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Abstract

A family of switched systems is exponentially stable if there exists positive constants
M and X such that the solution at time ¢ satisfies an estimate of the following
kind |z(t)] < Me *|z(0)], for all possible switching sequences. Clearly exponential
stability implies attractivity of the origin; we show that for homogeneous systems
(and as a special case for linear systems) the converse implication is also true.
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1 Introduction and basic definitions

The study of switched systems is a fastly growing area of research in control
theory. Informally a switched system is a dynamical system which is able to
commute between different behaviours according to some external input vari-
able, which we will in the following refer to as switching signal. The practical
relevance of this wide class of systems has been often emphasized, see for in-
stance [4] for a recent and very interesting survey on the subject. On the other
hand, many challenging theoretical questions which arise in this area are still
waiting for an answer.

From a mathematical point of view a family of switched systems is a nonlinear
system of the following form

Sb:f(x,U) (1)
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with state x evolving in R". The exogenous input o ( the switching signal ),
plays the role of a time-varying uncertain parameter of the system. In order to
guarantee existence of solutions we assume o(-) : Ryg — X to be a measurable
function taking values in some compact set ¥. For simplicity in the following
we will think of ¥ as a finite set although the main results carries over to more
general compact sets, provided that some continuity assumption is made on
f as a function of 0. The homogeneity assumption refers to the dependence
of f on z; in particular f satisfies

VAS>O0,VzeR* Vo €S  f(Az,0) = M\ (z,0). (2)

We also assume that f satisfies some uniform Lipschitzianity assumption

1f(21,0) = f(2,0)[| < M[zy = zof| Va2, €R", Voe X (3)

We remark that, because of compactness of ¥ and homogeneity of f this is
not stronger than the usual local Lipschitzianity condition used in order to
guarantee existence and unicity of classical solutions for (1).

One major instance of the previous class of systems is clearly represented by
linear switched systems

T = ®,z, o€l (4)

In the area of robust control, the stability of a family of linear systems is usu-
ally studied employing common quadratic Lyapunov functions whose expres-
sion can be determined solving an LMI. It is well known that the existence of a
common Lyapunov function is a necessary and sufficient condition for stability
of 1 under arbitrary switchings, [5], however, quadratic Lyapunov functions
are not universal, not even for linear systems, meaning that there might be
stable families of systems for which no common quadratic Lyapunov function
exists, [3]. Nevertheless, it was shown in [6] that a Lyapunov function of the
following kind always exists

V(z) = max(viz)* (5)

where v; € R" are constant vectors, but the question of how to build such
Lyapunov functions in general is still open.

In this paper we investigate the stability properties of homogeneous, switched
systems; in particular we will show equivalence between all reasonable defini-
tions of asymptotic stability. In the following x(¢, £, o) will denote the response
at time ¢, to the input signal ¢ and initial condition &. It is straightforward to



see from (2) that (1) is forward complete and hence solutions are unique and
maximally defined over [0, +00).

Definition 1.1 We say that system (1) is exponentially stable if there exists
positive constants M and A such that

lz(t,&,0)| < Me™™ €] VYt >0, VE € R, Vo € My, (6)

O

Definition 1.2 We say that system (1) is uniformly globally asymptotically
stable if there exists a KL function [ such that the following estimate holds

z(t,&,0)| < B(¢], 1) V=0, VE€R", Vo € Ms. (7)

|

Both stability notions are uniform with respect to o, since the switching signal
does not affect the speed of convergence of the system to 0. It is also of interest
the following, apparently weaker, notion of attractivity.

Definition 1.3 We say that system (1) is attractive if

VEER", Yo € Ms,  lim_ [¢(t,€,0)| =0 (8)

2 Main result

With the definitions given in the previous section we are ready to state the
main result of the paper, which was recently conjectured in [3] .

Theorem 1 Consider the family of switched systems in equation (1); let (2)
be satisfied, then the following facts are equivalent

(1) system (1) is exponentially stable
(2) system (1) is uniformly globally asymptotically stable
(3) system (1) is attractive.
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Remark 2.1 We remark that by virtue of (2), local stability properties are
equivalent to global ones. In particular then, by the previous theorem at-
tractivity in a neighborhood of the origin is equivalent to global exponential
stability. O

The proof, which we discuss in the following section, heavily relies on a pow-
erful technical lemma which was proved by Eduardo Sontag and Yuan Wang
in a recent paper concerning Iss, [7].

3 Proof of the main result

Some of the implications, in particular 1 = 2 = 3, are straightforward from
the definition. The homogeneity assumption clearly comes in when proving
the converse implications. Let us start from the easier one, 2 = 1, which
was already stated without proof in [6]. Let £ € R™ be such that || =
and (3 be as in (7). By definition of class KL function there exists T such
that 3(1,T) < 1/2. Let M = 23(1,0) and A = log(2)/T. We claim that
(6) holds with M and A defined above. In order to see this, recall that for
homogeneous systems x(t, A&, o) = Ax(t, €, 0), for all A > 0. Since all estimates
hold independently of the particular switching signal and in order to keep the
notation simple we drop the dependence of x on o. Hence, for arbitrary £k € N
we have,

(T, 6)| = |a(T, x((k — VT, £)| ]
< Je((k ~ DT, €)IBLT) < la((k — DT E)|/2. 9)

By induction, |z(kT,€)| < |€]/2F = e *T|¢|. Let ¢ belong to [(k — 1)T, kT)
for some k € N, then we have

j(t, )= |a(t = (k = )T, =((k — DT, ))|
< Ja((k = DT, €)8(1,0) < e *"DT5(1,0)1¢] < 26(1, 0)e™|g]L0)

We now turn to the most interesting implication, 3 = 2. We define the set of
reachable states in time 7', starting from initial conditions is some compact
K CR" as

RYK)={zeR": I €K, Jo € My, I €[0,T]:x =x(t,&0)}. (11)

Further, we let R(K) be the set of states reachable from K for arbitrary time

K) = {J RY(K). (12)
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It is again a consequence of (2) that RT(AK) = ART(K) for any positive .
For a given set S and input u one may consider the “first crossing time”,

T(f,S,u):inf{t>0: z(t, &, u) ES}. (13)

Let € > 0 be arbitrary; we define the set C. as
ng{meR" re < |z §25}. (14)
and B. the closed ball of radius . Clearly, if R(C.) is bounded, R(B.) is also

bounded; in particular we have [|R(B.)|| < [|R(C:)||. We will show that, for
attractive systems, R(C.) is bounded. In particular, we have

VEel, Voe My F>0: x(t,&,0) € B (15)

By Corollary IIL.3 of [7], we have that

T.= sup 7(§B.,0) < +oo. (16)
¢eCe,0eEMs,

Since, for a forward complete family of systems, the set of reachable states in
bounded time from bounded initial conditions is bounded,[1], we have that

IR(B]| < IIR(C.)] < R (C.)

= 0. < 400 (17)

Notice that, without using assumption (2) we proved that attractivity implies
uniform Lagrange stability, viz.

Ve> 0,30, 6| <5 = ot & 0) <6, W0, Yo().  (18)
It turns out that for homogeneous systems, this is equivalent to uniform Lya-

punov stability. In fact,

Ve >0, [§| < e = |u(t, & o) = [€lle(t. &/[€l, o) < edr VE=0, Vo()(19)

and hence,
Ve > 0, Elg& = 5/51 : |€| < gs = |x(t7570—)| <e, Vi > 0, VO'() (20)
Thus the main result follows from Theorem 2 in [7], where it is shown that

uniform Lyapunov stability plus attractivity are equivalent to uniform global
asymptotic stability.



4 An example of transition from stability to instability

In order to see how the result in the previous sections is not obvious even for
very simple switched systems, consider the following parameterized family of
linear switched systems:

&= ®,(0)x, o€ {l1,2} (21)
with
-1 0 -1 0
®,(0) = Dy (0) = ) (22)
0-—1 0 —1

with 6, a parameter varying in [0, 2]. Both systems are asymptotically stable,
moreover, for all # in [0,2) we have:

B(0) + B,(0) = Bo(0)' + D(6) < 0. (23)

Hence, ®;(0) and ®,(#) admit the identity as a common Lyapunov function
and the resulting switched system is quadratically stable. For # = 2, how-
ever, it is not difficult to see that the system (21) fails to be exponentially
stable; a necessary condition for exponential stability is in fact that all convex
combination of the ®;s be such. In this case instead

1 1 -1 1
—(1)1 + —(bg - y (24)
22 1-1

which has a zero eigenvalue, corresponding to the eigenvector vy = [1,1]". It is
not obvious instead, without making use of Theorem 1, how to show that the
system is not attractive. As a matter of fact, taking as a Lyapunov function
V(z) = 2’z one easily obtains

V(r)=22'0x = —2([1,-1]z)> <0  i=1,2. (25)

Thus z(t)'z(t) < 2(0)z(0) and [1, —1]z € Lo. Besides, deriving the quantity
([1, —1]x)? along trajectories of (21) yields
d

(e —1]a)* = £2([1, ~1]2)([1, 1]o) — 4([1, —1]2)* (26)



where + or — is obtained according to which value o assumes. Since [1, 1]z is
uniformly bounded, and [1, —1]z € Ly we have that [1, —1]z — 0.

One might even be brought to think, by the above considerations, that (21)
be attractive; the only source of instability comes from the fact that solutions
of the linear system & = (®; + ®5)x/2 can be approximated, arbitrarily close,
switching between ®; and ®,, for equally long time intervals. Thus one is
tempted to conjecture that exponential stability is violated because there is
not a uniform estimate of the rate of convergence to zero, even though non-
converging trajectories would only show up in the limit, viz. for an infinite
frequency switching between ®; and ®,, (for instance taking into account
Filippov solutions). As a matter of fact, the relaxation theorem only ensures
approximation of Filippov solution by classical ones on compact time intervals,
which would not exclude in principle the possibility of having attractivity,
(see [2]). Theorem (1) clearly indicates that this is not the case and that non
convergent trajectories of (21) exist also taking into account only classical
solutions.

5 Conclusions

Equivalence between attractivity and global exponential stability for homo-
geneous switched systems is shown. This makes, for the considered class of
systems, all definitions of asymptotic stability equivalent except for the no-
tion of quadratic stability which is already known to be strictly stronger than
standard asymptotic stability. The result turned out to be a direct consequence
of a general result proven in [7]. The transition from stability to instability of
a simple switched linear system is also illustrated with an example.
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