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Abstract

A switched equilibrium of a switched system of two subsystems is a such a point where the vector fields of the two subsystems
point strictly towards one another. Using the concept of stable convex combination that was developed by Wicks-Peleties-DeCarlo
(1998) for linear systems, Bolzern-Spinelli (2004) offered a design of a state feedback switching rule that is capable to stabilize
an affine switched system to any switched equilibrium. The state feedback switching rule of Bolzern-Spinelli gives a nonlinear
(quadratic) switching threshold passing through the switched equilibrium. In this paper we prove that the switching threshold (i.e.
the associated switching rule) can be chosen linear, if each of the subsystems of the switched system under consideration are stable.
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1. Introduction

Using the concept of stable convex combination that was de-
veloped by Wicks et al [12] for linear systems, Bolzern-Spinelli
[2] offered a design of a state feedback switching rule that is ca-
pable to stabilize an affine switched system1

ẋ = Aσx + bσ, x ∈ Rn, σ ∈ {−1, 1} (1)

to any point x0 (called switched equilibrium) that satisfies

λ
(
A+x0 + b+) + (1 − λ)

(
A−x0 + b−

)
= 0, (2)

for some λ ∈ [0, 1]. If the matrix λA+ + (1 − λ)A− is Hurwitz,
then, according to Bolzern-Spinelli [2], the switching signal
σ(x) can be defined as

σ(x) = arg min
i∈{−1,1}

{V ′(x)(Aix + bi)} =

= sign (V ′(x)(A−x + b−) − V ′(x)(A+x + b+)) ,
(3)

where V is the quadratic Lyapunov function of the linear system

ẋ = λ
(
A+x + b+) + (1 − λ)

(
A−x + b−

)
.

When A− = A+, the rule (3) reduces to

σ(x) = sign
(
V ′(x)b− − V ′(x)b+) , (4)

whose switching threshold {x ∈ Rn : V ′(x)b− − V ′(x)b+} 3 x0
is a hyperplane, but in general the state feedback switching rule
(3) gives a nonlinear switching threshold (quadratic surface)
passing through the switched equilibrium x0.

Email address: makarenkov@utdallas.edu (Oleg Makarenkov)
1Bolzern-Spinelli [2] actually considered a slightly more general case σ :

[0,∞)→ {1, ...,m}, but in this paper we stick to just two discrete states.

In this paper we provide a wider class of switched systems
(1) that can be stabilized to a switched equilibrium by a linear
switching rule. Specifically, we show that the nonlinear switch-
ing rule (3) can always be replaced with the linear one

σ(x) = sign
〈
x − x0,

[
V ′′(x0)(A−(x0) + b−)

]T
〉
, (5)

when the subsystems ẋ = A+x and ẋ = A−x admit a common
quadratic Lyapunov function. Here V ′′(x0) doesn’t depend on
x0 because V is assumed quadratic. We also note that (5) coin-
cides with (4) when A− = A+.

The paper is organized as follows. In the next section of the
paper we discuss the main idea behind the switching rule (3),
which is based on construction of suitable sets Ω− and Ω+, such
that any switching rule σ(x) with the property

σ(x) =

{
−1 if x ∈ Ω−,
1 if x ∈ Ω+,

stabilizes (1) to x0. In section 3 we prove our main result (The-
orem 3.1), which offers a linear state feedback switching rule to
stabilize a nonlinear switched system

ẋ = f σ(x), x ∈ Rn, σ ∈ {−1, 1}, (6)

to a switched equilibrium x0. We recall that, according to Demi-
dovich [3, Ch. IV, §281], nonlinear systems (6) admit a com-
mon quadratic Lyapunov function, if the simmetrized derivative

f σx (x) +
[
f σx (x)

]T

is uniformly negative definite uniformly in x ∈ Rn, and σ ∈
{−1, 1}, see also Pavlov et al [9]. The switching rule (14) pro-
posed in Theorem 3.1 takes the form (5) when switched system
(6) is affine. The main discovery used in Theorem 3.1 is that,
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for subsystems of (6) that admit a common quadratic Lyapunov
function, the boundaries of Ω− and Ω+ are contained in ellip-
soids that touch one another at the point x0, see Fig. 2. The
proof uses a standard Lyapunov stability theorem that is also
implicitly used in Bolzern-Spinelli [2]. Specifically, we use a
Lyapunov stability theorem for Filippov systems with smooth
Lyapunov functions, which is a particular case of more gen-
eral results available e.g. in Shevitz-Paden [11] or M.-Aguilara-
Garcia [7]. But since deriving the required Lyapunov theorem
(Theorem 3.2) from [7, 11] is not very straightforward (and
since we didn’t find the exact required theorem elsewhere in the
literature), we added a proof for completeness, that we placed
in the Appendix section.

In section 4 we consider an application of Theorem 3.1 to a
model of boost converter and, for illustration purposes, also im-
plement the Bolzern-Spinelli rule (3) for the same model. Some
further discussion on when the switching rule (5) coincides with
(3) is carried out in the conclusions section.

2. The idea of Wicks et al [12] and Bolzern-Spinelli [2]

Recall that x0 is a switched equilibrium for the nonlinear
switched system (6), if there exists λ0 ∈ [0, 1] such that

λ0 f −(x0) + (1 − λ0) f +(x0) = 0. (7)

Assume that the equilibrium x0 of the convex combination

ẋ = λ0 f −(x) + (1 − λ0) f +(x). (8)

is asymptotically stable and let V be the respective Lyapunov
function satisfying

V ′(x) (λ0 f −(x) + (1 − λ0) f +(x)) < 0 for all x , x0. (9)

The fundamental idea of Bolzern-Spinelli [2] (who extended
Wicks et al [12] to affine linear systems) is that for (6) to stabi-
lize to x0, the switching ruleσ(x) must take the valueσ(x) = −1
in the region

Ω− =
{
x : V ′(x) f −(x) < 0

}
(10)

and the value σ(x) = +1 in the region

Ω+ =
{
x : V ′(x) f +(x) < 0

}
. (11)

The following lemma discusses the geometry of the intersec-
tion Ω− ∩ Ω+, in particular it clarifies that there are situations
where one cannot draw a hyperlane in Ω−∩Ω+ passing through
x0 (Fig. 1a) and there are situations when one can (Fig. 1b).
The existence of a hyperplane in Ω− ∩ Ω+ passing through x0
corresponds to the existence of a linear switching rule σ(x) that
stabilizes (6) to x0. Therefore, what this paper will really prove
in Section 3 is that it is Fig. 1b which takes place when both of
the subsystems of (6) are stable.

Lemma 2.1. (ideas of [12, 2]) Consider f −, f + ∈ C1(Rn,Rn).
Let x0 be a switched equilibrium for the vector fields f − and
f +, i.e. (7) holds. Assume that the equilibrium x0 of system (8)
is asymptotically stable and the respective Lyapunov function
V ∈ C1(Rn,R) satisfies (9). Then, the sets Ω− and Ω+ satisfy
the properties:
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Figure 1: Relative locations of sets ΩL and ΩR.

1) Ω− ∪Ω+ ∪ {x0} = Rn, Ω− ∪Ω+ = Rn,

2) ∂Ω−\{x0} ⊂ Ω+, ∂Ω+\{x0} ⊂ Ω−,

3) x0 ∈ ∂Ω−, x0 ∈ ∂Ω+.

Proof. Part 1. Follows directly from (9).

Part 2. Consider x ∈ ∂Ω−. Then x < Ω− because Ω− is open.
Then x ∈ Ω+ by Part 1. The property ∂Ω+ ⊂ Ω− can be proved
by analogy.

Part 3. It is sufficient to show that V ′(x0) = 0. To observe this,
fix an arbitrary j ∈ 1, n and consider the vector ξ j ∈ Rn defined
as ξ j

i = 0, i , j, and ξ j
j = 1. Since V(x) > 0, x , x0, we have

0 < V(x0 + kξ j) − V(x0) = V ′(x0 + k∗ξ j)ξ j · k =

= ∂V
∂x j

(x0 + k∗ξ j)k,
0 < V(x0 − kξ j) − V(x0) = −V ′(x0 − k∗∗ξ j)ξ j · k =

= − ∂V
∂x j

(x0 − k∗∗ξ j)k,

for any k > 0 and for some k∗, k∗∗ ∈ [0, k] (that depend on k).
Passing to the limit as k → 0, one gets ∂V

∂x j
(x0) = 0.

The proof of the lemma is complete.

3. The main result

In this section we assume that the switched equilibrium x0 ad-
mits a common quadratic Lyapunov function

V(x) = (x − x0)T P(x − x0)

with respect to each of the two systems

ẋ = f −(x) − f −(x0) and ẋ = f +(x) − f +(x0), (12)

where P is an n×n symmetric matrix and the following standard
properties hold:

V ′(x) ( f −(x) − f −(x0)) ≤ −α‖x − x0‖
2,

V ′(x) ( f +(x) − f +(x0)) ≤ −α‖x − x0‖
2,

(13)

for some fixed constant α > 0.
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Theorem 3.1. Consider f −, f + ∈ C1(Rn,Rn). Let x0 be
a switched equilibrium for the vector fields f + and f −, i.e.
(7) holds. Assume that the systems of (12) admit a common
quadratic Lyapunov function V ∈ C2(Rn,R) that satisfies (13).
Then the switching signal

σ(x) = sign
〈
x − x0,

[
V ′′(x0) f −(x0)

]T
〉

(14)

makes x0 quadratically globally stable switched equilibrium of
switched system (6).

Note that rule (14) takes the form (5) when the nonlinear
switched system (6) takes the form (1). Also, using (7) the
switching rule (14) can be rewritten as

σ(x) = sign
〈
x − x0,

[
V ′′(x0)

(
f −(x0) − f +(x0)

)]T
〉
.

In order to prove the theorem, we introduce two sets

Ω−α =
{
x ∈ Rn : −α‖x − x0‖

2 + V ′(x) f −(x0) < 0
}
,

Ω+
α =

{
x ∈ Rn : −α‖x − x0‖

2 + V ′(x) f +(x0) < 0
}

and establish the following lemma about the relative properties
of the sets Ωi

α and Ωi as introduced in (10)-(11).

Lemma 3.1. Assume that the conditions of Theorem 3.1 hold.
Then Ω−α and Ω+

α verify the following properties:

1) Ω− ⊃ Ω−α , Ω+ ⊃ Ω+
α ,

2) x0 ∈ ∂Ω−α , x0 ∈ ∂Ω+
α ,

3) both ∂Ω−α and ∂Ω+
α are ellipsoids,

4) hyperplane σ(x) = 0 is tangent to both Ω−α and Ω+
α at x0,

5) Ω−α ⊂ {x : σ(x) < 0} , Ω+
α ⊂ {x : σ(x) > 0} .

The notations and statements of Lemma 3.1 are illustrated at
Fig. 2.

Proof. Part 1. Let x ∈ Ω−α . Then

V ′(x) f −(x) = V ′(x)( f −(x) − f −(x0)) + V ′(x) f −(x0) ≤
≤ −α‖x − x0‖

2 + V ′(x) f −(x0) < 0.

Therefore, x ∈ Ω−. The proof for Ω+
α and Ω+

α is analogous.

Part 2. Follows from V ′(x0) = 0 established in the proof of
Part 3 of Lemma 2.1.

Part 3. We execute the proof for x0 = 0. The proof in the
general case doesn’t differ. The change of the coordinates y =

x − ∆ transforms the equation

−α‖x − x0‖
2 + V ′(x) f −(x0) = 0

into

−α‖y‖2 − 2α 〈∆, y〉+ 2
〈
P f −(0), y

〉
−α‖∆‖2 + 2

〈
∆, P f −(0)

〉
= 0.

If ∆ =
P f −(0)
α

, then we further get

−α‖y‖2 −
1
α
‖P f −(0)‖2 +

2
α
‖P f −(0)‖2 = 0,
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Figure 2: Top figure: Locations of the boundaries of Ω+, Ω+
α , Ω−, Ω−α with

respect to the hyperplane σ(x) = 0 and with respect to each other. Bottom
figures: The sets Ω+ and Ω+

α (grey regions).

which is the equation of ellipsoid centered at 0 and radius
1
α2 ‖P f −(0)‖2.

The proof for ∂Ω+
α is analogous.

Part 4. This follows from the equality

d
dx

(
−α‖x − x0‖

2 + V ′(x) f −(x0)
)∣∣∣∣∣

x=x0

= V ′′(x0) f −(x0).

and the property (7) of switched equilibrium.

Part 5. Let H(x) = −α‖x − x0‖
2 + V ′(x) f −(x0). The interior of

the ellipsoid ∂Ω−α corresponds to H(x) > 0. Therefore, the ex-
terior of the ellipsoid ∂Ω−α (which, by definition, coincides with
the set Ω−α) corresponds to H(x) < 0. This proves the statement
of Part 5 for Ω−α . Since (1 − λ0) f +(x0) = −λ f −(x0) by (7), the
proof for Ω+

α follows same lines.

The proof of the lemma is complete.

The proof of our main result uses the following Lyapunov
stability theorem for discontinuous systems with smooth Lya-
punov functions, which is implicitly used in [12, 2].

Theorem 3.2. (Lyapunov stability theorem for discontin-
uous systems with smooth Lyapunov functions) (similar to
[11, Theorem 3.1], [7, Theorem 2.3]) Consider a system of dif-
ferential equations with discontinuous right-hand-side

ẋ = g(x), with g(x) =

{
g+(x), if H(x) > 0,
g−(x), if H(x) < 0, x ∈ Rn, (15)

where g−, g+, and H are C1-functions. Consider x0 ∈ Rn sat-
isfying H(x0) = 0. Let V be a C1-smooth Lyapunov function
with V(x0) = 0 and V(x) , 0 for x , x0. Consider a piecewise
continuous strictly positive for x , x0 scalar function x 7→ w(x)
such that for any ρ > 0 there exists ε > 0 for which w(x) ≥ ε as

3
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Figure 3: Boost converter from Fribourg-Soulat [4] and Beccuti et al [1].

long as ‖x − x0‖ ≥ ρ. If

V ′(x)ξ ≤ −w(x) for any ξ ∈ K[g](x), and any x , x0,

then x0 is an asymptotically globally stable stationary point of
(15). Here K[g](x) stays for convexification of the discontinu-
ous function g at x, see e.g. Shevitz-Paden [11].

The proof of Theorem 3.2 is given in Appendix.

Proof of Theorem 3.1. We will show that the conditions of
Theorem 3.2 hold with

w(x) =


−V ′(x) f −(x), σ(x) < 0,
−max{V ′(x) f −(x),V ′(x) f +(x)}, σ(x) = 0,
−V ′(x) f +(x), σ(x) > 0.

If x ∈ D−\{x0}, then x ∈ Ω−α ⊂ Ω− by statements 5 and 1 of
Lemma 3.1, which implies w(x) > 0. Analogously, w(x) > 0,
if x ∈ D+\{x0}. This implies that max

x:‖x−x0‖=ρ
w(x) is a positive

function of ρ that approaches 0 as ρ→ 0.

Since K[ f ](x) = { f −(x)}, when σ(x) < 0, and K[ f ](x) =

{ f +(x)}, when σ(x) > 0, then condition V ′(x)ξ ≤ −w(x) of
Theorem 3.2 holds for σ(x) , 0.

Consider σ(x) = 0. Then each ξ ∈ K[ f ](x) has the form ξ =

λ f −(x) + (1 − λ) f +(x), where λ is a constant from the interval
[0, 1]. We have

V ′(x)ξ = λV ′(x) f −(x) + (1 − λ)V ′(x) f +(x) ≤
≤ max{V ′(x) f −(x),V ′(x) f +(x)} = −w(x),

that completes the proof of the theorem.

4. Application to a model of boost converter

Consider a dc-dc boost converter of Fig. 3 with a switching
feedback σ(x). Denoting the inductor current iL by x1 and the
capacitor voltage uC by x2, the differential equations of the con-
verter read as (see e.g. Fribourg-Soulat [4], Beccuti et al [1])

ẋ =

 −
rL
xL

−
r0

xL(r0+rC )σ

r0
xC (r0+rC )σ − 1

xC (r0+rC )

 x +


us
xL

0

 , σ ∈ {0, 1}, (16)

Let us view the right-hand-side of (16) with σ = 0 and σ = 1
as f −(x) and f +(x) respectively. The equation (7) for switched
equilibrium x0 yields

−rLx01 + us − (1 − λ0) r0rC
r0+rC

x01 − (1 − λ0) r0
r0+rC

x02 = 0,

−x02 + (1 − λ0)r0x01 = 0,
(17)
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Figure 4: The solution (bold curve) of switched system (17) with the initial
condition x(0) = 0, the parameters (19), and the switching signal σ(x) given by
(18) (top figure) and by (20) (bottom figure). The thin curve is the switching
manifold σ(x) = 0 and the bold point is the switched equilibrium x0.

which can be solved for (x01, λ0) when the reference voltage x02
is fixed. The conditions of Theorem 3.1 hold with the Lyapunov
function

V(x) =
1

2xC
(x1 − x01)2 +

1
2xL

(x2 − x02)2.

Therefore,

V ′′(x0) f −(x0) =

(
1
xC

(
−

rL

xL
x01 +

vs

xL

)
,

1
xL

(
−

1
xC(r0 + rC)

x02

))
,

which transpose will be denoted by n. Plugging n into (14), we
conclude that any point x0 that satisfies the switched equilib-
rium condition (17) with λ0 ∈ (0, 1), can be stabilized using the
switching rule

σ(x) =

{
1, if (x − xd)n > 0,
0, if (x − xd)n < 0. (18)

An implementation of switching rule (18) with the parameters

rL = 20, rC = 5, xL = 600, xC = 70, r0 = 200, us = 8, (19)

and the reference voltage x02 = 10 (which, when plugged into
(17), yields x01 = 0.79 and λ0 = 0.367 as one of the two possi-
ble solutions) is given in Fig. 4 (top).

For comparison, Fig. 4 (bottom) shows stabilization of (17) to
the switched equilibrium x0 = (0.79, 10) using the switching
rule (3), that can be shown to simplify to

σ(x) = sign
(
rLrC x2

1 − (x01rLrC − x02)x1 − x01x2

)
. (20)
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The parameters (19) are slightly artificial, but similar to Fig. 4
simulations are achieved in the case of more realistic param-
eters e.g. taken from [1], [4], or [5]. The parameters (19) are
chosen in such a way that the nonlinear behavior of the Bolzern-
Spinelli rule (20) is clearly seen in Fig. 4 (bottom). The top and
bottom figures of Fig. 4 turn out to be indistinguishable (on the
screen) for the parameters from [1, 4, 5].

5. Conclusions

In this paper we showed that the switching rule (3) of Bolzern-
Spinelli [2] for quadratic stabilization of a switched equilibrium
x0 of switched system (1) can be replaced by a linear switching
rule (5) when the subsystems of (1) admit a common quadratic
Lyapunov function. Moreover, our main result (Theorem 3.1)
applies to nonlinear switched systems (6) complimenting the
work by Mastellone et al [8] that proposes a nonlinear exten-
sion of Bolzern-Spinelli [2] in the case where the subsystems
of (6) are shifts of one another (at the same time, the work [8]
addresses the case of an arbitrary number of subsystems, while
the present paper focuses on just two subsystems).

We would like to note that seemingly nonlinear switching rule
(3) of Bolzern-Spinelli [2] simplifies to linear in wide classes of
particular applications, e.g. in applications to buck converters
(see e.g. Lu et al [6]), where A+ = A− in (1), or in applications
to boost converters of Fig. 3 with neglected resistance rC of the
capacitor (see e.g. Schild et al [10]). Still, the switching rule
(3) stays nonlinear in some other classes of applications, e.g. in
more general boost converters such as the one of Fig. 3 or its
further extensions (see Gupta-Patra [5] and references therein).
In these classes of applications the linear switching rules (5)
and (14) proposed in this paper may simplify the engineering
implementation of the feedback control.

6. Appendix: Lyapunov stability theorem for discontinuous
systems with smooth Lyapunov functions

Proof of Theorem 3.2. Let x be a Filippov solution of (15), see
e.g. Shevitz-Paden [11]. We pick ρ > 0 and prove that x(t) ∈
Wρ beginning some t = tρ, where Wρ = {x ∈ Rn : V(x) < ρ}.

Step 1. Let r > 0 be such a constant that x(0) ∈ ∂Wr. We
claim that x(t) ∈ Wr for all t > 0. We prove by contradiction,
i.e. assume that x(τ) < Wr for some τ > 0. Without loss of
generality we can assume that x([0, τ]) ⊂ W, where W is an
open neighborhood of Wr, such that w(x) is strictly positive in
W\{x0}. For the function v(t) = V(x(t)) we have

v(0) = r and v(τ) ≥ r. (21)

Step 1.1 We claim that v(t) > r/2 for all t ∈ [0, τ]. Indeed, if the
latter is wrong, then defining s = max {t ∈ [0, τ] : v(t) ≤ r/2} ,
one gets

v(s) = r/2, v(τ) = r, v(t) ∈ [r/2, r] , for any t ∈ [s, τ]. (22)

In particular, x(t) , x0 for all t ∈ [s, τ] and, therefore,

v′(t) = V ′(x(t))ξ < 0,

for some ξ ∈ K[ f ](x(t)) and almost any t ∈ [s, τ]. This contra-
dicts (22) and proves that v(t) > r/2 for all t ∈ [0, τ].

Step 1.2 Step 1.1 implies that x(t) , 0, for any t ∈ [0, τ], and,
as a consequence,

v′(t) < 0, for any t ∈ [0, τ],

which contradicts (21) and completes the proof of the fact that
x(t) ∈ Wr for all t > 0.

Step 2. Let us show that x(t) reaches Wρ at some time moment.
Assume that x(t) never reaches Wρ. Then

v′(t) = V ′(x(t))ξ < −w(x(t)),

for some ξ ∈ K[ f ](x(t)) and almost any t > 0. The definition
of function w implies that wmin = min{w(x), x ∈ Wr\Wρ} > 0.
Therefore,

v(t) = v(0) +

∫ t

0
v′(t)dt < v(0) − wmint

and v(t) becomes negative, if x(t) never reaches Wρ. Since ρ ∈
(0, r) was chosen arbitrary, our conclusion implies that x(t) →
x0 as t → ∞.

The proof of the theorem is complete.
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