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ABSTRACT
Hybrid dynamical systems have proven to be a powerful

modeling abstraction, yet fundamental questions regarding

the dynamical properties of these systems remain. In this

paper, we develop a novel class of relaxations which we use

to recover a number of classic systems theoretic properties

for hybrid systems, such as existence and uniqueness of tra-

jectories, even past the point of Zeno. Our relaxations also

naturally give rise to a class of provably convergent numer-

ical approximations, capable of simulating through Zeno.

Using our methods, we are also able to perform sensitivity

analysis about nominal trajectories undergoing a discrete

transition – a technique with many practical applications,

such as assessing the stability of periodic orbits.
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1 INTRODUCTION
While hybrid dynamical systems have proven to be a highly

expressive modeling framework, the �exibility they provide

does not come without its challenges. Despite considerable

e�orts to extract classic systems theoretic properties from

hybrid systems in works such as [16] and [13], fundamen-

tal questions regarding even the existence and uniqueness

of their executions abound, as the interplay between their

discrete and continuous dynamics is not fully understood.

Perhaps the most notable phenomena unique to hybrid

systems, Zeno executions [18] arise when an in�nite number

of discrete transitions occur in a �nite amount of time. In

order to accommodate Zeno trajectories into theoretical and

computational frameworks, a number of techniques have

been proposed. In [8], the authors propose techniques to

regularize hybrid systems in time or space, which prevent

an in�nite number of transitions from occurring. Yet they

are able to prove convergence for their relaxations only for

Zeno executions which accumulate to a single point. In

[3], the authors extend this proof of convergence to the

numerical se�ing. Alternatively, the authors in [14] go to

great lengths to identify Zeno executions, and replace them

with executions of a reduced order dynamical system, in

order to avoid directly handling Zeno. �e authors are able

to extend simulations past the point of Zeno in some cases,

but the results only hold for mechanical systems.

Even if we disregard the pathologies introduced by Zeno

executions, a number of theoretical and practical challenges

remain to fully understand the executions of hybrid systems.

�e trajectories of hybrid systems may be discontinuous

with respect to inputs and initial conditions [13], and in such

cases may not be faithfully approximated in the numerical

se�ing. Indeed, many works focussed on numerical integra-

tion for hybrid systems such as [3] and [5] make restrictive

assumptions about the trajectories being simulated to accom-

modate this obstacle, and require that timesteps be placed in

small neighborhoods around discrete events.

Taking steps to overcome these limitations, we introduce a

novel relaxation scheme for hybrid dynamical systems. First,

we demonstrate how to reduce a discrete jump of a hybrid

system to the execution of a switched system. �is enables

us to use the solution concept of Filippov [6] to de�ne closed

form solutions for some Zeno executions of our hybrid sys-

tems. We then extend the procedure presented in [11] to

regularize this collection of switched systems, which recover

the sliding solutions of Filippov in the limit, and use the

resulting vector �elds to construct trajectories over our re-
laxed hybrid systems. To construct these relaxations we take

the approach of adding an epsilon-thick strip to each of our

guard sets as in [8], and endow our relaxed hybrid systems

with the topology from [3].

Using this framework we extend the state of the art in

several directions. Firstly, we use the limit of our relaxations

to construct a novel solution concept for hybrid systems,

wherein the trajectory generated by ever pair of initial con-

ditions and inputs is unique and well de�ned, even past the

point of Zeno. Secondly, our relaxation yields a provably

convergent numerical approximations, which can approx-

imate solutions past Zeno. Finally, we are able to perform

sensitivity analysis on the trajectories of our relaxations –

which has numerous practical applications, which we discuss

in our closing remarks.

2 FILIPPOV SOLUTIONS
We brie�y introduce the solution concept of Filippov [6] for

switched systems. Consider the bimodal switched system

depicted in Figure 1, where the domains D1, D2 ⊂ Rn are

separated by the plane G =
{
x ∈ Rn : д(x) = д̂Tx − c = 0

}
,
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Figure 1: A bimodal switched system with a represen-
tative trajectory x .

where д̂ ∈ Rn is a unit vector and c is a scalar. De�ning

D = D1 ∪D1, and an allowable set of inputsU , the dynamics

of the system are governed by f : D ×U → Rn where

f (x ,u) =
{
f1(x ,u), if x ∈ D1

f2(x ,u), if x ∈ D2,
(1)

and f1 : D1 ×U → Rn and f2 : D2 ×U → Rn are both contin-

uous but f may be discontinuous along G. In particular, we

align д̂ such that дe (x) ≤ 0, ∀x ∈ D1, and дe (x) ≥ 0, ∀x ∈ D2.

We may partition the set H = G × U into three dis-

tinct regions: the crossing region (Σc ), the sliding region
(Σs ), and the escaping region (Σes ). We characterize these

regions by Σc =
{
(x ,u) ∈ H :

(
д̂T f1(x ,u)

) (
д̂T f2(x ,u)

)
> 0

}
,

Σs =
{
(x ,u) ∈ H :

(
д̂T f1(x ,u)

)
> 0,

(
д̂T f2(x ,u)

)
< 0

}
, and

Σes =
{
(x ,u) ∈ H : д̂T f1(x ,u) ≤ 0, д̂T f2(x ,u) ≥ 0

}
.

When (x ,u) ∈ Σc , the trajectory x simply crosses from

one domain to the other. When (x ,u) ∈ Σs , both f1 and f2
are pointing into the surface G, con�ning the trajectory to

this set. One way to model trajectories in this regime is to

switch between the vector �elds f1 and f2 in�nitely fast –

i.e as a Zeno execution. However, Filippov solutions o�er

us another route to understand such systems. �e Filippov
sliding vector �eld for this system, f s : Σs → Rn , is given

by f s (x ,u) = (1 − α(x ,u))f1(x ,u) + α(x ,u)f2(x ,u), where

α : Σs → [0, 1] is de�ned by α(x ,u) = д̂T f1(x,u)
д̂T f1(x,u)−д̂T f2(x,u) . In

particular, α is constructed such that ∀(x ,u) ∈ Σs , we have

д̂T f s (x ,u) = 0, con�ning the solution to G as desired. �us,

we may use the solution concept of Filippov replace some

Zeno trajectories with well de�ned vector �elds. However,

when (x ,u) ∈ Σes , the solution concept of Filippov breaks

down, and there are Zeno trajectories that are le� ill-de�ned.

3 HYBRID SYSTEMS
We introduce our class of hybrid systems, inspired by [3].

De�nition 3.1. A hybrid system is a seven-tuple

H = (J , Γ,D,U,F ,G,R), where:

• J is a �nite set indexing the discrete states ofH ;

• Γ ⊂ J × J is the set of edges, forming a graphical struc-

ture over J , where edge e = (j, j ′) ∈ Γ corresponds to a

transition from j to j ′;

• D =
{
D j

}
j ∈J is the set of domains, whereD j is a compact

n-dimensional polytope in Rn , n ∈ N;

• U ⊂ Rm is a compact set of inputs,m ∈ N;

• F =
{
fj
}
j ∈J is the set of vector �elds, where each fj : D j×

U → Rn is continuously di�erentiable
1

and de�nes the

continuous dynamics of the system on D j
2

;

• G = {Ge }e=(j, j′)∈Γ is the set of guards, where eachG(j, j′) ⊂
∂D j is a codimension 1 plane with corner; that is, there

exists a unit vector д̂e ∈ Rn and a scalar ce such that

Ge ⊂
{
x ∈ ∂D j : дe (x) = д̂Te x − ce = 0

}
3
; and,

• R = {Re }e=(j, j′)∈Γ is the set of reset maps where, for each

e ∈ Γ, Re : Ge → ∂D j′ is de�ned by Re (x) = Aex + be ,

where Ae ∈ Rn×n and be ∈ Rn .

When the guard G(j, j′) is crossed, a discrete transition

from mode j to j ′ occurs, and the continuous state is in-

stantaneously rest by R(j, j′). We unify our continuous and

discrete state spaces using the concept of a disjoint union.

�at is, we embed our continuous domains in the space∐
j ∈J D j =

⋃
j ∈J D j × {j}. By an abuse of notation, through-

out the paper we shall simply use D j to refer to D j × {j}. For

each j ∈ J , we let Nj = {e ∈ Γ : ∃j ′ ∈ J s .t . e = (j, j ′)} be

the neighborhood of J . We let PC([0,T ],U ) denote the class

of piecewise continuous functions from the interval [0,T ] to

U . For each j ∈ J , let fj : Rn ×U → Rn be any continuously

di�erentiable extension to fj : D j ×U → Rn , guaranteed to

exist by Lemma 5.6 of [10]. Abusing notation, throughout

the paper, when the symbol fj is used, it is understood that

we are referring to the extended version of the function. Sim-

ilarly, for each e ∈ Γ we extend Re : Rn → Rn , where for

each x ∈ Rn we still de�ne Re (x) = Aex + be . We impose

the following assumptions to simplify the discussion sliding

vector �elds throughout the paper.

Assumption 1. Let e ∈ Γ. �en Ae is invertible, and there
exists an edge e ′ ∈ Γ such that Re (Ge ) = Ge ′ , Re ′(Ge ′) = Ge ,
and, ∀x ∈ Ge , x = Re ′(Re (x)).

We say that the edge e is reversible if it satis�es Assump-

tion 1, since a transition along e can be ’reversed’ by a tran-

sition along e ′, which we refer to as the partner of e . We will

o�en use e ′ to refer to the partner of e with out explicitly

stating their relationship. �e one-to-one correspondence

between Ge and Ge ′ de�ned by Re and Re ′ will simplify our

initial discussion of Filippov solutions along the guard sets

of our hybrid systems. In the optional appendix, we outline

1
�is ensures continuous state trajectories are unique and well de�ned

on our continuous domains, since continuous functions are Lipschitz over

compact sets.

2
We incur no loss of generality by considering time invariant vector �elds.

Indeed, one may add time as a continuous state z , with dynamics Ûz = 1 and

initial condition z(t0) = t0.

3
We choose the convention that д̂e ’points out’ of D j along Ge – i.e.

дe (x ) ≤ 0, ∀x ∈ D j .
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how to overcome this assumption in theory, and in Section 8

we produce numerical examples where the edges are not

reversible. However, in both cases we only consider Zeno

trajectories involving at most two edges of a hybrid system.

Assumption 2. For each pair of edges e , ē , Ge ∩Gē = ∅.

While much work has been done to extend the solution

concept of Filippov to cases where multiple continuous do-

mains interface [4], many open problems regarding the exis-

tence and uniqueness of solutions in such cases remain, and

we wish to avoid such questions here in favor of present-

ing the main conceptual and technical components of our

relaxation framework. We are currently investigating ways

to extend our results to hybrid systems with non-linearities

in their guard sets and reset maps, and overlapping guards.

We now endow our hybrid systems with the topology from

[3], which uses the concept of a quotient space [[9], Ch. 3].

Given a topological space S and a function f : A → B,

where A,B ⊂ S, we de�ne the following equivalence rela-

tion: A ∼ B =
{
(a,b) ∈ S × S : a ∈ f −1(b)

}
, and denote the

quotient of S under A ∼ B by
S
Λf

. �otienting a space is

o�en informally referred to as applying ”topological glue” –

that is, for each a ∈ A the sets a and f (a) are ”glued” together,

becoming a single set in
S
Λf

. We embed our hybrid systems in

the quotient space de�ned by their collection of reset maps.

For hybrid systemH de�ne R̂ :

∐
e ∈ΓGe →

∐
j ∈J ∂D j′ by

R̂(x) = Re (x) for each x ∈ Ge . �en the hybrid quotient

space ofH isM =
∐

j∈J D j

ΛR̂
.

�e construction ofM for a bimodal hybrid systemH is

depicted in Figure 2, wherein the trajectory x undergoes a

discrete transition. Note, that for partners (1,2) and (2,1), the

sets G(1,2) and G(2,1), while disjoint in D(1,2)
∐

D(2,1), com-

pose a single hybrid surface inM. �us, the trajectories of

our hybrid systems, to be de�ned in Section 7, are in fact

continuous on this space [3]. Speaking informally, the con-

struction ofM reduces H into a switched system where

the single hybrid surface G(1,2)/G(2,1) separates D1 and D2.

In section 5, we do in fact demonstrate how to represent a

discrete transition onM using the execution of a switched

system. �is will empower us to use the solution concept

of Filippov to construct Zeno (sliding) trajectories along the

hybrid surface G(1,2)/G(2,1).
To understand the main di�culty in accomplishing this

task, note that, when we constructM and describe a tran-

sition along the edge (1, 2), we apply an implicit change of

coordinates wherein i)we align the vector д̂(1,2) with the vec-

tor −д̂(2,1), so as a trajectory leaves D1 it �ows to the interior

of D2, and ii) the matrix A(1,2) de�nes a correspondence be-

tween the surfaces G(1,2) and G(2,1); that is, A(1,2) transforms

vectors in the (n − 1) dimensional subspace parallel to G(1,2)

Figure 2: A hybrid trajectory x transitions from D1 to
D2, represented on both D1

∐
D2 (le�) andM (right).

to lie in the (n − 1)-dimensional subspace parallel to G(2,1).
In Section 5 we make this transformation explicit.

Formally, in order metricize the hybrid quotient space we

employ the induced length metrics from [2]. Let d : Rn ×
Rn → R be a metric, then de�ne

˜dM : M×M → R for each

x ,y ∈ M by

˜dM(x ,y) = inf

k ∈N

{
k∑
i=1

d(pi ,qi ) : x = p1, y = qk , qi ∼ pi+1

}
.

(2)

Intuitively,
˜dM(x ,y) is simply the length of the shortest curve

between x and y onM, which may traverse multiple edges

to connect the two points.

4 RELAXED HYBRID SYSTEMS
We now produce our de�nition for relaxed hybrid systems
inspired by [3], a�aching an ε-thick strip to each of the

guard sets. In Section 6, we will de�ne the continuously

di�erentiable vector �elds that we impart over these strips,

which we will use to approximate Zeno trajectories. �e

relaxation of the bimodal hybrid system H from Figure 2,

H ε
, is depicted on the le� in Figure 3.

Concretely, for each e ∈ Γ we de�ne the relaxed strip Sεe =
{p + д̂eq ∈ Rn : p ∈ Ge and q ∈ [0, ε]} and then for each j ∈
J de�ne the relaxed domain Dε

j = D j ∪e ∈Nj Sεe . Next, for

each e = (j, j ′) ∈ Γ we then de�ne the relaxed guard set
Gε
e =

{
x ∈ Sεe : дεe (x) = д̂Te x − (ce + ε) = 0

}
and de�ne the re-

laxed reset map Rεe : Gε
e → ∂D j′ by Rεe (x) = Re (Pe (x)), where

Pe : Rn → Rn is de�ned by Pe (x) = x − д̂eдe (x). Intuitively,

Pe projects points onto the plane containing Ge , so that

Rεe (Gε
e ) = Re (Ge ). We now provide our de�nition of a relaxed

hybrid system, which we take from [3].

De�nition 4.1. LetH be a hybrid system. We then de�ne

the ε-relaxation ofH to be the seven-tupleH ε = (J , Γ,Dε ,U ,F ε ,Gε ,Rε ),
where:

(1) Dε =
{
Dε
j

}
j ∈J

is the set of relaxed domains ;

(2) F ε =
{
f εj

}
j ∈J

is the set of relaxed vector �elds, where

f εj : Dε
j ×U → Rn ;

(3) Gε =
{
Gε
e
}
e=∈Γ is the set of relaxed guard set; and,

(4) Rε =
{
Rεe

}
e=∈Γ is the set of relaxed reset maps.
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Figure 3: A hybrid trajectory x and relaxed hybrid stra-
jectory xε transition from mode 1 to mode 2, repre-
sented on both Dε

1

∐
Dε

2
(le�) andMε (right).

We embed our relaxed hybrid systems in the disjoint union∐
j ∈J Dε

j and we adopt the relaxed hybrid quotient space
introduced in [3]. Let H ε

be a relaxed hybrid system and

let R̂ε :

∐
e ∈ΓG

ε
e →

∐
j ∈J ∂D j be characterized by R̂εe (x) =

Rεe (x) for each x ∈ Gε
e . We then de�ne the relaxed hybrid

quotient space ofH ε
to beMε =

∐
j∈J Dεj
ΛR̂ε

.

�e construction ofMε
for our example bimodal hybrid

system is shown on the right in Figure 3. Note that the

strips Sε(1,2) and Sε(2,1) form a single hybrid strip in Mε 4
,

and a similar change of coordinates occurs when traversing

e in Mε
, as was described for the same transition in M.

�e trajectories of our relaxed hybrid systems will again

be continuous onMε
; such a trajectory xε is depicted in

Figure 3, where we also reproduce the trajectory x from

Figure 2. By representing x onMε
, as in [3], we will be able

to compare the distance between the trajectories of a hybrid

system and its ε-relaxation using the d̃Mε metric, which is

de�ned analogously to how d̃M was constructed in (2). In

particular, given two trajectories x ,xε : [0,T ] → Mε
, we will

use the metric ρε (x ,xε ) = sup

(
d̃Mε (x(t),xε (t))|t ∈ [0,T ]

)
from [3], to bound the distance between di�erent trajectories.

5 REPRESENTING DISCRETE JUMPS
WITH SWITCHED SYSTEMS

We now demonstrate how to describe a discrete transition

of a hybrid system using the execution of a switched system,

which will allow us to use Filippov solutions to describe

the composition of continuous and discrete dynamics along

guard sets. We begin by making the change of coordinates

that occurs during a discrete transition explicit for a given

edge e = (j, j ′) with partner e ′.

De�nitively, if

{
vie

}n−1

i=1
is a basis for the subspace parallel

to Ge , then

{
v1

e , . . . ,v
(n−1)
e , д̂e

}
is a basis for Rn , and when

edge e is traversed this basis is transformed element wise

4
�is is not technically true, since for each pair of partner edges we only

”glued” Gεe to Ge′ and Gεe′ to Ge . However, it is notationally cumbersome

to ”glue” the entire width of S εe to S εe′ , and so we choose to abuse notation

here.

Figure 4: On the le� is depicted D̄ j = D j ∪ De , as well
as a point x ∈ De . �e various components of R̄e (x) are
depicted on D̄ j and D j′ (on the right).

to the basis

{
Aev

1

e , . . . ,Aev
(n−1)
e ,−д̂e ′

}
, where

{
Aev

i
e
}(n−1)
i=1

is a basis for the subspace parallel to Ge ′ (indeed this set is

linearly independent since we assumed Ae to be full rank),

and −д̂e ′ is orthogonal to this subspace.

In order to perform this change of basis automatically

during simulation of a discrete transition, we will appro-

priately translate, rotate and resize D j′ , appending it to D j ,

so we may directly simulate how a trajectory evolves into

the interior of D j′ a�er traversing edge e . We denote this

transformed version of D j′ by De , which is depicted on the

le� side of Figure 4. To accomplish this task de�ne the map

R̄e : Rn → Rn by R̄e (x) = Re (Pe (x)) − д̂e ′дe (x), and then de-

�ne De =
{
x ∈ Rn : R̄e (x) ∈ D j′

}
. �e various components

of R̄e are also depicted in Figure 4.

To understand the action of R̄e , recall that Pe (x) projects

points onto the plane containing Ge , so Re (Pe (Ge )) = Ge ′ .

�us, the �rst term in R̄e maintains the one-to-one corre-

spondence between Ge andGe ′ that de�nes the edge; indeed

note that domains D j and De are separated by the surface

Ge/R̄−1

e (Ge ′). �e term −д̂e ′дe (x), on the other hand, aligns

the transverse coordinates д̂e and −д̂e ′ , in the sense that

дe ′(R̄e (x)) = −дe (x), so that as a trajectory x leaves D j and

enters the interior of De , R̄e (x) leaves Ge ′ and enters the

interior of D j′ . Another way to understand R̄e is to consider

the reformulation

R̄e (x) = Re (Pe (x)) − д̂e ′дe (x) (3)

= Re (x − д̂eдe (x)) − д̂e ′дe (x) (4)

= Ae (I · x − д̂e (д̂Te x − ce )) + be − д̂e ′(д̂Te x − ce ) (5)

= Āex + ¯be , (6)

where Āe = Ae (I −д̂eд̂Te )−д̂e ′д̂Te and
¯be = Aeд̂ece +be +д̂e ′ce .

�e matrix Āe applies the change of basis that occurs when

e is traversed, and is thus invertible. In particular, the matrix

(I−д̂eд̂Te ) is the natural projection onto the subspace orthogo-

nal to д̂e , so the termAe (I −д̂eд̂Te ) applies the change of basis

along Ge and Ge ′ , while the dyad −д̂e ′д̂Te rotates vectors in

the direction д̂e to align with −д̂e ′ . �ese de�nitions enable

the following result.
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Figure 5: �e curve γ is simulated on D̄1, and then in-
terpreted to construct the corresponding transition on
M (center) and D1

∐
D2 (right).

Lemma 5.1. Let e = (j, j ′). Let fe : De ×U → Rn be de�ned
by fe (x ,u) = Ā−1

e fj′(R̄e (x),u). �en ∀x ∈ De if we take d

dt x =

fe (x ,u) we have that d

dt R̄e (x) = fj′(R̄e (x),u).

To prove the claim we compute
d

dt R̄e (x) = Āe fe (x ,u) =

ĀeĀ
−1

e fj′(R̄e (x),u)=fj′(R̄e (x),u). Intuitively, fe evaluates the

vector �eld fj′ at the point R̄e , then reverses the change of

coordinates that occurs when traversing edge e (by passing

the vector �eld through Ā−1

e ), e�ectively transplanting the

vector �eld fj′ onto the domain De .

More generally, for a domain j with possibly more than

one guard set we de�ne D̄ j = D j ∪e ∈Nj De
5
, then de�ne the

switched system
¯fj : D̄ j ×U → Rn by

¯fj (x ,u) =
{
fj (x ,u) if x ∈ D j

fe (x ,u) if x ∈ De ,∀e ∈ Nj ,
(7)

where fe is de�ned as in Lemma 5.1, for each e ∈ Nj . Using

this switched system, we can accurately describe transitions

out of mode j. For example, suppose the hybrid system is

instantiated with initial condition x(0) ∈ D j , and evolves

under the vector �eld fj until time t ′ where x(t ′) ∈ Ge ,

for some e = (j, j ′) ∈ Nj . �e system is then reset to the

point Re (x(t ′)) = R̄e (x(t ′)), and x then evolves under the

in�uence of fj′ . Alternatively, we can simulate the auxiliary

curve de�ned by
d

dt γ =
¯fj (γ ,u) with initial condition γ (0) =

x(0), allowing γ to �ow into the interior of De . Note that

since they share the same di�erential equation and initial

condition, we will have x(t) = γ (t),∀t ∈ [0, t ′). At t ′, we

have R̄e (γ (t ′)) = x(t ′) ∈ D j′ , and ∀t ≥ t ′ by Lemma 5.1

we have
d

dt R̄e (γ ) = fj′(R̄e (γ ),u). �us, ∀t ≥ t ′, we have

R̄e (γ (t)) = x(t), since the two curves share the same initial

condition and di�erential equation. �us, we can construct

the trajectory x by simulating γ , and interpreting x(t) =
γ (t) ∈ D j for t ∈ [0, t ′), and interpreting x(t) = R̄e (γ (t)) ∈
D j′ for t ≥ 0. �ese curves are depicted in Figure 5.

Ultimately, this process empowers us to describe discrete

transitions of hybrid systems using the solution concept of

5
Note that even when two guards Ge , Ge′ ⊂ ∂D j do not intersect, it

may be the case that De ∩ De′ has a non-empty interior. We ignore this

technicality, since in practice we will sample neither fe nor fe′ from this

region.

Filippov. For edge e = (j, j ′), carefully inspecting fe , one can

see that д̂Te fe (x ,u) = −д̂Te ′ fj′(R̄e (x),u), so sliding solutions

for
¯fj arise along Ge when fj points into Ge and fj′ points

into Ge ′ , at corresponding points along the hybrid surface

Ge/Ge ′ . At this point we wish to remark that, while many

authors (e.g. [8]) have discussed the possibility of using Filip-

pov solutions to describe sliding Zeno executions for hybrid

systems with jumps, to the best of our knowledge, we pro-

vide the �rst explicit means of doing so. Yet, some hybrid

transitions which display Zeno phenomena may reduce to a

switched system for which the solution concept of Filippov

is unde�ned, since both vector �elds are parallel to their re-

spective guard sets.
6

Our relaxations, however, will resolve

this issue.

6 RELAXED VECTOR FIELDS
While we have gained the ability to describe hybrid transi-

tions using the solution concept of Filippov, such trajectories

are di�cult to approximate numerically, as they require accu-

rately detecting when the guard sets are crossed, and when

sliding solution arise and terminate. In order to add slack to

our numerical calculations, we extend the method of Teixeira

(see e.g. [11]) to relax our collection of switched systems.

For each edge e = (j, j ′) we de�ne analogs to R̄e and De
for the relaxationH ε

. In particular, we de�ne R̄εe : Rn → Rn
by R̄εe (x) = Re (Pe (x)) + д̂e ′дεe (x) and then we de�ne

Dε
e =

{
x ∈ Rn : R̄εe (x) ∈ D j′

}
, which is depicted on the le� in

Figure 6 for our example bimodal hybrid system. Note that

R̄εe (Sεe ) = Sεe ′ . We may also refactor R̄εe (x) = R̄e (x) + д̂e ′ε =
Āex + ¯be + д̂e ′ε .

We will use the following class of functions from [11] to

smoothly transition between the dynamics of fj and and

the (projected) dynamics of fj′ when crossing Sεe . We say

that φ : R → [0, 1] is a transition function if i) φ(a) = 0 for

a ≤ 0 and φ(a) = 1 for a ≥ 1, ii) φ ′(a) > 0 for a ∈ (0, 1),
iii) φ ′ is Lipschitz continuous, and iv) ∀a,φ(1 − a) = φ(a)
(i.e. φ is symmetric around 0.5). For the rest of the paper we

assume a single transition function has been chosen.
7

For

the edge e we then de�ne φεe (x) = φ(
дe (x )
ε ), and now de�ne

our relaxation of fe .

Lemma 6.1. Let e = (j, j ′). De�ne fe : Dε
j ∪ Dε

e ×U → Rn
by f εe (x ,u) = (1−φεe (x))fj (x ,u)+φεe (x)Ā−1

e fj′(R̄εe (x),u). �en

6
For example, the two numerical examples we consider in Section 8 fall into

this category.

7
For example, in our code we employ

φ(a) =


0 if a ≤ 0

1

2
+ 1

2
sine(πa − π

2
) if 0 < a < 1

1 if 1 ≤ a
(8)
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∀x ∈ Dε
e if we take

d

dt x = f εe (x ,u) we have that d

dt R̄
ε
e (x) =

fj (R̄εe (x),u). 8

It was shown in [12] that for each ε > 0 the vector �eld f εe
is continuously di�erentiable. Note that whenдe (x) ≤ 0 (and

x ∈ D j ), φ
ε
e (x) = 0 and f εe (x ,u) returns fj (x ,u). Similarly,

when дe (x) ≥ ε (and x ∈ Dε
e ), f εe returns Ā−1

e f εj′ (R̄εe (x),u).
When 0 ≤ дe (x) ≤ ε , f εj produces a convex combination of

these vector �elds. In the case that fj points into Ge and fj′

points intoGe ′ , the trajectories of f εe will remain con�ned to

Sεe ; thus, Zeno executions are approximated by well de�ned

trajectories on our relaxed strips.

We can use R̄εe and f εe to keep track of how a relaxed tra-

jectory evolves in D j′ a�er a relaxed transition along edge

e = (j, j ′) occurs, employing the same procedure that was de-

veloped using fe andDe in the previous section. In particular,

we simulate the auxiliary curve
d

dt γ
ε = f εe (γ ε ,u), allowing

this curve to �ow through Sεe and into Dε
e . We can then use

the map R̄εe to keep track of how such a trajectory would

have propagated into D j′ a�er crossingGε
e and being reset to

this domain. �is process is depicted in Figure 6. Finally, we

de�ne D̄ε
j = Dε

j ∪e ∈Nj Dε
e and then de�ne f εj : D̄ε

j ×U → Rn
by

f εj =

{
fj (x ,u) if x ∈ D j

f εe (x ,u) if x ∈ Dε
e
⋃
Sεe , ∀e ∈ Nj ,

(9)

which can also be shown to be continuously di�erentiable,

and thus has a Lipschitz continuous gradients, since continu-

ous functions are Lipschitz on compact domains – a property

that will be useful later. For a given relaxed hybrid system

H ε
, we endow the relaxed domain Dε

j with the vector �eld

f εj |Dεj ×U , for the purposes of De�nition 4; however, our the-

oretical analysis and discrete approximations will rely on

simulating f εj past the relaxed strips

{
Sεe

}
e ∈Nj and into the

projected domains

{
Dε
e
}
e ∈Γ .

Lemma 6.2. Let e and e ′ be partner edges. �en ∀x ∈ Sεe , if
we take d

dt x = f εe (x ,u), then d

dt R̄
ε
e (x) = f εe ′(R̄εe (x),u).

In other words, the vector �elds f εe and f εe ′ produce equiv-
alent �ows overMε

, and thus we can represent a relaxed

transition along e = (j, j ′) on either Sεe or Sεe ′ . Moreover, this

implies that, if a relaxed trajectory repeatedly �ows back and

forth across Sεe /Sεe ′ , we can simulate this behavior on either

D̄ε
j or D̄ε

j′ , and don’t need to switch between the two vector

�elds each time a transition occurs – this fact will greatly

simplify out analysis later. �e proof of Lemma 6.2 is largely

algebraic, and uses the fact that φ is symmetric about 0.5.

We conclude this section by studying how the trajecto-

ries of f εj converge to those of
¯fj as we take ε → 0. For

the following two theorems, assume we have �xed an input

8
Again, we compute

d

dt R̄
ε
e (x ) = Āe f εe (x, u) = Āe

(
Āe

)−1fj′ (R̄εe (x ), u) =
fj′ (R̄εe (x ), u).

Figure 6: �e curve γ ε is simulated on D̄ε
1
, and then

interpreted to construct the corresponding transition
onMε (center) and Dε

1

∐
Dε

2
(right).

u ∈ PC([0,T ],U ), and then let xε : [0,T ] → D̄ε
j be the cor-

responding solution generated by f εj with initial condition

xε
0
∈ D j , and let x̄ : [0,T ] → D̄ j be the trajectory generated

by
¯fj with initial condition x0 ∈ D j and the same input. We

leave the proofs to the appendix. A version of the following

result for autonomous vector �elds may be found in [7].

Theorem 6.3. Assume that for each e = (j, j ′) ∈ Nj and
each (x ,u) ∈ Ge ×U either д̂Te fj (x ,u) > 0 or д̂Te fe (x ,u) < 0.
Finally assume



xε
0
− x0



 ≤ kε , for some k > 0. 9 �en
∃ε0 > 0 and C > 0 such that for each ε0 > ε > 0 we may
bound ‖x̄ − xε ‖∞ ≤ Cε .

�e hypothesis of �eorem 6.3 guarantee that Filippov

solutions are unique and well de�ned for
¯fj along the guard

sets of D j , since the escaping region is empty. �us, our

relaxed vector �elds converge to Filippov solutions, when

applicable. We next examine how our relaxations behave

when Filippov solutions are ill-de�ned.

Theorem 6.4. Suppose there exists a Lipschitz continuous
function l : R→ Rn such that l(ε) = xε

0
and l(0) = x0.10 �en

there exists a uniformly continuous x0
: [0,T ] → D̄ j such that

x0(0) = x0 and


x0 − xε




∞ → 0 as as ε → 0.

�eorem 6.4 implies that our relaxations converge uni-

formly to a unique, well de�ned limit, even when the solution

concept of Filippov breaks down.

7 EXECUTIONS
Having demonstrated our relaxation approach to describe

single discrete transitions of a hybrid system, we modify

the algorithmic construction presented in [3] to de�ne the

trajectories of our relaxations through multiple transitions.

De�nition 7.1. An execution for a relaxed hybrid dynam-

ical system H ε
, given data x0 ∈ D j and u ∈ PC([0,T ],U ),

9
During each discrete transition our relaxations will incur an error of order

ε . By adding error to our initial conditions here, we will be able to call this

result inductively to prove convergence when trajectories undergo multiple

transitions.

10
Again we add slack to our initial condition so this result may be called

inductively.
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denoted xε : [0,T ] → Mε
is constructed via the following

algorithm.

(1) Set xε (0) = x0 and t = 0, and let j ∈ J .

(2) Simulate the di�erential equation Ûγ ε (s) = f εj (γ ε (s),u(s))
forward in time with initial condition γ ε (t) = xε (t) until

time t ′ = min

{
T , inf

{
s : γ ε (s+) < Dε

j

}}
.

(3) If t ′ = T or @e ∈ Nj such that γ ε (t ′) ∈ Gε
e , let xε (s) =

γ ε (s), ∀s ∈ [t , t ′]. �en terminate the execution.

(4) Else let e = (j, j ′) be such that γ ε (t ′) ∈ Gε
e . For each

s ∈ [t , t ′) set xε (s) = γ ε (s). Set xε (t ′) = Rεe (γ ε (t ′)), set

t = t ′ and set j = j ′. Go to step 2.

First, we note that the only time the execution terminates

is in line 3, when either the simulation horizon T has been

reached or when the trajectory leaves a relaxed domain at a

point that does not belong to a relaxed guard set. Second, we

note that the trajectories generated in De�nition 7.1 agree

with typical de�nitions for the execution of a hybrid system;

that is, a di�erential equation is simulated until a guard is

reached, then the state is reset and resumes simulation. How-

ever, these trajectories are continuous overMε
[3], and are

even Lipschitz continuous with respect to their arguments.

Proposition 7.2. Construct xε
1
,xε

2
: [0,T ] → Mε as in

De�nition 7.1 using the arguments (x1

0
,u1), (x2

0
,u2) ∈ Mε ×

PC([0,T ],U ), respectively. �en there exists L > 0 such that
ρε (x1,x2) ≤ L

(
d̃Mε (x1

0
,x2

0
) +



u1 − u2




2

)
.

Note that this fundamental systems theoretic property is

missing from previous relaxation approaches as [3] and [8].

Due to space constraints, we do not formally compute varia-

tions over our relaxations. However, the result follows from

two observations. Firstly, as demonstrated by Lemmas 6.1

and 6.2, each portion of a relaxed execution constructed via

7.1 has a one-to-one, a�ne (and therefore Lipschitz) cor-

respondence to the trajectories generated by a vector �eld

that has Lipschitz continuous gradients. Secondly, by �e-

orem 5.6.7 of [15], the �ows generated by each of these

vector �elds are Lipschitz continuous with respect to their

arguments. In Section 8 we demonstrate how to compute

variations through a relaxed transition in the numerical set-

ting. Although we must construct their trajectories in an

algorithmic manner, our class of relaxed hybrid systems may

largely be viewed simply as classical dynamical systems –

that is, systems whose trajectories are continuous and have

variations which are Lipschitz continuous. Furthermore, the

convergence results of �eorems 6.3 and 6.4 hold when mul-

tiple transitions occur. Note that the following construction

is similar to the de�nition of an execution of a hybrid system

from [3], but unlike this work we are able to describe sliding

solutions along our guard sets.

Theorem 7.3. Assume that for each e = (j, j ′) ∈ Γ and each
(x ,u) ∈ Ge ×U either д̂Te fj (x ,u) > 0 or д̂Te fe (x ,u) < 0. For

each x0 ∈ D j and u ∈ PC([0,T ],U ) let xε be constructed via
De�nition 7.1. �en ∃ε0 > 0 and C > 0 such that ∀ε0 > ε > 0,
ρε (x ,xε ) ≤ Cε , where x : [0,T ] → M is generated by the
following algorithm.
(1) Set x(0) = x0 and t = 0, and let j ∈ J .
(2) Simulate the di�erential equation Ûγ (s) = ¯fj (γ (s),u(s))

forward in time (using the solution concept of Filippov)
with initial condition γ (t) = x(t) until time
t ′ = min

{
T , inf

{
s : γ (s+) < D j

}}
.

(3) If t ′ = T or @e ∈ Nj such that γ (t ′) ∈ Ge , let x(s) =
γ (s), ∀s ∈ [t , t ′]. �en terminate the execution.

(4) Else let e = (j, j ′) be such that γ (t ′) ∈ Ge . For each s ∈
[t , t ′) set x(s) = γ (s). Set x(t ′) = Rεe (γ (t ′)), set t = t ′ and
set j = j ′. Go to step 2.

We again leave the proof to Appendix A.

Theorem 7.4. Fix x ∈ D j , u ∈ PC([0,T ],U ) and let xε be
constructed by the algorithm in De�nition 7.1. �en there exists
a uniformly continuous x : [0,T ] → M such that ρε (x ,xε ) →
0 as ε → 0, where x(0) = x0 ∈ D j .

We omit the proof in the interest of brevity since the proof

is analogous to that of �eorem 7.3, except �eorem 6.4 is

called inductively in place of 6.3. We employ this limit to

de�ne the execution of our relaxed hybrid systems.

De�nition 7.5. LetH be a hybrid system. �en given data

x0 ∈ M and u ∈ PC([0,T ],U ) we de�ne the corresponding

trajectory ofH to be x : [0,T ] → M, where x = limε→0 x
ε
,

and for each ε > 0 we construct xε using the algorithm in

de�nition 7.1.

Taken together, �eorems 7.3 and 7.4 imply that execu-

tions of our hybrid systems, as in De�nition 7.5, are unique

and we de�ned, even when traditional solution concepts

for hybrid systems would have produced Zeno executions.

Note that his property is fundamental, yet missing from cur-

rent methods such as [8], [3], and [1]. While further work

is needed to more carefully characterize this limit in cases

where Filippov solutions are ill-de�ned, in Section 8 we pro-

vide numerical evidence that in such cases our relaxations

converge to solutions which make physical sense.

We now introduce the provably convergent numerical

integration scheme that we use to approximate the trajecto-

ries of our relaxed hybrid systems. Again, our discretization

scheme is largely similar to the one proposed in [3]. We begin

with the following de�nition of a numerical integrator.

De�nition 7.6. [3] Given a relaxed hybrid systemH ε
, we

say A : Rn ×U × J × R→ Rn is a numerical integrator of

order ω, if for each j ∈ J and h = T /N (where N ∈ N), and

each x0 ∈ D j and u ∈ PC([0,T ],U ) we have

sup

(


x(kh) − zε,h(kh)


 : k ∈ {0, 1, . . . ,N }
)
= O(hω ),
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where x(0) = x0 and
d

dt x = f εj (x ,u), and zε,h(0) and

zε,h((k + 1)h) = A(z(kh),u(kh), j,h).

As was noted in [3], this de�nition of a numerical integra-

tor is compatible with a large class of discretization schemes,

including Euler and the Runge-Ku�a family.

De�nition 7.7. Given a relaxed hybrid systemH ε
, initial

condition x0 ∈ D j , input u ∈ PC([0,T ],U ), step size h = T
N

(where N ∈ N), we construct the discrete approximation

zε,h : [0, t] → Mε
according to the following algorithm.

(1) Let zε,h(0) = x0, t = 0, k = 0 and j ∈ J .

(2) If k = N , terminate the execution. Otherwise, let γ k+1 =

A
(
zε,k (kh),u(kh), j,h

)
.

(3) For each t ∈ [kh, (k + 1)h) set

zε,h(t) = (k+1)h−t
h γ k+1 + t−kh

h zε,h(kh).
(4) If γ k+1 < D̄ε

j , then let t̄ = inf

{
t : zε,h(t) ∈ D̄ε

j

}
and return

zε,h |[0, t̄ ]. Terminate the execution.

(5) If ∃e = (j, j ′) ∈ Nj such that γ k+1 ∈ Dε
e , set

zε,h((k + 1)h) = R̄e (γ k+1), set k = k+1, and set j = j ′. Go

to step 2.

(6) Otherwise, set zε,h((k + 1)h) and k = k+1. Go to step 2.

Our de�nition of a numerical approximation for relaxed

hybrid systems di�ers from [3] in one crucial way. �e

discretization scheme proposed in [3] requires that a time

step be placed in a relaxed strip when simulating a discrete

transition. �is requires many sample steps be taken until

one is placed correctly. On the other hand, our numerical

approximation can step over the relaxed strip Sεe when ap-

proximating a discrete transition along edge e , since we can

use the Lipschitz vector �eld f εe and map R̄εe to simultane-

ously model how the trajectory evolves on either side of the

transition, and thus there is no need to modulate the step

size during numerical approximation of a discrete transition,

as is depicted in Figure 7.

However, the proof of convergence for our algorithm fol-

lows directly from an argument similar to that of �eorem 27

of [3]. In particular, since, for each ε > 0 the vector �elds we

integrate over are Lipschitz continuous, we incur a numerical

error of order O(hω ) on each mode, and using an argument

similar to that of �eorem 27 of [3]
11

, one can show for each

x0 ∈ D j , u ∈ PC([0,T ],U ), and step size h small enough that

ρε
(
xε , zε,h

)
≤ Chω for someC > 0, were xε and zε,h are con-

structed via De�nitions 7.1 and 7.7, respectively. Using these

conditions, if we construct the hybrid executions x using

De�nition 7.5, applying the triangle inequality on ρε , one

can then show that limε→0 limh→0 ρ
ε (x , zε,h ) = 0, as was

demonstrated in Corollary 28 of [3]. Moreover, the rate of

11
Alternatively, one can make an argument similar to the proof of �eo-

rem 7.3.

Figure 7: A numerical approximation of a discrete
transition is constructed on D̄ε

1
(le�) and the inter-

preted onMε (center) and Dε
1

∐
Dε

2
(right).

convergence in h is of order ω. When the hypothesis of �e-

orem 7.3 are satis�ed, the rate of convergence is linear in ε ,
but unknown when Filippov solutions are ill-de�ned on the

guard sets. Before proceeding to our examples, we note that

the relaxation scheme we developed in this paper allowed

us to construct a provably convergent numerical algorithm

capable of simulating all of the trajectories of our hybrid sys-

tems, even those that continue past Zeno, an improvement

over existing methods such as [3] and [5].

8 NUMERICAL EXAMPLES
We present several numerical examples, demonstrating the

utility of the techniques developed in this paper. We �rst

use an example which is o�en used to model limbs in the

dynamic walking literature. �is example is inspired by [2]

and [14].

Example 1: (Double Pendulum) Consider the double pen-

dulum with a mechanical stop which is depicted in Fig-

ure 8. �e system has two angular degrees of freedom

q = (θ1,θ2) whose dynamics are Lagrangian. When the

second link impacts the mechanical stop (i.e when θ2 = 0

and
Ûθ2 ≤ 0), the angular velocities of are reset according

to ( Ûθ1, Ûθ2) → ( Ûθ1 + k(1 + c) Ûθ2,−c Ûθ2), where c ∈ [0, 1] is the

coe�cient of restitution, and k > 0. �e interested reader may

�nd the explicit representations of these dynamics in [14],

where it was demonstrated this system may be faithfully

modeled by a unimodal hybrid system with a single edge.

When θ2 = Ûθ2 = 0, the arm may be locked in place until

the imaginary force λ(q, Ûq) becomes nonpositive, at which

point the second arm begins to swing freely again. It was

shown in [14] that this hidden locked mode corresponds

to a Zeno execution. However, using our relaxation proce-

dure, we can model the dynamics of this hidden mode using

well de�ned solutions on the relaxed strip for this hybrid

system. In Figure 8, we simulate trajectories for this sys-

tem for both c = 0.5 and c = 0, with physical parameters

m1 = m2 = L1 = L2 = д = 1, Euler step size h = 10
−6

,

ε = 10
−6

and initial condition

(
θ1, Ûθ1,θ2, Ûθ2

)
= (25

◦, 0, 35
◦, 0)

(using the extensions to our framework outlined in the op-

tional appendix). In both simulations, time steps that lie in
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the relaxed strip are bold and colored black. Note, in both

cases the double pendulum se�les into a (decaying) periodic

orbit, wherein the second arm is periodically locked into

place (and the simulation remains con�ned to the strip) until

the imaginary force dissipates and the second arm swings

freely.

For our second experiment involving the double pendu-

lum, we demonstrate how our relaxation framework may

be used to conduct sensitivity analysis around a nominal

trajectory, as the trajectory progresses through a hybrid

transition. In particular, we �x c = 0 and ε = 10
−3

, and

once again �x m1 = m2 = L1 = L2 = д = 1, and choose

the initial condition of

(
θ1, Ûθ1,θ2, Ûθ2

)
= (20

◦, 0, 2◦, 0) = x0 for

our nominal trajectory, which is depicted in Figure 8 d). We

choose again choose an Euler step-size of h = 10
−6

for each

of the simulations of this experiment. Time instances that

lie in the relaxed strip are again blackened. Note, this nom-

inal trajectory only undergoes one transition, thus we can

simulate the entirety of this trajectory on a single extended

domain, without needing to ever reset the trajectory. We

denote this domain D and its vector �eld by f . Moreover,

since this vector �eld has gradients that are Lipschitz contin-

uous we can numerically approximate variations over this

vector �eld, using the techniques of, e.g., Chapter 5.6.3 of

[15]. For a given δ > 0 we let xδ be the trajectory corre-

sponding to the perturbed initial condition xδ
0
= x0 + δx0,

where δx0 = δ (0, 0, 1◦, 0). Next, applying �eorem 5.6.13

of [15], and linearizing about the nominal trajectory x0
, for

each δ we approximate xδ with x̂δ = x0 + Dxδ where Dxδ

is the solution to the linearized di�erence equation

Dxδ ((k + 1)h) = d

dx
f (x0(kh))Dxδ (kh) (10)

with initial condition Dxδ (0) = δx0. For various values of

δ we simulate both xδ and x̂δ , and in Figure 8 e) we ap-

propriately interpret xδ and x̂δ onMε
, and plot the di�er-

ence ρε
(
xδ , x̂δ

)
. As this �gure clearly demonstrates, using

this technique we are able to accurately compute variations

through a relaxed transition, even for a trajectory that is

simulating past Zeno, as we take δ to be su�ciently small.

Example 2: (Bouncing Ball) For our second example, we

simulate the famous bouncing ball. �is system consists of a

ball repeatedly bouncing on the ground, losing a fraction of

its energy during each impact. �e ball bounces vertically

and has two continuous states, its heightx1 and its vertical ve-

locity x2. �ese two states evolve according to
d

dt x1 = x2 and

d

dt x2 = −д, where д is the gravitational constant. When an

impact occurs, the velocity is reset according to x2 → −cx2,

where c ∈ [0, 1] is again the coe�cient of restitution. It can

be shown [8] that the ball undergoes an in�nite number of

bounces by the �nite time t∞ =
x2(0)
д +

(1/c+1)
√
x2(0)2+2дx1(0)

д(1/c−1) ,

at which time it comes to rest (i.e. x1(t) = x2(t) = 0,∀t ≥ t∞).

�us, a faithful hybrid representation of the system is nec-

essarily Zeno. We simulate this example to benchmark

the performance of our relaxations, since we know ana-

lytically when and where Zeno occurs. We simulate the

bouncing ball with initial condition (x1(0),x2(0)) = (1, 0),
д = 1 and c = 0.5 for various Euler steps sizes h, and for

each simulation �x ε = 0.01 ∗ h. For each simulation we let

ρ = sup{‖(x1(t),x2(t))‖∞ : t ∈ [t∞,T ]}, and use this metric

to measure the convergence of our relaxed trajectories to

the Zeno point. We plot the results in Figure 8 f). Note that

we do not provide theoretical guarantees of the rate of con-

vergence for this example, since the vector �eld is parallel to

the transition surface at the origin (the Zeno accumulation

point). However, the plot in Figure 8 f) nevertheless demon-

strates that we have (near) linear convergence as we take h
and ε to zero, under the ρ metric. We are currently working

to provide formal guarantees for the rate of convergence in

such cases.

9 CONCLUSION
In this paper we developed a novel class of relaxations, which

we used to construct unique, well de�ned solutions for hy-

brid systems, even past the point of Zeno. �e trajecto-

ries of our hybrid systems were shown to be Lipschitz con-

tinuous with respect to initial conditions and inputs, and

naturally gave rise to a broad class of provably convergent

discretization schemes. We provided several numerical ex-

amples, wherein we were able to accurately simulate and

performed sensitivity analysis on Zeno executions. While

further work is needed to extend our current framework,

including the addition of non-linear guards and reset maps

as well as overlapping guards, it is our conviction that the

techniques developed here will provide an avenue to extract

further important systems theoretic properties from hybrid

systems. Moreover, we are currently working to extend our

sensitivity analysis techniques to trajectories undergoing

multiple transitions, with the intention of using these tech-

niques to assess the stability of periodic orbits in hybrid

systems. Such an approach has many practical applications,

including �nding stable periodic gates for dynamic walking

robots [17].
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A PROOFS
For each of the following proofs, we provide the main argu-

ments, omi�ing some details in the interest of brevity.

A.1 Proof of �eorem 6.3
We supply the proof for the case where |Nj | = 1; the gener-

alization to the case where D j has multiple, disjoint guard

sets is straightforward. We �rst demonstrate that the claim

holds for all input functions û ∈ PCD([0,T ],U ), where

PCD denotes the class of piecewise continuously di�eren-

tiable functions. We transform the system
d

dt x̄ =
¯fj (x̄ , û)

into the autonomous system de�ned by ( Û̃x , Ûz) = ˜fj (x̃ , z) =
( ¯fj (x̃ , û(z)), 1) which we endow with initial condition (x0, 0).
Note that z(t) = t ,∀t ∈ [0,T ], and thus x̃(t) = x̄(t), ∀t ∈
[0,T ]. Let

˜f εj be the ε-relaxation of
˜fj , and let (x̃ε , z) be the

resulting trajectory, with initial data (xε , 0). Next, note that

û must be non di�erentiable on a �nite number of points

0 = t1 < t2 < ... < tp = T , p ∈ N. �us, on each interval

(ti , ti+1),∀i = 1, 2, . . . ,p − 1,
˜fj is continuously di�erentiable

in z. �us, restricting both trajectories to the time interval

[t1, t2], we have



(x̃ , z)|[t1,t2] − (x̃ε , z)|[t1,t2]



∞ = O(ε) for each

ε < ε0 for some ε0 > 0, by an argument similar to Lemma 2

of [7]. �us, by a straight forward inductive argument we ob-

tain ‖(x̃ , z) − (x̃ε , z)‖∞ = O(ε), and thus ‖x̄ − xε ‖∞ ≤ Cε , for

some C > 0. �e result for our desired u ∈ PC([0,T ],U ) fol-

lows from noting that PCD([0,T ],U ) is dense in PC([0,T ],U )
under the L2

norm, and thus we may choose û to be arbitrar-

ily close to the desired input u.

A.2 Proof of theorem 6.4
First, note that f εj is continuously di�erentiable in ε for each

ε > 0, since it is constructed using a �nite number of com-

positions and multiplications of functions which are each

continuously di�erentiable in ε . �us,

∂f εj
∂ε must be Lipschitz

continuous for each ε ∈ [ε
¯

, ε̄], where ε̄ > ε
¯

> 0, since con-

tinuous functions are Lipschitz on compact domains. �us,

by Lemma 5.6.7 of [15], xε (t) is a Lipschitz continuous func-

tion of ε , ∀t ∈ [0,T ] and ε ∈ (ε
¯

, ε̄). �us, as ε ↓ ε
¯

, xε must

converge uniformly to some uniformly continuous function

xε¯ : [0,T ] → D̄ε
¯j . �e desired result follows by noting that ε

¯
may be chosen to be arbitrarily small.

A.3 Proof of �eorem 7.3
In this case when no transitions occur, the result follows from

the uniqueness of trajectories on our continuous domains.

Suppose now that x undergoes one transition along edge

e = (j, j ′). We may represent the trajectories of both x and

xε through this transition using the domain D̄ε
j . In particular,

let γ be the solution to
d

dt γ =
¯fj (γ ,u) with initial condition

γ (0) = x0, and let γ ε be de�ned by
d

dt γ
ε = f εj (γ ε ,u) with ini-

tial condition γ ε (0) = x0. By �eorem 6.3, ‖γ − γ ε ‖∞ ≤ Cε ,
where ε0,C > 0, and ε < ε0. For all t such that γ (t),γ ε (t) ∈
D j , we immediately have that d̃Mε (x(t),xε (t)) ≤ Cε . For all

t such that γ (t) ∈ De and γ ε (t) ∈ Dε
e (i.e. when x and xε

have both transitioned to mode j ′), bound d̃Mε (x(t),xε (t)) =
‖x(t) − xε (t)‖ =



R̄e (γ (t)) − R̄εe (γ ε (t))

= 

Āe (γ (t) − γ ε (t)) − εд̂e ′


 ≤

C̄ε , for some C̄ > 0. If γ (t) ∈ De but γ ε (t) ∈ Dε
j (so that

x(t) ∈ D j′ but xε (t) ∈ Dε
j ), then by an application of the tri-

angle inequality on d̃Mε , we may bound d̃Mε (x(t),xε (t)) ≤
‖γ (t) − γ ε (t)‖+



R̄e (γ (t)) − R̄εe (γ ε (t))

 ≤ C̃ε , for some C̃ > 0.

�e case where γ (t) ∈ D j but γ ε (t) ∈ Dε
e follows similarly.

Finally it is important to note that, while x was transitioning,

xε may have transitioned back and forth along e and its part-

ner e ′ multiple times, yet, as a consequence of Lemma 6.2,

γ ε nevertheless fully captures the behavior of xε near Sεe /
Sεe ′ . For trajectories where x undergoes multiple transitions,

�eorem 6.3 may be called inductively to complete the proof.

B NON-REVERSIBLE EDGES
In this section we demonstrate how to extend our framework

to encompass non-reversible edges. In the interest of brevity,

we show how this may be done for a unimodal hybrid sys-

tems with one continuous domain D (and vector �eld f ), and

a single non-reversible edge e . However, the generalization

to more complicated hybrid systems with non-reversible

edges is straightforward. In order to avoid needlessly intro-

ducing a large amount of slightly modi�ed notation, we only

outline these additional techniques. In particular, we demon-

strate how to construct relaxed executions for these hybrid

systems, and then discuss when and how the convergence

theorems from the main document apply here, but do not

explicitly construct the corresponding switched systems, as

their structure will become apparent from the relaxations.

We proceed by noting that Re (Ge ) ⊂ ∂D by De�nition

3.1. Since D is a convex polytope, there exists a unit vector

ˆhe ∈ Rn and scalar de such that

Re (Ge ) ⊂
{
x ∈ ∂D : he (x) = ˆhTe x − de = 0

}
, (11)

where by convention we choose
ˆhe such that it points out

of D along Re (Ge ) – that is, h(x) ≤ 0, ∀x ∈ D. Note, we do

not assume that Re (Ge ) ∩Ge = ∅. We now de�ne the map

R̄εe : Rn → Rn by

R̄εe (x) = Re (Pe (x)) − ˆheд
ε
e (x), (12)

simply replacing д̂e ′ with
ˆhe when de�ning R̄e . In this case,

we may now simplify

R̄εe (x) = Āex + ¯bεe , (13)

where we now have that Āe = Ae (I − д̂eд̂Te ) − ˆheд̂
T
e and

¯bεe = Aeд̂ece + be + ˆhe (ce + ε). If it is the case that Āe is
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full rank, then we may construct relaxed transitions along e
using the same procedure as in the main document. �at is,

we use the vector �elds f εe , and map R̄εe to construct relaxed

transitions.

However, when Āe is not full rank these objects are ill-

de�ned. Speci�cally, when Āe is not full rank we cannot

use Āe to project the component of f lying in the subspace

ranдe(Āe )⊥ back through e .
12

In order to overcome this

de�ciency, let

{
vie

}pe
i=1

be a basis for ranдe(Āe )⊥, where pe =

n − rank(Āe ) 13
. In order to capture the �ow of f along

span
{{
vie

}pe
i=1

}
, we add the auxiliary state z ∈ Rpe to our

continuous state space when in mode j, and now de�ne

R̃εe : Rn × Rpe → Rn by

R̃e (x , z) = R̄εe (x) + [ v1

e |... |v
pe
e ]z, (15)

which we may reformulate into

R̃e (x , z) =
[
Āe |v1

e | . . . |v
pe
e

]
[ xz ] + ¯bεe , (16)

and then de�ne Ãe =
[
Āe |v1

e | . . . |v
pe
e

]
∈ Rn×(n+pe ), which is

surjective by construction, since ranдe(Ãe ) = Rn .
14

We will

now employ the right inverse of, Ãe , namely Ã†e ∈ R(pe+n)×n ,

to project the dynamics of f back through edge e , and capture

this �ow during a relaxed transition using the augmented

state (xε , z) ∈ Rn+pe . For the rest of the section, let ®0 denote

the pe -dimensional zero vector. When we begin a relaxed

execution, we will instantiate z = ®0, and we will reset z → ®0
whenever a relaxed transition occurs, for reasons that will

become clear momentarily. We can now de�ne the analogue

to Dε
e ,

D̂ε
e =

{
(x , z) ∈ Rn × Rpe : R̃εe (x , z) ∈ D

}
. (18)

Next, we de�ne

M = sup

{
‖z‖∞ : ∃x ∈ Rn such that R̃εe (x , z) ∈ D

}
, (19)

and then de�ne the analogue to Dε
,

12
For example, the double pendulum with a mechanical stop from Section 8

falls into this category when c = 0; in particular, for this case we cannot

project the di�erential equation for
Ûθ2 back through the edge ē of this

hybrid system as in this case (if we arrange the state x =
(
θ1, Ûθ1, θ2, Ûθ2

)
)

then д̂e = ˆhe = (0, 0, −1, 0)T and the matrix Āē works out to be

Āē =
[

1 0 0 0

0 1 0 k
0 0 −1 0

0 0 0 0

]
. (14)

13
In the case of the double pendulum where c = 0, we have that pē = 1 and

we choose v1

ē = (0, 0, 0, 1)T .

14
For the double pendulum when c = 0 we arrive at

Ãē =
[

1 0 0 0 0

0 1 0 k (1+c ) 0

0 0 −1 0 0

0 0 0 0 1

]
(17)

, which is full rank and can thus be used to project the di�erential equation

for
Ûθ2 back through ē

D̂ε = Dε × [−M,M]pe , (20)

and �nally the analogue to Sεe

Ŝεe = Sεe × [−M,M]pe . (21)

�at is, we con�ne the auxiliary state to z to {−M,M}pe , so

that our augmented continuous domain remains compact,

but we allow z to be large enough such that we can capture

the full scope of D̂ε
e using this extra variable. Next, we de�ne

the augmented guard set

Ĝε
e =

{
(x , z) ∈ S̃εe : x ∈ Gε

e
}
, (22)

which will triggers a discrete transition when crossed and

the state is reset according to R̂εe : Rn+pe → Rn+pe ,
15

where

R̂εe (x , z) =
[
R̃εe (x,z)
®0

]
. (23)

Note, a discrete transition occurs when x ∈ Gε
e , and does

not depend on the value of z. Moreover, a�er the transition

occurs, z is reset ®0 so that it is ready to simulate the next

transition along e .

Finally we are ready to de�ne the relaxed vector �eld

ˆf ε : D̂ε ∪ D̃ε
e ×U → Rn+pe by

ˆf ε ((x , z),u) = (1 − φεe (x))
[
f (x,u)
®0

]
+ φεe (x)Ã†e f (R̃εe (x , z),u), (24)

which may be shown to be continuously di�erentiable. Note

that, under this vector �eld, when x ∈ D, φεe (x) = 0 and

d

dt (x , z) = (f (x ,u), ®0), thus the auxiliary z state does not

a�ect the evolution of the original state x when (x , z) < S̃εe .

�at is, the auxiliary state z remains dormant until the real

state reaches Sεe , and then z begins to �ow, capturing the

component of f that lies in ranдe(Āe )⊥, as x traverses Sεe .

Finally note that whenever (x , z) ∈ D̃ε
e (and дe (x) ≥ ε), the

vector �eld
ˆf ε returns Ã†e f (R̃εe (x , z),u), which leads to the

following result.

Lemma B.1. Let ˆf ε be de�ned as in (24). �en ∀(x , z) ∈ D̃ε
e ,

if we take d

dt (x , z) = ˆf ε ((x , z),u) thenwe have that d

dt R̂
ε
e (x , z) =

(f (R̃εe (x , z),u), ®0).

To prove the claim we compute

d

dt
R̂εe (x , z) =

[
Ãe ˆf ε ((x,z),u)

®0

]
(25)

=
[
Ãe Ã

†
e f (R̃εe (x,z),u)
®0

]
(26)

=
[
f (R̃εe (x,z),u)

®0

]
. (27)

15
Note we have overridden the original de�nition of R̂εe from the main

document.
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Consequently, we can use the vector �eld
ˆf ε and the map

R̂εe to keep track of how (xε , z) evolves during a relaxed

transition. Note, that even though we are not projecting the

dynamics for z back through the edge e , since it is always

reset to a value of zero and has trivial dynamics when in

D̂ε
, this is not needed to keep track of how z will evolve

immediately a�er the transition.

Concretely, if the real state is instantiated at x0 ∈ D, in

order to describe a relaxed transition along e , we simulate

the auxiliary curve γ̂ ε : [0,T ] → D̂ε ∪ D̃ε
e de�ned by

d

dt γ̂
ε =

ˆf ε (γ̂ ε ,u) with initial condition (x0, ®0), allowing the curve to

�ow into D̃ε
e . We then interpret (xε (t), z(t)) = γ̂ ε (t), ∀t such

that γ̂ ε (t) ∈ D̂ε
, and interpret (xε (t), z(t)) = R̂εe (γ̂ ε (t)) =

(R̃εe (x , z), ®0), ∀t such that γ̂ ε (t) ∈ D̃ε
e .

It is straightforward to show that analogues to �eorems 6.3

and 6.4 hold when studying the convergence of the trajecto-

ries of
ˆf ε as we take ε → 0; that is, sliding solutions arise

when applicable and the trajectories of
ˆf ε always converge

to a unique well de�ned limit as we take ε → 0. In some

cases, such as the double pendulum with mechanical stop, it

makes physical sense for the trajectory to ”get stuck” in the

relaxed strip for some time. However, in general we leave it

to the practitioner to interpret this behavior.

In order to discuss analogues to �eorems 7.3 and 7.4,

we must �rst se�le on the topology for the class of hybrid

systems we consider here. In particular, we now de�ne our

relaxed hybrid quotient space by

Mε =
D

ΛR̂εe

. (28)

In order to construct trajectories over Mε
with multiple

transitions, we further modify the construction from [3].

De�nition B.2. An execution for a relaxed unimodal hybrid

dynamical system with a single non-reversible edge, given

data x0 ∈ D and u ∈ PC([0,T ],U ), denoted (xε , z) : [0,T ] →
Mε

is constructed via the following algorithm.

(1) Set x(0) = x0, z(0) = 0 and t = 0.

(2) Simulate the di�erential equation
Û̂γ ε (s) = ˆf ε (γ̂ ε (s),u(s))

forward in time with initial condition γ̂ ε (t) = (xε (t), z(t))
until time t ′ = min

{
T , inf

{
s : γ̂ ε (s+) < D̂ε

}}
.

(3) If t ′ = T or γ̂ ε (t ′) < Ĝε
e , let (xε (s), z(s)) = γ̂ ε (s), ∀s ∈

[t , t ′]. �en terminate the execution.

(4) Otherwise we have that γ̂ ε (s) ∈ Ĝε
e . For each s ∈ [t , t ′)

set (xε (s), z(s)) = γ̂ ε (s). Set (xε (t ′), z(t ′)) = R̂εe (γ̂ ε (t ′)),
set t = t ′. Go to step 2.

Using this construction, it is straightforward to show

that analogues to the results of Proposition 1, and �eo-

rems 7.3 and 7.4 hold for the class of hybrid systems with

non-reversible edges we have considered so far in this ap-

pendix. We omit the details in the interest of brevity.
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