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a b s t r a c t

This paper addresses a structural design problem in control systems, and explicitly takes into
consideration the possible application to large-scale systems. More precisely, we aim to determine and
characterize the minimum number of manipulated state variables ensuring structural controllability of
switched linear continuous-time systems. Towards this goal, we provide a new necessary and sufficient
condition that leverages both graph-theoretic and algebraic properties required to ensure feasibility
of the solutions. With this new condition, we show that a solution can be determined by an efficient
procedure, i.e., polynomial in the number of state variables. In addition, we also discuss the switching
signal properties that ensure structural controllability and the computational complexity of determining
these sequences. In particular, we show that determining theminimumnumber ofmodes that a switching
signal requires to ensure structural controllability is NP-hard.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Switched systems have been intensively studied, and the
primary motivation comes partly from the fact that these systems
have numerous applications in the control of mechanical systems,
process control, automotive industry, power systems, aircraft and
traffic control, and many other fields (Lin & Antsaklis, 2009;
Sun, 2005). Among switched systems, those with all subsystems
described by linear differential equations, referred to as switched
linear systems, have attracted most of the attention (Lin &
Antsaklis, 2009). Recent efforts aimed to analyze controllability
and reachability properties of these systems (Cheng, 2005; Ji,
Wang, & Guo, 2007; Sun, 2005; Sun, Ge, & Lee, 2002).

Nonetheless, only recently controllability was studied for the
class of uncertain switched linear system, i.e., the parameters of
subsystems’ state matrices are either unknown or zero (Liu, Lin,
& Chen, 2013). This assumption copes with scenarios where the
system parameters are difficult to identify and obtained with a
certain approximation error. Thus, structural properties that are
independent of a specific value of unknown parameters are of

✩ The material in this paper was not presented at any conference. This paper was
recommended for publication in revised form by Associate Editor Oswaldo Luiz V.
Costa under the direction of Editor Richard Middleton.

E-mail addresses: sergo@seas.upenn.edu (S. Pequito), pappasg@seas.upenn.edu
(G.J. Pappas).

http://dx.doi.org/10.1016/j.automatica.2016.12.039
0005-1098/© 2016 Elsevier Ltd. All rights reserved.
particular interest. Subsequently, a switched linear system is said
to be structurally controllable if one can find a set of values for the
unknown parameters such that the corresponding switched linear
system is controllable in the classical sense (Liu et al., 2013).

Motivated by economic constraints, i.e., since more actuation
capabilities incur in higher cost (Olshevsky, 2014; Pequito, Kar,
& Aguiar, 2016a; Pequito, Kar, & Pappas, 2015), we propose
to study the structural minimum controllability problem, i.e., the
problem of determining the smallest subset of actuated state
variables ensuring structural controllability, in the context of
switched linear system. Notice that understanding the allocation
of actuation capabilities in large-scale systems is of fundamental
importance in control systems (Skogestad, 2004; van de Wal & de
Jagern, 2001). Also, such characterization is fundamental towards a
better understanding of the systems resilience in case of actuation
failure (Liu, Pequito, Kar, Sinopoli, & Aguiar, 2015). Towards
finding the solution to the above-mentioned problem, we leverage
the necessary and sufficient conditions required to assess the
structural controllability of switched linear system provided in Liu
et al. (2013). In other words, we complement the analysis of such
systems by addressing the design problem, i.e., to optimize the
actuation capabilities such that the structural controllability holds.

The structural minimum controllability problem has been fully
addressed in the context of linear-time invariant (LTI) systems
in Pequito et al. (2016a) for homogeneous costs; and the com-
putational complexity analyzed for several classes of systems in
Assadi, Khanna, Li, and Preciado (2015). In the current manuscript,
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we extend these results to the case of switched linear continuous-
time systems. Notice that whereas the solution to the design prob-
lem in LTI systems in Assadi et al. (2015) and Pequito et al. (2016a)
relies on graph-theoretic properties (i.e., directed graphs inter-
pretations of the system) of structural controllability, these no
longer hold to characterize structural controllability of structural
switched linear continuous-time systems, see Liu et al. (2013) for
details. In particular, the analysis of structural controllability of
structural switched linear continuous-time systems cannot be re-
duced to the analysis of a structured linear system. Consequently,
in this paper we provide a systematic approach that leverages the
combination of graph-theoretic and algebraic conditions to obtain
and characterize the solutions to the structural minimal controlla-
bility problem for structural switched linear continuous-time sys-
tem.

The current work also differs from Ramos, Pequito, Aguiar,
and Kar (2015); Ramos, Pequito, Aguiar, Ramos, and Kar (2013),
where the structural minimum controllability problem aimed to
ensure structural controllability for each mode of the switched
continuous-time linear system; note that this conservative no-
tion contrasts with the controllability definition considered in the
present manuscript. In Pequito, Kar, and Aguiar (2016b), the struc-
tural minimal controllability problem for linear time-invariant
systems was considered under heterogeneous cost, i.e., the vari-
ables actuated can incur in different costs. In particular, in
Pequito et al. (2016b), this problem is shown to be polynomially
solvable, and, in Olshevsky (2015), the computational complexity
was improved when binary costs are considered. More recently, in
Pequito, Svacha, Pappas, and Kumar (2015) the problem was ex-
tended to the case where a state variable has a cost that depends
on the input that actuates it, hence, leading to a multiple hetero-
geneous cost scenario. Alternatively, the problem of determining
theminimumnumber of actuators from a given collection of possi-
ble actuator-state configurations was shown to be (in general) NP-
hard (Pequito, Kar, & Aguiar, 2015). Notwithstanding, in Pequito
et al. (2015) it was shown that the same problem can be polyno-
mially solvable when the dynamic matrix is irreducible.

The main contributions of this paper are fourfold: (i) we pro-
vide a new necessary and sufficient condition that leverages both
graph-theoretic and algebraic properties required to ensure struc-
tural controllability of switching linear continuous-time systems;
(ii) we characterize the solutions to the structural minimum con-
trollability problem for switched linear continuous-time systems.
In particular, we characterize dedicated solutions, i.e., an actua-
tor can only actuate a single state variable, and minimal solutions,
i.e., the minimum number of actuators actuating the minimum
number of state variables; (iii) we propose an algorithm that lever-
ages both graph-theoretic and algebraic properties of structural
controllability of switching linear continuous-time systems to de-
termine a solution in (mn)α , where n denotes the number of state
variables, m denotes the number of modes of the switching linear
continuous-time system, and α < 2.373 is the exponent of the
n × n matrix multiplication; and (iv) since the controllability of a
structural switching linear continuous-time system is tied with a
particular sequence of modes the system goes through, we show
that determining the minimum collection of nodes in a sequence
of modes ensuring structural controllability is NP-hard.

The rest of the paper is organized as follows: Section 2 provides
the formal statement of the problem addressed in this paper.
Next, Section 3 reviews some concepts, introduces key results in
structural systems theory and establishes their relations to graph-
theoretic constructs. In Section 4, we present the main results.
Next, we present an illustrative example in Section 5. Finally,
Section 6 concludes the paper and discusses avenues for further
research.
2. Problem statement

In this section, we formally introduce the structural minimum
controllability problem for switched linear continuous-time sys-
tems.

Consider the following switched linear continuous-time system

ẋ(t) = Aσ(t)x(t) + Bσ(t)u(t), (1)

where σ : R+
→ M ≡ {1, . . . ,m} is a switching signal,

x(t) ∈ Rn the state of the system at the instant of time t , and
u(t) ∈ Rp represents the piecewise continuous input signal. In
the sequel, we identify (1) by the pair (Aσ(t), Bσ(t)), that contains
m modes with subsystems (Ai, Bi), i ∈ {1, . . . ,m}, and σ(t) = i
implies that the ith subsystem (Ai, Bi) is active at time instant t .
Further, the switched linear continuous-time system (1) is said to
be controllable (or equivalently, (Aσ(t), Bσ(t)) is controllable) if for
any initial state x(0) = x0, and a desired state xd, there exists a
time instance tf > 0, a switching signal σ : [0, tf ) → M and
an input u : [0, tf ) → Rp such that x(tf ) = xd. This notion of
controllability enables the analysis of switching systemswhere we
either have access to ‘common’ transitions and knowledge of the
existing modes of the switching system, or the cases where the
controller is equipped with supervisory capabilities enabling the
system to switch between modes.

As previously mentioned, due to economic constraints, one is
interested in deploying the minimum actuation capabilities that
enable the controllability of the system, which can be captured
by the following optimization problem. Given the switched linear
continuous-time system (1), we aim to determine the sparsest
input matrices {B∗

i }
m
i=1 for the different m modes required to

ensure controllability, as a solution to the following optimization
problem:

min
B1,...,Bm∈Rn×n

m
i=1

∥Bi∥0

s.t. (Aσ(t), Bσ(t)) is controllable,
(2)

where ∥M∥0 is the zero (quasi) norm, i.e., it counts the number
of non-zero entries in matrix M . Notice that in (2) the matrices
Bi ∈ Rn×n (i = 1, . . . ,m) since we do not know a priori the
number of inputs required and, in the worst case scenario, by
considering each matrix to be the n × n identity matrix leads to
the feasibility of the problem. In otherwords, these dimensions are
considered to ensure the problem is not ill-posed and possesses at
least one solution. Subsequently, only the non-zero columns count
as effective inputs, i.e., those required for the actuation, whereas
the zero columns can be disregarded from the design procedure.

Unfortunately, the problem posed in (2) is NP-hard even when
m = 1, see Olshevsky (2014) for details. Furthermore, the
parameters associated with the linear time-invariant modes are
often not accurately known, which motivates the use of structural
system theory (Dion, Commault, & der Woude, 2003). Structural
linear systems are linear parameterized systems with a given
structure, i.e., the entries of the state space matrix are either
free parameters or fixed zeros. Let Āσ(t) ∈ {0, 1}n×n denote the
zero/nonzero structure or structural pattern of the system matrix
Aσ(t), whereas B̄σ(t) ∈ {0, 1}n×p is the structural pattern of the
input matrix Bσ(t). More precisely, an entry in these matrices is
zero if the corresponding entry in the system matrices is equal to
zero, and described by an arbitrary parameter (denoted by one)
otherwise. Therefore, a pair (Āσ(t), B̄σ(t)) is said to be structurally
controllable if there exists a pair (A′

σ(t), B
′

σ(t)) respecting the
structure of (Āσ(t), B̄σ(t)), i.e., same locations of zeros and nonzeros,
such that (A′

σ(t), B
′

σ(t)) is controllable. Further, it can be shown
that if a pair (Āσ(t), B̄σ(t)) is structurally controllable, then almost
all (with respect to the Lebesgue measure) pairs with the same
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structure as (Āσ(t), B̄σ(t)) are controllable (Liu et al., 2013). In
essence, structural controllability is a property of the structure of
the pair (Āσ(t), B̄σ(t)) and not of the specific numerical values.

Subsequently, the structural minimum controllability problem for
switched linear continuous-time systems problem can be stated as
follows:
P1 Given the structure of the matrices of the switched linear
system in (1), i.e., {Āi}

m
i=1, we aim to determine the sparsest

collection of inputmatrices {B̄∗

i }
m
i=1 required to ensure its structural

controllability, i.e., that is the solution to the following problem:

min
B̄1,...,B̄m∈{0,1}n×n

m
i=1

∥B̄i∥0

s.t. (Āσ(t), B̄σ(t)) is struct. controllable. ◦

Notice that some solutions may comprise at most one nonzero
entry in each column; in otherwords, solutions inwhich each input
actuates at most one state variable. These inputs are referred to as
dedicated inputs, and they correspond to the columns of the input
matrix B̄i with exactly one nonzero entry. Additionally, if a solution
{B̄∗

i }
m
i=1 is such that all its nonzero columns consist of exactly one

nonzero entry, it is referred to as a dedicated solution, otherwise it
is referred to as a non-dedicated solution.

Finally, note that the solution procedure for P1 also addresses
the corresponding structural observability output matrix design
problem by invoking the duality between observability and
controllability in linear time-invariant systems for each mode of
the switching linear continuous-time system Hespanha (2009).
Notwithstanding, when designing the observers for such systems,
several considerations are required concerning the knowledge
of the switching signal, as well as dwell-time, see for instance
Petreczky, Tanwani, and Trenn (2015) and references therein.

3. Preliminaries and terminology

In this section, we review some notions of controllability of
switched linear continuous-time systems, and their counterpart
using structural systems theory (Dion et al., 2003).

To assess the controllability for switched linear continuous-
time systems consider the following definitions.

Definition 1 (Liu et al., 2013). The controllability matrix for
switched linear continuous-time systemas described in (1) is given
by

C(Aσ(t), Bσ(t)) = [B1, B2, . . . , Bm, A1B1, A2B1, . . . ,

AmB1, A1B2, A2B2, . . . , AmB2, . . . , A1Bm,

A2Bm, . . . , AmBm, A2
1B1, A2A1B1, . . . , AmA1B1,

A1A2B1, A2
2B1, . . . , AmA2B1, . . . , A1AmBm,

A2AmBm, . . . , A2
mBm, . . . , An−1

1 B1, A2An−2
1 B1,

, . . . , A1A2A1An−3
1 B1, A2

2A
n−3
1 B1, . . . , An−3

1 B1,

, . . . , A1An−2
m Bm, . . . , An−1

m Bm]. �

Additionally, we have the following result.

Theorem 1 (Liu et al., 2013). The system described by (1) is
controllable if and only if rank C(Aσ(t), Bσ(t)) = n. �

Now, we associate with the pair (Āi, B̄i), with Āi, B̄i ∈ {0, 1}n×n,
a directed graph (digraph) D(Āi, B̄i) = (Vi, Ei), referred to as
the system digraph, with vertex set Vi and edge set Ei, where
Vi = Ui ∪ Xi with Xi = {xi1, . . . , x

i
n} and Ui = {ui

1, . . . , u
i
n}

represents the state and input vertices, respectively. In addition,
Ei = EXi,Xi ∪ EUi,Xi where EXi,Xi = {(xik, x

i
j) : [Āi]jk ≠ 0} and
EUi,Xi = {(ui
k, x

i
j) : [B̄i]jk ≠ 0} represents the state edges and input

edges, respectively. Similarly,we candefine a state digraphD(Āi) =

(Xi, EXi,Xi). A directed path is a sequence of directed edges where
every edge ends in a vertex that is the starting of another edge and
no vertex is used twice. A state vertex is said to be non-accessible
by an input vertex if there exists no directed path from an input
to the state vertex. Later, given matrices M̄1, . . . , M̄m ∈ {0, 1}n×n,
their structure can be combined into a single matrix M̄ in terms
of M̄ = M̄1 ∨ . . . ∨ M̄m, where ∨ corresponds to the entry-
wise operation where if at least one of the entries is non-zero,
then it provides a non-zero entry, and zero otherwise. In addition,
[M̄1, . . . , M̄m] denotes the concatenation of matrices M̄1, . . . , M̄m.

Next, we introduce the notion of a bipartite graph associated
with a m1 × m2 matrix M̄ given by B(M̄) = (C, R, EC,R), where
R = {r1, . . . , rm1} and C = {c1, . . . , cm2} correspond to the la-
beling row vertices and column vertices, respectively, and EC,R =

{(cj, ri) : M̄ij ≠ 0}. The bipartite graph is an undirected graph with
vertex set given by the union of the partition sets C and R, which
we refer to as left and right vertex sets, respectively. A matching
M ⊂ EC,R is a collection of edges that have no vertex in common.
A maximum matching is a matching with maximum cardinality
among all possible matchings. For ease of reference, if a vertex in
the left and right vertex set does not belong to an edge in a maxi-
mummatching,we then refer to it a right- and left-unmatched ver-
tex, respectively. Additionally, we can consider weights associated
with the edges in a bipartite graph to obtain a weighted bipartite
graph (B(M̄) = (C, R, EC,R), w), where w : EC,R → R. Sub-
sequently, we can consider the problem of determining the maxi-
mum matching with the minimum sum of the weights, which we
refer to as theminimum weight maximummatching (MWMM). The
minimumweight maximummatching can be generally solvable in
O(max{m1,m2}

α), where α < 2.373 is the exponent of the n × n
matrix multiplication (Duan & Pettie, 2014).

In addition, a digraph DS = (VS, ES) is a subgraph of
D = (V, E) if VS ⊆ V and ES ⊆ E . Finally, a strongly
connected component (SCC) is a maximal subgraph (there is no
other subgraph, containing it, with the same property) DS =

(VS, ES) ofD such that for every u, v ∈ VS there exists a path from
u to v and from v to u. We can create a directed acyclic graph (DAG)
by visualizing each SCC as a virtual node, where there is a directed
edge between vertices belonging to two SCCs if and only if there
exists a directed edge connecting the corresponding SCCs in the
digraphD = (V, E), the original digraph. TheDAGassociatedwith
D(Ā) can be computed efficiently in O(|V| + |E |) (Cormen, Stein,
Rivest, & Leiserson, 2001). The SCCs in the DAG may be further
categorized as follows: an SCC isnon-top linked if it has no incoming
edge to its vertices from the vertices of another SCC.

Finally, consider a m1 × m2 matrix M̄ , and let [M̄] = {P ∈

Rm1×m2 : Pij = 0 if M̄ij = 0}, then the generic rank (g-rank) of
M̄ is given by g-rank(M̄) = maxP∈[M̄] rank(P).

Now, we revisit necessary and sufficient conditions for the
structural controllability of switched linear continuous-time
systems that readily follows from the results in Liu et al. (2013).

Theorem 2. A switched linear continuous-time system (1) is struc-
turally controllable if and only if the following two conditions hold:

(i) D(Ā1∨. . .∨Ām, B̄1∨. . .∨B̄m) has no non-accessible state vertex;
(ii) g-rank


[Ā1, . . . , Ām, B̄1, . . . , B̄m]


= n. �

We note that whereas verifying if the conditions in Theorem 2
hold can be done efficiently (Liu et al., 2013), designing the
sequence of sparsest input matrices such that those conditions
hold is a more challenging problem. In fact, a greedy strategy
may consist of sequentially trying to ensure each condition.
Nonetheless, optimality of such strategies cannot (in general)
be ensured. Therefore, one should resort to such strategies only
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when the problem at hand is computationally intractable, for
instance, NP-hard. In this paper, we will show that P1 can
be polynomially solvable by leveraging both graph-theoretic
and algebraic characterizations of the conditions in Theorem 2
captured by the following results.

Lemma 1 (Commault, Dion, & der Woude, 2002). Let M̄ ∈

{0, 1}m1×m2 . There exists a maximum matching of B(M̄) with size
n if and only if g-rank(M̄) = n. �

Lemma 2 (Pequito et al., 2016a). The digraph D(Ā1 ∨ . . .∨ Ām, B̄1 ∨

. . . ∨ B̄m) has no non-accessible state vertex if and only if there exists
an edge to a state vertex in each non-top linked SCC of the DAG
representation of D(Ā1 ∨ . . . ∨ Ām) from an input in D(Ā1 ∨ . . . ∨

Ām, B̄1 ∨ . . . ∨ B̄m). �

4. Main results

In this section, we present the main results of this paper. More
specifically, we characterize all the solutions to P1. This goal is
achieved in three steps. First, we determine a dedicated solution
that enables structural controllability by performing actuation into
a single mode, i.e., we determine a dedicated solution B̄∗ such
that B̄∗

1 = B̄∗ and B̄∗

i = 0 for i = 2, . . . ,m ensures structural
controllability of (Āσ(t), B̄∗

σ(t)) (see Algorithm 1 whose correctness
is provided in Theorem 4). Second, we describe in Theorem 5
the non-dedicated solutions B̄∗

1 , and B̄∗

i = 0 for i = 2, . . . ,m,
which can be obtained from the dedicated solutions B̄∗. In the
last step, in Theorem 6, we consider the former characterization
to describe all possible solutions to P1. Finally, we present a
discussion of results regarding the switching signals required to
ensure structural controllability of (Āσ(t), B̄∗

σ(t)). In particular, we
show that determining the minimum sequence of modes in such
switching is NP-hard.

We start by leveraging graph-theoretic and algebraic conditions
presented in Lemmas 1 and 2, to rewrite Theorem 2 as follows.

Theorem 3. A switched linear continuous-time system (1) is struc-
turally controllable if and only if the following two conditions hold:

(i) there exists an edge to a state vertex in each non-top linked SCC
of the DAG representation of D(Ā1 ∨ . . . ∨ Ām) from an input in
D(Ā1 ∨ . . . ∨ Ām, B̄1 ∨ . . . ∨ B̄m);

(ii) there exists a maximum matching of B([Ā1, . . . , Ām,
B̄1, . . . , B̄m]) with size n. �

The conditions provided in Theorem 3 can now be used to
obtain a dedicated solution to P1. More specifically, we propose
Algorithm 1 to obtain B such that B̄1 = B̄ and B̄i = 0 for
all i = 2, . . . ,m is a dedicated solution to P1. Towards this
goal, Algorithm 1 consists of a two-step algorithm that determines
the smallest collection of state variables required to ensure both
conditions in Theorem 3. In the first step, it finds the set containing
the maximum collection of state variables that simultaneously
contribute to satisfying both conditions in Theorem 3. We show
that this set can be obtained by considering a MWMM on a
weighted bipartite graph. The weighted bipartite graph requires
the careful crafting of a ‘surrogate’ matrix S̄ that will encode
the graph-theoretic properties required to ensure condition (i)
in Theorem 3, and a weight function enables the connection
of condition (i) and the algebraic condition in Theorem 3(ii).
Consequently, a MWMM determines the maximum set of state
variables that need to be actuated, while satisfying both conditions
in Theorem 3. More specifically, Algorithm 1 finds a MWMM of
a bipartite graph B([Ā1, . . . , Ām, S̄]), where the matrix S̄ has as
many columns as the number of non-top linked SCCs in the DAG
representation ofD(Ā1∨. . .∨Ām). The non-zero entries in column
i of S̄ correspond to the indices of the state variables that belong
to the ith non-top linked SCC. In addition, we consider weights
in the edges of the bipartite graph: the edges associated with the
nonzero entries of Āi have zero weight and the edges associated
with nonzero entries in S̄ have unitary weight. In particular, if
an edge in the MWMM contains the vertex corresponding to the
columns of S̄, then the row vertex ri in the edge indicates that
the state variable xi contributes to satisfying simultaneously both
conditions in Theorem 3. Hence, in the second step, it remains
to determine (independently) the smallest sub collection of state
variables fulfilling both conditions in Theorem 3.

Algorithm 1
Input: Structural linear time-invariant dynamics in each mode of
the structural switching linear continuous-time system described
by {Āi}

m
i=1.

Output: Input matrix describing a dedicated solution D(J), where
D(J) represents the n × n diagonal matrix with entries in J
different from zero

Step 1. Determine the non-top linked SCCs N T
i , i ∈ I ≡

{1, · · · , β}, of D(Ā1 ∨ . . . ∨ Ām) = (X, EX,X).

Step 2. Consider a weighted bipartite graph B([Ā1, . . . , Ām, S̄]) =

(C, R, EC,R), where S̄ is a n × β matrix and S̄i,j = 1 if xi ∈ N T
j ,

and the column vertices be re-labeled as follows: the columns of
Āi are indexed by {c i1, . . . , c

i
n}, and the columns of S̄ are indexed

by {s1, . . . , sβ}. In addition, let the weight of the edges e ∈ 
i=1,...,m

{c i1, . . . , c
i
n}


× R be equal to zero, and the weight on the

edges e ∈ {s1, . . . , sβ} × R be equal to one.
Step 3. Let M′ be the maximum matching incurring in the
minimum cost of theweighted bipartite graph presented in Step 2.
Step 4. Take J′

= {i : (sj, ri) ∈ M′, j ∈ {1, . . . , β}}, i.e., the row
vertices associated with S that belong to the edges in the MWMM
M′ (i.e., those with weight one). In addition, let J′′

= {1, . . . , n} \

{i ∈ {1, . . . , n} : (ckj , ri) ∈ M′, k ∈ {1, . . . ,m}, j ∈ {1, . . . , n}},
and J′′′ contains the index of a single state variable from each non-
top linked SCC N T

p , with p ∈ {1, . . . , β} \ J′.

Step 5. Set J = J′
∪ J′′

∪ J′′′.

The next result establishes the correctness and analyzes the
implementation complexity of Algorithm 1.

Theorem 4. Algorithm 1 is correct, i.e., it provides a dedicated
solution {B̄∗

i }
m
i=1, with B̄∗

1 obtained using Algorithm 1 and B̄∗

i = 0 (i =

2, . . . ,m), that is a solution to P1. Furthermore, its computational
complexity is O((mn+β)α), where α < 2.373 is the exponent of the
n × n matrix multiplication. �

Proof. The correctness of Algorithm 1 follows from the fact
that the indices in J′ identify the minimum set of dedicated
inputs, simultaneously maximizing the increase in the g-rank of
[Ā1, . . . , Ām, D(J′)] with respect to [Ā1, . . . , Ām] by |J′

|, and the
dedicated inputs assigned to state variables in different non-top
linked SCCs. This follows from observing that (by construction)
B([Ā1, . . . , Ām]) results in aminimumweightmaximummatching
M with zero weight and size |M|; hence, by Lemma 1, it follows
that g-rank([Ā1, . . . , Ām]) = |M|. Subsequently, a minimum
weight maximum matching M′ of B([Ā1, . . . , Ām, S̄]) equals
|M′

| − |M|. Thus, increasing by |M′
| − |M| the g-rank of

[Ā1, . . . , Ām, D(J′)] with respect to [Ā1, . . . , Ām], and contributing
to satisfy both conditions in Theorem 3. Nevertheless, it may be
insufficient to ensure condition (ii) in Theorem 3, which is fulfilled
by taking into account the minimum (additional) collection of
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dedicated inputs indexed by J′′. In addition, by construction of
S̄ it follows that D(J′) corresponds to dedicated inputs that are
assigned to state variables in different non-top linked SCCs. Hence,
|J′

|non-top linked SCCs have incoming edges fromdifferent inputs
in the system digraph. Thus, contributing to satisfy condition (i)
in Theorem 3, but may not be enough to ensure this condition,
which is accounted for by considering the minimum collection
of dedicated inputs indexed by J′′′ that ensures condition (i) in
Theorem 3.

In summary, the total number of additional dedicated inputs
D(J′′) required such that g-rank([Ā1, . . . , Ām, D(J′

∪ J′′)]) = n
is minimized by considering Step 4. Similarly, the total number
of additional dedicated inputs IJ′′′

n required such that there exist
no non-accessible state vertices in D(Ā1 ∨ . . . ∨ Ām, D(J′

∪ J′′′))
is minimized by considering Step 4. Notice that D(J′′) are not
assigned to non-top linked SCCs previously assigned, otherwise
they would have been considered in D(J′). Finally, by setting J =

J′
∪ J′′

∪ J′′′, as in Step 5, (D(J), 0, . . . , 0) is by construction a
solution to P1, since both conditions in Theorem 3 hold. Further, it
is minimal since |J| is minimal, which implies that

m
i=1 ∥B̄i∥0 =

|J|.
The computational complexity follows from noticing that Step

2 can be solved using the Hungarian algorithm that finds aMWMM
ofB([Ā1, . . . , Ām, S̄]) inO(max{|C|, |R|}

α), where |C|denotes the
number of column vertices in B([Ā1, . . . , Ām, S̄]), and α < 2.373
is the exponent of the n × n matrix multiplication, whereas all
other steps have linear complexity; hence, Step 2 dominates the
final computational complexity, leading to the final complexity of
O(|C|

α), since |C| ≥ |R|. �

Remark 1. We notice that if the structural switching linear
continuous-time system only possesses one mode, then it boils
down to a structural linear time-invariant system, and the
characterizations obtained in Pequito et al. (2016a) can be
retrieved. Contrarily to the approach presented in Pequito et al.
(2016a) that is motivated by the graph-theoretic characterization
of the system digraph, Algorithm 1 requires both graph-theoretic
and algebraic characterizations, since graph-theoretic properties
for structural switching linear continuous-time system are quite
diverse from those known for structural linear time-invariant, see
Liu et al. (2013) for details. ◦

Next, we characterize all the possible sparsest matrices that are
solutions to P1 when a single node is actuated.

Theorem 5. Given J′, J′′ and J′′′ as in Algorithm 1, then B̄∗

1 =

D(J′
∪J′′)∨O(J′′′), where O(J) is the n×nmatrix with exactly one

non-zero entry in row indexed in J and zeros otherwise, and B̄∗

i = 0
for i = 2, . . . ,m is a solution to P1. �

Proof. The proof follows by noticing that both conditions of
Theorem 3 hold. Condition (ii) in Theorem 3 holds because a
maximum matching of B([Ā1, . . . , Ām, D(J′

∪ J′′)]), is also a
maximum matching of B([Ā1, . . . , Ām, B̄]). Therefore, since the
maximummatching of the former has size n, the latter also has size
n. Secondly, Theorem 3(i) also holds for D(Ā1 ∨ . . .∨ Ām, B̄); more
precisely,D(Ā1∨ . . .∨ Ām, D(J′

∪J′′
∪J′′′)) satisfies Theorem 3(i),

see Theorem 4, which implies that there exists a directed path
from an input to every state variable. Therefore, by considering
B̄ = D(J′

∪J′′)∨O(J′′′) there exist an input edge from an input to
the same state variables indexed by J′′′. Nevertheless, the inputs
fromwhere the input edges start are indexed by the columns with
non-zero entries in O(J′′′). �

Note that in Theorem 5, thematrixO(J′′′) has no constraints on
the number of non-zero entries in each column. Hence, B̄ = D(J′

∪

J′′)∨O(J′′′) is not necessarily a dedicated solution. Subsequently,
we can characterize theminimal solutions to P1 as follows.
Corollary 1. Given J′, J′′ and J′′′ as in Algorithm 1, then B̄∗

1 =

D(J′
∪ J′′) ∨ M(J′′′), where M(J) is the n × n matrix with exactly

one non-zero entry in row indexed in J in some column indexed by
J′

∪J′′ and zeros otherwise and B̄∗

i = 0 for i = 2, . . . ,m is aminimal
solution to P1. �

Proof. The proof follows from Theorem 5, and noticing that the
entries associated with columns indexed by J′

∪ J′′ cannot be
shared by the same column, as consequence of the construction
in Theorem 4; in particular, it would compromise condition (ii) in
Theorem 3. �

Finally, we provide the most general characterization of the
sparsest input matrices that are solution to P1.

Theorem 6. Let J′, J′′ and J′′′ as in Algorithm 1, and B̄ = D(J′
∪

J′′) ∨ O(J′′′), where O(J) is the n × n matrix with exactly one
non-zero entry in row indexed in J and zeros otherwise. If B̄∗

i , for
i = 1, . . . ,m, is such that the following holds:
• B̄∗

i contains as columns only the columns of B̄, but only once the
non-zero columns;

• all non-zero columns of B̄ are present in [B̄∗

1, . . . , B̄
∗
m];

• no two B̄∗

j , B̄
∗

k , with j, k = 1, . . . ,m and j ≠ k, contain the same
non-zero column vectors of B̄,

then {B̄∗

i }
m
i=1 is a solution to P1. �

Proof. By noticing that under the mentioned conditions the
minimality is ensured, i.e., we have

m
i=1 ∥B̄∗

i ∥0 = ∥B̄∥0, we only
need to show the feasibility of the solution. Towards this goal,
observe that there exists a 2mn × 2mn permutation matrix P such
that [Ā1, . . . , Ām, B̄∗

1, . . . , B̄
∗
m]P = [Ā1, . . . , Ām, B̄, 0n×n, . . . , 0n×n],

where 0n×n is the n×n zeromatrix. Hence, by invoking Theorem 5
both conditions of Theorem 3 hold, and the result follows. �

The main results also provide new insights about the impor-
tance of the sequence ofmodes in the transition required to ensure
structural controllability of the switching linear continuous-time
systems. More specifically, we now do the following observations:

Remark 2. Given a switching signal that ensures structural
controllability of the switching linear continuous-time systems,
the order of the modes among which the systems transitions does
not impact the structural controllability of it. In fact, this follows
from the conditions presented in Theorem 3, since both conditions
are invariant to permutation. �

Subsequently, one may wonder which modes are crucial to
ensure both conditions in Theorem 3. This problem can be partially
understood from a solution obtained in Algorithm 1, which is
captured in the following remark.

Remark 3. Given theminimumweightedmaximummatching M′

obtained in Step 3 in Algorithm 1, if an edge (c i., .) ∈ M′ then it
follows that mode i is being considered as part of the switching
signal to ensure structural controllability of the switching linear
continuous-time systems, since it contributes to ensure condition
(ii) in Theorem3. Nonetheless, this is not the same to say that there
is no other minimum weighted maximum matching M′′ where
(c i., .) ∉ M′′. In other words, there might exist different switching
signals ensuring structural controllability of the switching linear
continuous-time systems, and these can be partially captured by
the minimum weighted maximum matchings. Furthermore, it is
possible to characterize which edges belong to any maximum
matching (Commault, Dion, & Do, 2011), which implies that those
modes need to be part of any sequence of modes among which
the system transits. Therefore, these modes should be considered
as part of the design proposed in Theorem 3. In other words, the
designer should consider to deploy actuation capabilities in the
modes that are strictly required in a sequence to ensure structural
controllability, i.e., at these modes, the input matrices should be
non-zero. �
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Finally, since the controllability of a structural switching
linear continuous-time system is tied with the existence of
a particular sequence of modes the system goes through, we
addressed the problem of determining the minimum sequence of
modes ensuring structural controllability. Formally, consider the
following problem.

P2 Given a structurally controllable (Āσ(t), B̄σ(t)), determine the
minimum number of modesm′ that a switching signal σ(t) should
consider to attain structural controllability. ◦

Nevertheless, in the next result we show that this problem is
computationally hard.

Theorem 7. Problem P2 is NP-hard. �

Proof. Consider thewell knownNP-hardproblem, the set covering
problem, that can be stated as follows: given a universe of elements
U = {1, . . . , n} and a collection of subsets {Sj}

m
j=1 with Sj ⊂ U,

determine the subcollection {Sj}j∈I that contains U, where I ⊂

{1, . . . ,m} and there is no other I′ such that |I′
| < |I| satisfying

the same conditions.
In order to show that P2 is NP-hard, we need to polynomially

reduce the set covering problem to P2 (see Cormen et al. (2001)
for an introduction on the topic). As a consequence, a solution to
P2 enables the reconstruction of a solution to the set covering
problem, which implies that finding a solution to P2 is at least as
difficult as finding a solution to the set covering problem. Towards
this goal, we associate with each mode of the switching system
a subset Si, and we assume that any mode suffices to ensure
condition (ii) in Theorem 3; more specifically, we assume that
Āi ∈ {0, 1}(n+1)×(n+1) and diag(Āi) = [1, . . . , 1](n+1)×1 for all
i = 1, . . . ,m. Furthermore, let Ā = Ā1∨. . .∨ Ām be such thatD(Ā)
is a directed tree rooted in x1; hence, by considering [B̄1]1,1 = 1 and
[B̄1]i,j = 0 for the remaining i, j = 1, . . . , n+1, and B̄k = 0 for k =

2, . . . ,m, i.e., only the first mode is actuated and a dedicated input
actuates x1, it follows that condition (i) in Theorem 3 holds. Notice
that there are n directed edges in the directed tree, which we can
enumerate as {ei}ni=1. Therefore, each of the m modes can exhibit
in its digraph representation the edges {ej}j∈Sk for k = 1, . . . ,m,
besides the self-loops in all state variables.

Under the present construction, it is not difficult to realize that
any solution to P2 consists in finding the smallest subcollection of
modes such that the system digraph D(Ā, B̄) contains a directed
spanning tree rooted in an input, where Ā = ∨i∈I∗ Ai and I∗

denotes the indices of the modes. Therefore, it follows that there
exists a collection of edges producing such tree, which implies that
there exist a collection of sets {Si}i∈I∗ that covers U, and the result
follows. �

5. Illustrative example

Consider a switched linear continuous-time system with three
modes {Āi}

3
i=1 where Āi ∈ {0, 1}4×4, and [A1]1,2 = [A2]3,2 =

[A3]4,4 = 1 and zero otherwise. Then, we have

Ā = Ā1 ∨ Ā2 ∨ Ā3 =

0 1 0 0
0 0 0 0
0 1 0 0
0 0 0 1

 .

Hereafter, we aim to determining the sparsest configuration
of inputs that renders the system structurally controllable,
i.e., a solution to P1. To this end, we consider Algorithm 1
(whose correctness and computational complexity are provided in
Theorem 4).

First, the DAG representation of the state digraph associated
with D(Ā) contains four SCCs depicted by dashed gray boxes in
Fig. 1(d); in particular, N T

1 and N T
2 are two non-top linked SCC.
Fig. 1. In this figure,we depict the state digraph associatedwith Āi , with i = 1, 2, 3,
in (a)–(c), respectively. The state digraph of the union Ā = Ā1 ∨ Ā2 ∨ Ā3 is depicted
in (d) and contains three SCCs depicted by dashed gray boxes; in particular,N T

1 and
N T

2 are twonon-top linked SCC. In (e)–(f), we represent the bipartite graph obtained
in Algorithm 1 and the MWMM. Alternatively, in (g)–(h) we illustrate the bipartite
graph obtained in Algorithm 1 and the MWMM if a single mode is considered with
Ā as its dynamics. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Subsequently, we have S̄ as follows:

S̄ =

0 0
1 0
0 0
0 1

 .

In addition, the weights associatedwith the edges inB([Ā1, Ā2,
Ā3, S̄]) are as follows: the edges that contain the vertices c13 and c14
have unitary weight (depicted by the blue edges in Fig. 1(e)), and
all other edges incur in zero weight (depicted by the black edges
in Fig. 1(e)). At Step 3 in Algorithm 1, the MWMM is represented
by the collection of red edges in Fig. 1(f), which we denote by M∗

1 .
Lastly, takingM∗

1 , we obtainJ′
= {2},J′′

= ∅ (i.e., there is no need
to increase the size of themaximummatching), and J′′′

= {4} that
ensures the all nodes in D(Ā, D(J′

∪ J′′
∪ J′′′)) are accessible.

Consequently, we obtain that (B̄1, B̄2,
¯
B3) = (D(J′

∪ J′′
∪

J′′′), 0, 0) is a dedicated solution to P1, by invoking Theorem 4.
From Corollary 1, we obtain that (B̄′

1, B̄
′

2, B̄
′

3) = (D(J′
∪ J′′) ∪

M(J′′′), 0, 0) is a minimal solution to P1. If we want the actuation
to be distributed among different modes of the switched linear
continuous-time system, one just needs to recall Theorem 6; in
particular, (B̄′′

1, B̄
′′

2, B̄
′′

3) = (D(J′), D(J′′′), D(J′′)) is a solution
to P1.

Remark 4. The solution obtained for structural linear continuous-
time switching systems cannot be retrieved from that of a
structural linear time-invariant systemswhen a joint state digraph
of Ā is considered. More specifically, consider a switching system
with a single mode whose dynamics is Ā, then by executing
Algorithm 1, one needs to consider the bipartite graph in Fig. 1(g),
where the edges in blue have unitary weight and the remaining
have zero weight. Then, a possible MWMM determined in Step 3
in Algorithm1 contains the edges depicted in red in Fig. 1(h), which
implies that J′

= {2}, J′′
= {3} and J′′′

= {4}. In other words, an
additional state variable is required to be actuated, i.e., x3. �

6. Conclusions and further research

In this paper, we provide a new necessary and sufficient con-
dition that leverages both graph-theoretic and algebraic prop-
erties required to ensure structural controllability of switching
linear continuous-time systems.With this conditionwe character-
ize the solutions to the structural minimum controllability prob-
lem for switched linear continuous-time systems. Further, we
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provided an efficient algorithm that determines a solution to the
problem. Finally, we provide new insights on how the switching
sequences affect the controllability of a structural switching linear
continuous-time system. In particular, we show that determining
the minimum collection of nodes in a sequence of modes ensuring
structural controllability is NP-hard.

Future research will focus on considering different actuation
cost per state variables, actuators and possible switching se-
quences. Additionally, it would be interesting to address the spars-
est feedback patterns that ensure the switched linear system to
ensure stabilizability.
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