that
√
NRε20 ≤ ε′, then for ∀t we have

P

(
t⋂

τ=1

{
‖εi,τ‖2 ≤ ε′2

})
≥ 1− 2

√
NR

ε′2
ε20 (103)

We could apply this variant of Lemma 15 to proof for Theorem 17 directly and get the probability

bound 1− 2m
√

NR
ε′2 ε

2
0. Finally we can get (17) in the corollary simply by letting σn = 0 in the partial

convergence result Theorem 12.

29

E Proofs for Extension Results Theorem 19

E.1 Proof for Theorem 19

Proof From the (58), we see εt = b−Ant for some A and b. For some ε̃ > 0, we have

P (‖εt‖ ≤ ε̃) = P (1{‖Ant − b‖ ≤ ε̃})
= E[1{‖Ant − b‖ ≤ ε̃}]

(104)

With Monte Carlo samples of nt, {n(i)
t }

Nt
i=1, according to Hoeffding’s inequality, we have

P

(
1

Nt

N∑
i=1

1{‖An
(i)
t −b‖≤ε̃} − P (‖εt‖ ≤ ε̃)≤ζt1

)
≥ 1− exp(−2Ntζ

2t
1)

(105)

Let ε̃ = εut = max ‖An
(i)
t − b‖, and note that Nt ≥ ζ2t

2ζ2t1
, we have

P
(
P (‖εt‖ ≤ ε̃) ≥ 1− ζt1

)
≥ 1− exp(−ζ2t) (106)

Using union bound, we have

P

(∞⋂
t=1

{
P (‖εt‖ ≤ ε̃) ≥ 1− ζt1

})
≥ 1− exp(−ζ2)

1− exp(−ζ2)
(107)

For the event inside P (·), according to union bound, we have

∞⋂
t=1

{
P (‖εt‖ ≤ ε̃) ≥ 1− ζt1

}
⇒ P

(∞⋂
t=1

{‖εt‖ ≤ ε̃} ≥ 1− ζ1
1− ζ1

)
(108)

Therefore, plugging (108) into (107), we could get (28)

30

	1 Introduction
	1.1 Prior Work
	1.2 Contributions and Outline

	2 Problem Formulation
	2.1 SARX System
	2.2 Assumptions
	2.3 Goal

	3 Drawbacks of Existing Algorithms
	4 Our Algorithm
	4.1 Making Assignment/Identifying the Discrete State
	4.2 Candidate Estimate Updates
	4.3 Computation of Error Upper Bound

	5 Theoretical Results
	5.1 Preliminary Results
	5.2 Valid Upper Bound
	5.3 Partial Convergence Results
	5.4 Local Convergence Results

	6 Discussions and Extensions
	6.1 Poles, Condition Number, and Convergence Rate
	6.1.1 Condition Number vs. Convergence Rate
	6.1.2 Poles vs. Condition Number
	6.1.3 Poles vs. Convergence Rate

	6.2 Unbounded Noise and Monte Carlo Method
	6.3 Extension to MIMO Case
	6.4 Multiple NC's and Forgetting Factor
	6.4.1 Multiple NC's
	6.4.2 Forgetting Factor

	7 Numerical Results
	7.1 Evaluation of Asymptotic Convergence Bounds
	7.2 Robust Behavior of our Algorithm
	7.2.1 Single Realization Experiment
	7.2.2 Multiple Realizations Experiment

	8 Conclusions
	A Proofs for Preliminary Results in Section ??
	A.1 Proof for Lemma ??
	A.2 Proof for Lemma ??

	B Proofs for Valid Upper Bound Results in Section ??
	B.1 Proof for Theorem ??

	C Proofs for Partial Convergence in Section ??
	C.1 Proof for Lemma ??
	C.2 Proof for Lemma ??
	C.3 Proof for Theorem ??

	D Proofs for Local Convergence in Section ??
	D.1 Proof for Lemma ??
	D.2 Proof for Lemma ??
	D.3 Proof for Lemma ??
	D.4 Proof for Theorem ??
	D.5 Proof for Corollary ??

	E Proofs for Extension Results Theorem ??
	E.1 Proof for Theorem ??

