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a b s t r a c t

Mode observability of switched systems requires observability of each individual mode. We consider
other concepts of observability that do not have this requirement: Switching time observability and
switch observability. The latter notion is based on the assumption that at least one switch occurs. These
concepts are analyzed and characterized both for homogeneous and inhomogeneous systems.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Mode observability of switched systems is concerned with re-
covering the initial state as well as the switching signal from the
output (and the input) and has been widely studied, see e.g. Vidal,
Chiuso, Soatto, and Sastry (2003) for homogeneous systems, El-
hamifar, Petreczky, and Vidal (2009) for inhomogeneous discrete-
time systems, Babaali and Pappas (2005) for a generic observability
notion of inhomogeneous systems and Lou and Si (2009) for in-
homogeneous systems. For a recent overview of observability for
general hybrid systems, see De Santis and Di Benedetto (2016).

Since for mode observable systems it is in particular possible to
recover the state for constant switching signals, each mode nec-
essarily has to be observable. In the context of fault-detection (or
diagnosis) the differentmodes of a switched systemdescribe faulty
and non-faulty variants of the system and a switch represents a
fault. Requiring observability of each mode, in particular of each
faulty mode, might be a too strong assumption. Instead of mode
observability, it would be sufficient to compute the switching
signal and the state if an error occurs. This idea is formalized in the
novel notion of switch observability, (x, σ1)-observability for short.

Before characterizing (x, σ1)-observability, we first have to con-
sider the problem of detecting switches (switching time observ-
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ability or tS-observability). This has been done in Vidal et al. (2003)
in the homogeneous case, but the generalization to inhomoge-
neous systems is not straightforward as the switch might occur
in an interval where the state is zero. This difficulty has been
avoided so far, e.g. in Elhamifar et al. (2009) by assuming mode
observability. We are able to relax this assumption and to fully
characterize tS-observability without any additional assumptions.

Similar to the classical observability of linear systems, we de-
rive characterizations of the observability notions based on rank-
conditions on the Kalman observability matrices. Our results are
summarized in Fig. 1, whereOi andΓi are the Kalman observability
matrix andHankelmatrix ofmode i, respectively. These notions are
defined in Sections 2 and 3; rk(A) denotes the rank of A.

The first column in Fig. 1 gives the result for the homo-
geneous case: The strongest notion considered here is (x, σ )-
observability, which coincides with switching signal observ-
ability (σ -observability). It implies (x, σ1)-observability and tS-
observability. The reverse implications are false in general, we
will show this by some examples. For the inhomogeneous case,
we consider two different setups. First we restrict our attention
to systems with analytic input and with some restriction on the
input matrices (assumption (A2)). Then we drop (A2) and require
only smooth input. Thismakes it necessary to consider equivalence
classes of switching signals, but gives observability notions with
the same characterizations as in the more restrictive setup

Our main contribution is the concept of (strong) (x, σ1)-
observability and its characterization. Also the characterization of
strong switching time observability for inhomogeneous systems is
new.
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0005-1098/© 2017 Elsevier Ltd. All rights reserved.
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Fig. 1. Brief characterizations of the observability notions and their relations. Novel results are indicated by bold boxes.

2. Homogeneous systems

2.1. System class and preliminaries

A switching signal is a piecewise constant, right-continuous
function σ : R → P := {1, . . . ,N}, N ∈ N, with locally
finitely many discontinuities. The discontinuities of σ are also
called switching times:

Tσ := { tS ∈ R | tS is a discontinuity of σ } .

We assume that all switches occur for t > 0, i.e. Tσ ⊂ R>0.
Consider switched linear systems of the form

ẋ = Aσ x, x(0) = x0, (1a)
y = Cσ x, (1b)

with switching signal σ and Ai ∈ Rn×n, Ci ∈ Rp×n for all i ∈ P and
denote its solution and output by x(x0,σ ) and y(x0,σ ), respectively.

Furthermore, let O
[ν]

i be the Kalman observability matrix for
mode i with ν row blocks, i.e.

O
[ν]

i =

[
C⊤

i (CiAi)
⊤

(
CiA2

i

)⊤
· · ·

(
CiAν−1

i

)⊤
]⊤

and let O
[∞]

i be the corresponding infinite Kalman observability
matrix. For observability of unswitched systems, it suffices to con-
sider ν = n. In our setting, the required size increases as we have
to compare the output from different modes.

For any sufficiently smooth function y : R → Rp denote by
y[ν]

: R → Rνp the vector of y and its first ν − 1 derivatives
and by y[∞] the (countably) infinite vector of y and its derivatives.
The same can be done for piecewise-smooth functions,where y(t−)
and y(t+) denote the left-hand side and right-hand side limit at t ,
respectively. Then the output y(x0,σ ) of (1) satisfies for all t ∈ R:

y[ν]

(x0,σ )(t
+) = O

[ν]

σ (t+)x(x0,σ )(t), ν ∈ N ∪ {∞},

y[ν]

(x0,σ )(t
−) = O

[ν]

σ (t−)x(x0,σ )(t), ν ∈ N ∪ {∞}.

2.2. Known results and definitions

Definition 1. The switched system (1) is called

– (x, σ )-observable iff for all (x0, x̃0) ̸= (0, 0) the following
implication holds:

(x0 ̸= x̃0 ∨ σ ̸≡ σ̃ ) ⇒ y(x0,σ ) ̸≡ y(̃x0,σ̃ ), (2)

i.e., iff it is possible to determine simultaneously the state and
current mode from the output;

– σ -observable iff for all (x0, x̃0) ̸= (0, 0)

σ ̸≡ σ̃ ⇒ y(x0,σ ) ̸≡ y(̃x0,σ̃ ), (3)

i.e., iff it is possible to determine the current mode from the
output;

– tS-observable (or switching time observable) iff for all x0 ̸= 0,
σ nonconstant and all x̃0, σ̃ :

Tσ ̸= Tσ̃ ⇒ y(x0,σ ) ̸≡ y(̃x0,σ̃ ),

i.e., iff it is possible to determine the switching times from
the output.

Clearly, (x, σ )-observability implies σ -observability which in
turn implies tS-observability. Furthermore, it seems quite obvious
that it is much harder to determine both the state and the switch-
ing signal compared to just determining the currentmode from the
output. However, this intuition is wrong:

Lemma 2. For the switched system (1) it holds that

(x, σ ) − observability ⇔ σ − observability.

Proof. The implication ‘‘⇒’’ is clear. Now let the system be σ -
observable, but not (x, σ )-observable. This means that there exist
(x0, x̃0) ̸= (0, 0) and σ , σ̃ with

(x0 ̸= x̃0 ∨ σ ̸≡ σ̃ ) ∧ y(x0,σ ) ≡ y(̃x0,σ̃ ).

σ ̸≡ σ̃ would contradict σ -observability. Hence we have σ ≡ σ̃

and x0 ̸= x̃0. This means that y(x0,σ ) ≡ y(̃x0,σ ) and, by linearity,
y(x0−̃x0,σ ) ≡ 0. This contradicts σ -observability, as it implies
y(x0−̃x0,σ ) ≡ 0 ≡ y(0,σ̂ ) for all σ̂ . □

This relation was already implicitly stated in Elhamifar et
al. (2009) for discrete-time systems. Note that observability of
the (continuous) state in each mode is necessary for (x, σ )-
observability (just consider the constant switching signals).
However, state-observability in each mode is not sufficient for
(x, σ )-observability (c.f. Babaali and Pappas, 2005). A trivial coun-
terexample for the latter is a system forwhich eachmode describes
the same observable system.

The next example shows that tS-observability is indeed weaker
than (x, σ )-observability:
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Fig. 2. General nonlinear switched system with initial state x0 , input u, switching
signal σ and output y.

Table 1
Comparison of different observability notions based on the
sought inverse maps.

Sought map Name, reference footnotes

(y, u, σ ) ↦→ x0 Observabilitya

(y, x0) ↦→ (u, σ ) Invertibilityb
(y, u ≡ 0) ↦→ (x0, σ ) (x, σ )-observabilityc
(y, u ≡ 0) ↦→ σ σ -observability
(y, u) ↦→ (x0, σ ) Strong (x, σ )-observabilityd
(y, u) ↦→ σ Strong σ -observability

a Petreczky, Tanwani, and Trenn (2015).
b Vu and Liberzon (2008) and Tanwani and Liberzon (2010).
c Vidal et al. (2003) and Babaali and Pappas (2005).
d Babaali and Pappas (2005) and Lou and Si (2009).

Example 3. The system (1) with modes

(A1, C1) =

([
0 0
0 1

]
,
[
1 0

])
, (A2, C2) =

([
0 0
0 1

]
,
[
0 1

])
is tS-observable, but not (x, σ )-observable as the individual modes
are not observable.

Remark 4 (Observability and Invertibility). Most observability no-
tions are concernedwith the invertibility of certainmaps involving
the output and it is helpful to compare the different concepts side-
by-side in regard of these sought inversemaps, see Table 1. For this
comparison we consider general nonlinear switched systems as in
Fig. 2.

Note that most results on observability of switched systems
are only for the linear case (one exception is Tanwani & Liberzon,
2010).

We now recall the known characterization for tS- and (x, σ )-
observability in terms of the Kalman observability matrices:

Lemma 5 (Vidal et al., 2003). System (1) is tS-observable if, and only
if,

rk
(
O

[2n]
i − O

[2n]
j

)
= n ∀i, j ∈ P with i ̸= j.

It is (x, σ )-observable if, and only if,

rk
[
O

[2n]
i O

[2n]
j

]
= 2n ∀i, j ∈ P with i ̸= j. (4)

The characterization (4) can be nicely interpreted by consider-
ing the homogeneous augmented system Σhom

i,j , i, j ∈ P:

Σhom
i,j :

ξ̇ =

[
Ai 0
0 Aj

]
ξ,

y∆i,j =
[
Ci −Cj

]
ξ,

(5)

because (4) is equivalent to (classical) observability of Σhom
i,j ; in-

deed O
[ν]

ij = [O
[ν]

i , − O
[ν]

j ]. This also justifies why it suffices to
consider the order ν = 2n in (4).

2.3. σ1-observability

As already mentioned in the introduction assuming observabil-
ity of each (in particular, each faulty) mode is often too restric-
tive. Furthermore, the notion of (x, σ )-observability (and hence
σ -observability) reduces to the ability to determine the current
mode of (locally) unswitched systems. In particular, the event of
the switch itself is not utilized for recovering the switching signal.
We illustrate this with the following example:

Example 6. The system (1) with modes

(A1, C1) = (0, 1) , (A2, C2) = (0, 2)

is not (x, σ )-observable, because both systems produce constant
outputs for constant switching signals. However, in the presence
of a switch, the output is either halved or doubled, which allows
us to determine whether we switched from mode 1 to 2 or vice
versa. This observability property is lost if we modify C2 to −1,
because the output then just changes its sign and we are not able
to distinguish the two possible mode sequences. However it is still
possible to detect the switching time, because of the sign change
(which always occurs as long as x0 ̸= 0, which we assumed here).

This motivates us to define the following more suitable observ-
ability notion:

Definition 7. The system (1) is called (x, σ1)-observable (or switch
observable) iff (2) holds for all x0 ̸= 0 and all σ with at least one
switch, i.e. σ nonconstant, and all x̃0, σ̃ . It is called σ1-observable iff
(3) holds for x0, x̃0, σ , σ̃ as above.

Lemma 2 holds accordingly and gives

(x, σ1) − observability ⇔ σ1 − observability. (6)

We now present our first main result which characterizes
(x, σ1)-observability for homogeneous switched linear systems.

Theorem 8. The system (1) is (x, σ1)-observable if, and only if, for all
i, j, p, q ∈ P with i ̸= j, p ̸= q and (i, j) ̸= (p, q):

rk

[
O

[2n]
i O[2n]

p

O
[2n]
j O[2n]

q

]
= 2n. (7)

Proof. ‘‘⇒’’: Assume that (7) does not hold, i.e. there exist i, j, p, q
as above and (x1, x̃1) ̸= (0, 0) such that[

O
[2n]
i O[2n]

p

O
[2n]
j O[2n]

q

][
x1

−̃x1

]
=

[
0
0

]
. (8)

Without loss of generality, we can assume x1 ̸= 0. Define
(x0, x̃0) :=

(
e−AitS x1, e−AptS x̃1

)
and

σ (t) =

{
i, t < tS,
j, t ≥ tS,

σ̃ (t) =

{
p, t < tS,
q, t ≥ tS .

(9)

Then we have x0 ̸= 0 and σ ̸= σ̃ . From (8) we can conclude

y[2n]
(x0,σ )(t

−

S ) = y[2n]
(̃x0,σ̃ )(t

−

S ) ∧ y[2n]
(x0,σ )(t

+

S ) = y[2n]
(̃x0,σ̃ )(t

+

S ).

In terms of (5) with initial value (x1, x̃1) this is equivalent to
y[2n]

∆i,p
(0) = 0 and y[2n]

∆j,q
(0) = 0. By the classical observability theory,

this implies y[∞]

∆i,p
(0) = 0 and y[∞]

∆j,q
(0) = 0, i.e. y∆i,p ≡ 0 and

y∆j,q ≡ 0. We can conclude y(x0,σ ) ≡ y(̃x0,σ̃ ). ‘‘⇐’’: Using (6), it
suffices to show σ1-observability. (7) implies tS-observability as for
p = j ̸= i = q we have

rk

[
O

[2n]
i O

[2n]
j

O
[2n]
j O

[2n]
i

]
= 2n ⇒ rk

[
O

[2n]
i − O

[2n]
j

O
[2n]
j − O

[2n]
i

]
= n.
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Now let x0, x̃0, σ and σ̃ be given with x0 ̸= 0, σ nonconstant and
σ ̸≡ σ̃ . It remains to show y(x0,σ ) ̸≡ y(̃x0,σ̃ ). For Tσ ̸= Tσ̃ this follows
directly from tS-observability, hence let Tσ = Tσ̃ . Then there exists
a common switching time tS withσ (t−S ) ̸= σ̃ (t−S ) orσ (t+S ) ̸= σ̃ (t+S ).
Let i, j, p, q be as in (9). As x(x0,σ )(tS) ̸= 0, (7) implies

y[2n]
(x0,σ )(t

−

S ) ̸= y[2n]
(̃x0,σ̃ )(t

−

S ) ∨ y[2n]
(x0,σ )(t

+

S ) ̸= y[2n]
(̃x0,σ̃ )(t

+

S ).

Thus the system is σ1-observable. □

Condition (7) also appears in Johnson, DeCarlo, and Žefran
(2014) as a characterization of what those authors call ST-
observability. The main difference to our approach is that observ-
ability of the individual modes i, j, p is assumed there.

Remark 9. Vidal et al., (2003) chose a different approach for
observability of systems with nonconstant switching signals. They
required for all i ̸= j:

rk
[
O

[2n]
i O

[2n]
j

]
= rkO

[2n]
i + rkO

[2n]
j , (10)

which guarantees that one can determine the current modewhen-
ever the output is nonzero. Together with tS-observability, this
gives thatmode and state can be determinedwhenever the switch-
ing signal is nonconstant and the initial state is nonzero. This
means that (10) and tS-observability imply (x, σ1)-observability.
The reverse is not true, as the first part of Example 6 shows.

Clearly, (x, σ1)-observability works also for systems with more
than one switch, but then each switching instant is treated in-
dependently of the others (analogously as for (x, σ )-observability
each mode is treated independently of the others). If we restricted
our attention to systems with at least two (or more generally at
least k) switches and defined (x, σk)-observability accordingly, one
would get even weaker conditions than (7). However, these condi-
tions would then depend on the differences of the switching times,
i.e. the duration times. It is questionable whether these weaker
observability notions are really relevant in praxis and whether the
technical effort to find corresponding characterizations is justified.

The results of this section for homogeneous linear switched
systems are summarized in the left column of Fig. 1 and Example 6
shows that the converse implications do not hold in general.

3. Inhomogeneous systems

For unswitched systems or switched systems with known
switching signal the system dynamics are known and thus the out-
put’s dependence on the input can be computed a priori; it is there-
fore common to restrict the analysis to homogeneous systems. For
unknown switching signals this reduction to the homogeneous
case is not possible, because the effect of the input on the output
depends on the switching signal.

There are several ways to generalize the observability notions
to inhomogeneous systems, depending on the treatment of the
inhomogeneity. We consider strong observability notions, i.e. we
require the system to be tS-/σ -/(x, σ )-/(x, σ1)-observable for all
inputs. Other approaches are that one requires the existence of an
input that makes the system observable (weak notion) or requires
observability for almost all inputs. This generic notion actually
coincides with the weak one, see Babaali and Pappas (2005). The
literature focuses on theweak or the generic case, see e.g. De Santis
and Di Benedetto (2016) and Baglietto, Battistelli, and Scardovi
(2007) and we are not aware of available results for strong observ-
ability notions.

We consider the switched system

ẋ = Aσ x + Bσu, x(0) = x0, (11a)
y = Cσ x + Dσu, (11b)

Fig. 3. For u and x0 the solutions of Example 11 are the same for the switching
signals σ and σ̃ .

with matrices Ai ∈ Rn×n, Bi ∈ Rn×q, Ci ∈ Rp×n, Di ∈ Rp×q for
i ∈ P . Solutions and outputs are denoted by x(x0,σ ,u) and y(x0,σ ,u),
respectively. In order to define suitable observability notions we
make the following two assumptions:

u analytic, (A1)

ker

[ Bi
Bj

Di − Dj

]
= {0} ∀i ̸= j. (A2)

Definition 10. Consider the switched system (11) satisfying (A2).
Thenwe define (11) to be strongly (x, σ )-/σ -/(x, σ1)-/tS-observable
iff the analogous conditions of Definitions 1 and 7hold for all inputs
u satisfying (A1).

Analogously to Lemma 2 it can be shown that strong (x, σ )-
observability is equivalent to strong σ -observability.

We have seen in the homogeneous case that a zero state trajec-
tory makes it impossible to observe the switching signal because
y(0,σ ) ≡ 0 for all σ ; this problem was easily resolved by excluding
the initial state zero. In the inhomogeneous case this is not suffi-
cient as the following two examples show; in fact, these examples
show that without (A1) and (A2) a zero state trajectory is possible
on some interval even for nonzero initial values.

Example 11. Consider the system (11) with modes

(A1, B1, C1,D1) :=

([
0 0
0 0

]
,

[
1
0

]
,

[
1 0
0 1

]
,

[
0
0

])
,

(A2, B2, C2,D2) :=

([
1 0
0 1

]
,

[
0
0

]
,

[
1 0
0 1

]
,

[
0
0

])
,

(A3, B3, C2,D3) :=

([
2 0
0 2

]
,

[
0
0

]
,

[
1 0
0 1

]
,

[
0
0

])
.

This means that assumption (A2) does not hold. Define x0 :=[
1 0

]⊤, u(t) := −
2
π
cos

(
π
2 t

)
and

σ (t) :=

{1, t < 1,
2, 1 ≤ t < 2,
1, t ≥ 2,

σ̃ (t) :=

{1, t < 1,
3, 1 ≤ t < 2,
1, t ≥ 2.

Then x(x0,σ ,u)(1) = x(x0,σ̃ ,u)(1) =

[
0
0

]
and thus x(x0,σ ,u)(t) =

x(x0,σ̃ ,u)(t) =

[
0
0

]
for t ∈ [1, 2]. Hence the switching signals cannot

be distinguished for this particular choice of input. This example is
illustrated in Fig. 3.

The second example showswhat can happenwhen assumption
(A1) is not satisfied.

Example 12. Consider the system (11)withmode (A1, B1, C1,D1) =

(0, 2, 1, 0) and some other, not further specified mode 2. For a
given x0 and σ ≡ 1 one can choose a smooth input u with
supp(u) = [0, 1] ∪ [2, 3] such that x(x0,σ ,u) is zero on the interval
[1, 2]. Thismeans that σ[1,2) has no effect on the solution and hence
the systemcannot be tS-observable or even (x, σ )-observable. Such
a u is clearly non-analytic. In contrast to the previous example, no
switch is required to achieve an interval with zero state, see Fig. 4.
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Fig. 4. In Example 12 the value of σ in the interval [1, 2] does not have any effect
on the solution as the state is zero.

For a characterization of strong (x, σ )-observability we need
to define Γ [ν] corresponding to the unswitched inhomogeneous
system

Σ :
ẋ = Ax + Bu,
y = Cx + Du

by

Γ [ν]
=

⎡⎢⎢⎢⎢⎣
D

CB
. . .

...
. . .

. . .

CAν−2B · · · CB D

⎤⎥⎥⎥⎥⎦
with ν block rows and block columns. Γ [∞] denotes the corre-
sponding infinite matrix. Note that any solution (x, u, y) of the
unswitched system Σ satisfies for any ν ∈ N:

y[ν]
= O[ν]x + Γ [ν]u[ν].

Wewould like to recall the notion of unknown-input observability
for unswitched systems:

Definition 13. The systemΣ is unknown-input (ui-) observable1 iff
y ≡ 0 implies x ≡ 0 (independently of the input u).

A system Σ is ui-observable iff

rk
[
O[n] Γ [n]]

= n + rkΓ [n],

or, equivalently,

rk
[
A − sI B

C D

]
= n + rk

[
B
D

]
∀s ∈ R,

see Kratz (1995) and Hautus (1983), respectively. This means that
the system is ui-observable iff it has no zeros (in the sense of
Hautus, 1983).

Applying this characterization on the augmented system Σi,j,
i, j ∈ P:

Σi,j :
ξ̇ =

[
Ai 0
0 Aj

]
ξ +

[
Bi
Bj

]
u,

y∆i,j =
[
Ci −Cj

]
ξ +

(
Di − Dj

)
u,

we can conclude that Σi,j is ui-observable if and only if

rk
[
O

[2n]
i O

[2n]
j Γ

[2n]
i − Γ

[2n]
j

]
= 2n + rk

(
Γ

[2n]
i − Γ

[2n]
j

)
. (12)

If (12) holds for all i ̸= j, one can determine mode and state of
the system as long as the state is nonzero. This has already been
shown by Lou and Si (2009). By requiring (A1), (A2) and x0 ̸= 0 we

1 Hautus (1983) uses the notion strong observability; however, we follow instead
the naming convention from Basile and Marro (1973) in order to avoid confusing
with our strong observability notion for switched systems (where we still assume
that the input is known).

can guarantee that on any interval the state is not constantly zero
or themode can be uniquely determined by the direct feedthrough.
Hence we have

Lemma14 (cf. Lou and Si, 2009). System (11) satisfying (A1) and (A2)
is strongly (x, σ )-observable if and only if (12) holds for all i, j ∈ P ,
i ̸= j.

For the characterization of tS-observability, the following no-
tion will be essential:

Definition 15 (Trentelman, Stoorvogel, and Hautus, 2001). The set
of controllable weakly unobservable states of the system Σ is

R(Σ) :=

{
x0 ∈ Rn

⏐⏐⏐⏐ ∃ u(·) smooth, T > 0 :

y(x0,u) ≡ 0 and x(x0,u)(T ) = 0

}
.

Note that one obtains the same set if we restrict the inputs to
be analytic. Furthermore, R(Σ) = {0} if, and only if,

rk
[
A − sI B

C D

]
= n + rk

[
B
D

]
,

for all but finitely
many s ∈ R,

see Trentelman et al. (2001).

Lemma 16. Let (11) satisfy (A1), (A2) and

R
(
Σi,j

)
= {0} for all i ̸= j. (13)

Let (x0, x̃0) ̸= (0, 0), u and σ , σ̃ be given with σ (T+) ̸= σ̃ (T+)
and x(x0,σ ,u)(T ) = x(̃x0,σ̃ ,u)(T ) = 0 for some T > 0. Then y(x0,σ ,u) ̸≡

y(̃x0,σ̃ ,u).

Proof. As a nonzero state is steered to a zero state, the input u
cannot be zero. Using (A1), this means that u is nonzero on any
interval.

LetI := [T , T +ε], ε > 0, be an interval with σ and σ̃ constant.
Set i := σ (T+) and j := σ̃ (T+). If Biu ≡ Bju ≡ 0 on I , (A2) implies
Diu ̸≡ Dju on I , hence y(x0,σ ,u) ̸≡ y(̃x0,σ̃ ,u).

Thus let Biu ̸≡ 0 or Bju ̸≡ 0 on I . This means that for some
t̂ ∈ I we have (x1, x̃1) :=

(
x(x0,σ ,u)(t̂), x(̃x0,σ̃ ,u)(t̂)

)
̸= (0, 0).

y(x0,σ ,u) ≡ y(̃x0,σ̃ ,u) on I would imply (x1, x̃1) ∈ R(Σi,j), hence the
outputs have to be different. □

Lemma 17. Consider the switched system (11) satisfying (A1) and
(A2). Then (11) is strongly tS-observable if, and only if, (13) holds and,
for all i ̸= j,

rk
[
O

[2n]
i −O

[2n]
j Γ

[2n]
i −Γ

[2n]
j

]
= n+rk

(
Γ

[2n]
i −Γ

[2n]
j

)
. (14)

Proof. Necessity of (13): Assume there exists
[
x0
x̃0

]
∈ R(Σi,j) \ {0}.

This means that there exists an analytic input u and a time tS > 0
such that

y(x0,i,u) ≡ y(̃x0,j,u) ∧ x(x0,i,u)(tS) = x(̃x0,j,u)(tS) = 0. (15)

Both y(x0,i,u) and y(̃x0,j,u) are analytic. Define σ ≡ i and

σ̃ (t) =

{
i, t < tS,
j, t ≥ tS .

(16)

Then y(x0,σ ,u) and y(x0,σ̃ ,u) coincide on (−∞, tS) by definition and on
[tS, ∞) by (15). Hence for this specific initial value and input it is
not possible to detect a switch from mode i to mode j at time tS .

Assume that (14) does not hold for some i ̸= j, i.e. there
exist some x1 ̸= 0 and U with O

[2n]
i x1 + Γ

[2n]
i U = O

[2n]
j x1 +

Γ
[2n]
j U . In particular, (12) does not hold (as the nonzero vector[
x⊤

1 −x⊤

1 U⊤
]⊤ lies in the kernel of the matrix on the left hand

side). Hence by Lemma 14 there exists some input ûwith y(x1,i,û) ≡
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y(x1,j,û). Now let tS > 0, u(·) := û(· − tS), σ ≡ i, σ̃ as in (16) and x0
such that x(x0,σ ,u)(tS) = x1. By construction of σ and σ̃ , y(x0,σ ,u) and
y(x0,σ̃ ,u) coincide on (−∞, tS). Due to y(x1,i,û) ≡ y(x1,j,û), they also
coincide on [tS, ∞). Hence the system is not strongly tS-observable.

To show sufficiency of (13) and (14) for strong tS-observability,
consider x0 ̸= 0, u and σ with switching time tS . Let x̃0 and σ̃ be
given with tS ̸∈ Tσ̃ . As we want to show that the outputs of these
solutions differ in an neighborhood of tS , it suffices to consider
Tσ = {tS} and σ̃ constant. This means that y(̃x0,σ̃ ,u) is analytic.
Eq. (14) gives that for x(x0,σ ,u)(tS) ̸= 0 we have y[2n]

(x0,σ ,u)(t
−

S ) ̸=

y[2n]
(x0,σ ,u)(t

+

S ), hence y(x0,σ ,u) ̸≡ y(̃x0,σ̃ ,u). Now let x(x0,σ ,u)(tS) = 0, then
y(x0,σ ,u) ≡ y(̃x0,σ̃ ,u) would imply that y(x0,σ ,u) is analytic, i.e. that it
coincides with y(x0,σ̂ ,u) for σ̂ (t) = σ (t−S ) ∀t . Now Lemma 16 gives
a contradiction to y(x0,σ ,u) ≡ y(x0,σ̂ ,u). □

Remark 18. Regarding (13) we observe the following:

(i) In Elhamifar et al. (2009) strong tS-observability is character-
ized for discrete time switched systems in terms of (14), but
condition (13) does not occur. The reason is due to stronger
assumptionmade in Elhamifar et al. (2009)which are specific
to the discrete time set up; in particular, they require that
each individual mode is observable.

(ii) The conditions (13) and (14) of strong tS-observability are
indeed not related. Consider for example the system given
by

(A1, B1, C1,D1) = (0, 1, 2, 0) ,

(A2, B2, C2,D2) = (0, 2, 1, 0) ,

which satisfies (14) but not (13). On the other hand (13) holds
for any system with Bi = 0 for all i ∈ P , hence it does not
imply (14) in general.

(iii) (13) does not implyR(Σi) = {0} for the individual modes. As
an example, consider the system (11) with modes

(A1, B1, C1,D1) = (0, 1, 0, 0) ,

(A2, B2, C2,D2) = (0, 1, 1, 0) .

It is strongly tS-observable, in particular, R(Σ1,2) = {0}.
However, for the first mode we have R (Σ1) = R.

(iv) (13) and (14) are indeed weaker than (12): The example
from (iii) is strongly tS-observable, but not strongly (x, σ )-
observable as O1 = 0.

Theorem 19. The switched system (11) satisfying (A1) and (A2) is
strongly (x, σ1)-observable if and only if it satisfies (13) and, for all
i, j, p, q ∈ P with i ̸= j, p ̸= q and (i, j) ̸= (p, q)

rk

[
O

[4n]
i O[4n]

p Γ
[4n]
i −Γ [4n]

p

O
[4n]
j O[4n]

q Γ
[4n]
j −Γ [4n]

q

]

= 2n+rk

[
Γ

[4n]
i −Γ [4n]

p

Γ
[4n]
j −Γ [4n]

q

]
. (17)

Here the order of the observability matrix is doubled with
respect to the previous results. If we only considered ν = 2n, a
vector U as in the proof of Lemma 17 might be related to different
inputs u and ũ on the pre-switch interval and post-switch interval.

Again, the statement can be related to ui-observability of an
augmented system: (17) is a necessary – but not sufficient – con-
dition for ui-observability of the system Σi,j,p,q defined by

Ai,j,p,q =

[
Ai,p 0
0 Aj,q

]
, Bi,j,p,q =

[
Bi,p
Bj,q

]
,

Ci,j,p,q =

[
Ci,p 0
0 Cj,q

]
, Di,j,p,q =

[
Di,p
Dj,q

]
.

Proof of Theorem 19. ‘‘(13) and (17) ⇒ strong tS-observability’’:
From (17) with p = j, q = i and i ̸= j, we can conclude (14). Then
the claim follows by Lemma 17.

‘‘Strong (x, σ1)-observability ⇒ (13)’’: Follows by Lemma 17 as
strong tS-observability is necessary for strong (x, σ1)-observability.

‘‘Strong (x, σ1)-observability ⇒ (17)’’: Assume that (17) does
not hold for some i, j, p, q, i.e. there exist

(
x1, x̃1

)
̸= (0, 0) and U

such that[
O

[4n]
i O[4n]

p Γ
[4n]
i − Γ [4n]

p

O
[4n]
j O[4n]

q Γ
[4n]
j − Γ [4n]

q

][ x1
−x̃1
U

]
=

[
0
0

]
.

We get that Σi,j,p,q is not strongly observable, i.e. for the initial
value η1 :=

[
x⊤

1 x̃⊤

1 x⊤

1 x̃⊤

1

]⊤ and some ûwith û[4n](0) = U we
have y∆i,j,p,q ≡ 0, i.e. y(x1,i,û) ≡ y(̃x1,p,û) and y(x1,j,û) ≡ y(̃x1,q,û). Define
σ and σ̃ as in (9) for some tS > 0 and let u(·) := û(· − tS). Let x0
and x̃0 be such that x(x0,σ ,u)(tS) = x1 and x(̃x0,σ̃ ,u)(tS) = x̃1. Then we
get y(x0,σ ,u) ≡ y(̃x0,σ̃ ,u), i.e. (11) is not strongly (x, σ1)-observable.

‘‘(13) and (17) ⇒ strong σ1-observability’’: Let x0, x̃0, σ , σ̃ and u
be given with x0 ̸= 0, σ nonconstant and σ ̸≡ σ̃ . Wewant to show
that this implies y(x0,σ ,u) ̸≡ y(̃x0,σ̃ ,u). Assume Tσ = Tσ̃ as otherwise
tS-observability – which we have by the first step – would yield
y(x0,σ ,u) ̸≡ y(̃x0,σ̃ ,u). Then there exists a common switching time tS
with σ (t−S ) ̸= σ̃ (t−S ) or σ (t+S ) ̸= σ̃ (t+S ). Define x1 := x(x0,σ ,u)(tS) and
x̃1 := x(̃x0,σ̃ ,u)(tS). Condition (17) implies that only for (x1, x̃1) =

(0, 0) we can have

y[4n]
(x0,σ ,u)(t

−

S ) = y[4n]
(̃x0,σ̃ ,u)(t

−

S ) ∧ y[4n]
(x0,σ ,u)(t

+

S ) = y[4n]
(̃x0,σ̃ ,u)(t

+

S ).

However, in this case Lemma 16 already implies y(x0,σ ,u) ̸≡ y(̃x0,σ̃ ,u).
As in Lemma 2, we have equivalence of strong σ1- and strong
(x, σ1)-observability. □

4. Equivalent switching signals

In the previous section we have highlighted the problem that
the switching signal cannot be determined when state and input
are identically zero on an interval. This problem was avoided by
making the assumptions (A1) and (A2). We can consider smooth
instead of analytic input and can drop (A2) if we consider equiva-
lence classes of switching signals:

Definition 20. For given x0 ∈ Rn and u : R → Rp the
switching signals σ and σ̃ are equivalent for the switched system
(11), denoted by σ

x0,u
∼ σ̃ , iff x(x0,σ ,u) ≡ x(x0,σ̃ ,u), y(x0,σ ,u) ≡ y(x0,σ̃ ,u)

and σ = σ̃ , except on intervals I with
(
x(x0,σ ,u)

)
I

= 0. The
corresponding equivalence class is denoted by

[
σ(x0,u)

]
:=

{
σ̃

⏐⏐⏐ σ̃
x0,u
∼ σ

}
,

and the essential switching times are given by

T[σ(x0,u)] :=

⋂
σ̃
x0,u
∼ σ

Tσ̃ .

A similar equivalence has been considered in Kaba (2014) in the
context of invertibility of switched systems.

For u analytic, (x0, u) ̸= (0, 0) and systems satisfying (A2) we
have [σ(x0,u)] = {σ }, i.e. trivial equivalence classes.

Adaption of Definition 10 to equivalence classes of switching
signals gives the following:

Definition 21. The system (11) is called

– strongly (x, [σ ])-observable iff for all smooth u and all x0, x̃0,
σ , σ̃ the following implication holds:(
x0,

[
σ(x0,u)

])
̸=

(̃
x0,

[
σ̃(̃x0,u)

])
⇒ y(x0,σ ,u) ̸≡ y(̃x0,σ̃ ,u); (18)
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– strongly (x, [σ1])-observable iff (18) holds for all smooth u and
all x0, x̃0, σ , σ̃ with

1 ≤ min
{

|Tσ̂ |

⏐⏐⏐ σ̂
x0,u
∼ σ

}
;

– strongly [tS]-observable iff for all smooth u and all x0, x̃0, σ , σ̃
the following implication holds:

T[σ(x0,u)] ̸= T[σ̃(̃x0,u)] ⇒ y(x0,σ ,u) ̸≡ y(̃x0,σ̃ ,u);

One can also define strong [σ ]- and strong [σ1]-observability.
Lemma 2 holds accordingly. While the setup is more general, the
same characterizations hold:

Theorem 22. The system (11) is strongly [tS]-/(x, [σ1])-/(x, [σ ])-
observable if and only if, the conditions (13) + (14), (13) + (17), (12)
are satisfied, respectively (c.f. Fig. 1).

For the proof we need a new version of Lemma 16:

Lemma 23. Let σ , σ̃ , x0, x̃0 and u smooth be given such that tS ∈

T[σ(x0,u)] \ T[σ̃(̃x0,u)] and x(x0,σ ,u)(tS) = x(̃x0,σ̃ ,u)(tS) = 0 for the solutions
of (11). Then (13) implies y(x0,σ ,u) ̸≡ y(̃x0,σ̃ ,u).

Proof of Lemma 23. If the conditions for equivalent switching
signals were satisfied on the interval I := (tS − ε, tS + ε) for some
ε > 0, we had tS ̸∈ T[σ(x0,u)] \ T[σ̃(̃x0,u)]. Thus y(x0,σ ,u) ̸≡ y(̃x0,σ̃ ,u) on I

or x(x0,σ ,u) ̸≡ x(̃x0,σ̃ ,u) onI . Assume that ε > 0 is small enough such
that σ and σ̃ are constant on (tS − ε, tS), (tS, tS + ε). Assume that
y(x0,σ ,u) ≡ y(̃x0,σ̃ ,u) on I . As x(x0,σ ,u) and x(̃x0,σ̃ ,u) coincide for t = tS ,
x(x0,σ ,u) ̸≡ x(̃x0,σ̃ ,u) on I implies that there exists a T ∈ I with
σ (T ) ̸= σ̃ (T ) and (x1, x̃1) :=

(
x(x0,σ ,u)(T ), x(̃x0,σ̃ ,u)(T )

)
̸= (0, 0).

Thenweget (x1, x̃1) ∈ R
(
Σσ (T ),σ̃ (T )

)
, i.e. a contradiction to (13). □

Proof of Theorem 22. First of all, note that the arguments for
necessity of (12), (13), (14) and (17) apply also in this setup. Also,
Lemma 2 holds accordingly.

‘‘Sufficiency, strong [σ ]-observability’’: Let [σ(x0,u)] ̸= [σ̃(̃x0,u)].
Then there exits a time t such that y(x0,σ ,u)(t) ̸= y(̃x0,σ̃ ,u)(t) or(
x(x0,σ ,u)(t), x(̃x0,σ̃ ,u)(t)

)
̸= (0, 0). In the latter case, (12) gives

y(x0,σ ,u)(t) ̸= y(̃x0,σ̃ ,u)(t).
‘‘Sufficiency, strong [tS]-observability’’: The proof is similar to

the one in the previous section. For x(x0,σ ,u)(tS) ̸= 0 we use (14),
for x(x0,σ ,u)(tS) = x(̃x0,σ̃ ,u)(tS) = 0 we can use Lemma 23. Now let
x(x0,σ ,u)(tS) = 0 and x(̃x0,σ̃ ,u)(tS) ̸= 0. We can use (14) to obtain
y(x0,σ ,u) ̸≡ y(̃x0,σ̃ ,u) or x(̃x0,σ̃ ,u) ∈ kerOσ̃ (tS ), which can be put down
to the case x(̃x0,σ̃ ,u)(tS) = 0.

‘‘Sufficiency, strong [σ1]-observability’’: We can assume that
σ and σ̃ have the same essential switching times, as else strong
[tS]-observability implies that the corresponding outputs differ. If
there is a switch with σ (t−S ) ̸= σ̃ (t−S ) or σ (t+S ) ̸= σ̃ (t+S ) and
nonzero state, (17) gives that the outputs differ. If all switcheswith
σ (t−S ) ̸= σ̃ (t−S ) or σ (t+S ) ̸= σ̃ (t+S ) occur for zero states, one can
show (similar to the proof of Lemma 23) that [σ(x0,u)] = [σ̃(̃x0,u)] or
y(x0,σ ,u) ̸≡ y(̃x0,σ̃ ,u). □

5. Conclusion

Switching time observability and switch observability were
introduced and characterized by rank-conditions. The relation of
these notions is illustrated in Fig. 1. A possible future research topic
is the extension to the case of switched differential-algebraic equa-
tions (DAEs); we already have obtained some preliminary results
in Küsters, Patil, and Trenn (in press); Küsters, Trenn, and Wirsen
(in press). Based on the notion of strong (x, σ1)-observability, an-
other future research topic is the construction of an observer; some
preliminary results have been presented in Küsters, Trenn, and
Wirsen (in press).
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