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• No need for exponential decrease/bounded increase of the Lyapunov function.
• New notion of τ -reachable set, i.e. the set reached at time τ after the switch.
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a b s t r a c t

In this work we address the problem of (outer) estimation of reachable sets in switched
linear systems subject to dwell-time switching. After giving some conditions that exploit
the well-known properties of exponential decrease/bounded increase of the Lyapunov
function (i.e. exponential decrease in between switching times and bounded increase at
switching times), we overcome the need for such properties. This is done by introducing a
new notion of τ -reachable set, i.e. the set that can be reached by the trajectories defined at
time τ after the switch. Such extended notion of reachable set can be used to parametrize
the estimate of the reachable set as a function of the distance in time from the switch. Two
approaches are provided to implement such parametrization: the first approach exploits
the evolution of the system in between switches via the matrix exponential of the state
subsystem matrix; the second approach exploits a time-scheduled Lyapunov function. A
numerical example is provided to show the effectiveness of the proposed methods and
computational cost is addressed.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Switched systems have emerged as an important class of hybrid systems and represent an active research area in the field
of control systems [1,2], with impactful applications in networked control, multi-agent systems, cybersecurity, and many
other subjects [3–5]. A switched system is composed of a family of continuous- or discrete-time subsystems and a switching
rule orchestrating the switching among them. Stability and stabilization topics have been among the main concerns in the
field of switched systems. An established technique to effectively deal with stability and stabilization of switched systems is
the so-called multiple Lyapunov function approach [6–10], combined with slowly switching such as dwell time and average
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dwell time switching [11–13]. Reachable set estimation, which aims to derive a bounded set that contains all the state
trajectories generated by a dynamic systemwith a prescribed class of initial state set and inputs, is anothermajor concern for
switched systems. Reachable set estimation is not only of theoretical interest in robust control theory [14,15], but also crucial
to engineering verification and validation problems [16,17]. In some early work, reachable set bounding was considered in
the context of state estimation and it has later received a lot of attention in parameter estimation, see [18] and references
therein. Recently, ellipsoidal techniques based on Lyapunov function have attracted some attention for estimating reachable
sets in different class of systems: in the framework of bounding ellipsoid, the quadratic Lyapunov function has played a
fundamental role in the reachable set estimation problem, and it has been applied to time-delay systems [19–21], singular
systems [22], and discrete-time switched systems [23].

However, to the best of the authors’ knowledge, the reachable set estimation for continuous-time switched systems
with constrained switching law is not very mature, which motivates our study in this paper. This study tackles the problem
of reachable set estimation for continuous-time switched systems via a multiple Lyapunov function approach. At first we
exploit the well-known properties of exponential decrease/bounded increase of the Lyapunov function (i.e. exponential
decrease in between switching times and bounded increase at switching times). Then we show how the need for these
properties can be overcome: this is done by introducing a new notion of τ -reachable set, i.e. the set that can be reached by
the trajectories defined at time τ after the switch. Such extended notion of reachable set is used to parametrize the estimate
of the reachable set as a function of the distance in time from the switch. Two approaches are provided to implement such
parametrization: the first one exploits the evolution of the system in between switches via thematrix exponential of the state
subsystemmatrix; the second exploits a time-scheduled quadratic Lyapunov function. Both approaches can be implemented
numerically by means of linear matrix inequalities. A numerical example is provided to show the effectiveness of the
proposed methods. Recently, [24] has considered the problem of reachable set estimation for continuous-time switched
systemswith constrained switching law. Even though the bounded increase condition at switching instants is removed, [24]
is still based on an exponential decrease condition in between switching instants: furthermore, differently from this work,
the concepts of τ -reachable set and parametrization the estimate of the reachable set are not exploited.

The rest of the paper is organized as follows: Section 2 provides the basic ideas behind the estimation of reachable sets.
Section 3 exploits the exponential decrease/bounded increase properties, while Section 4 overcomes the needs for these
properties. Section 5 discusses the numerical implementation via linear matrix inequalities, while Section 6 provides a
numerical example. Section 7 concludes the paper.

Notation: In this paper R and N+ represent the sets of real and positive natural numbers, while S+ represents the set of
symmetric and positive definite matrices. The transpose of a vector x or of amatrix P is indicated with x′ and P ′, respectively.
For a symmetric matrix P = P ′, the notation P > 0 means that P is positive definite. The operator Tr P represents the trace
of matrix P . Finally, for switched systems, the switching signal σ (·) will take values in the set M = {1, 2, . . . ,M}, with M
being the number of subsystems. We also use the notation {(t0, σ (t0)), (t1, σ (t1)), . . . , (tk, σ (tk)), . . . |k ∈ N+} to denote the
switching instants and the corresponding activated subsystem.

2. Preliminaries and problem formulation

In order introduce to the main ideas behind the estimation1 of reachable sets we start by considering the linear system

ẋ(t) = Ax(t) + Bw(t), x(0) = x0 (1)

with x ∈ Rnx being the state, w ∈ Rnw an external disturbance, A and B matrices of appropriate dimensions. Let us assume
the initial state x0 belongs to the ellipsoidal set

x0 ∈ X0 =
{
x0 ∈ Rnx | x′

0R0x0 ≤ 1, R0 ∈ Snx×nx
+

}
(2)

and the disturbance w satisfies the following ellipsoidal constraint

w ∈ W =
{
w ∈ Rnw | w′Rww ≤ 1, Rw ∈ Snw×nw

+

}
. (3)

The estimation of the reachable set amounts to estimate the set of states that can be reached by starting inside X0 for any
possible input disturbances inW . In order to have awell-posed problemwith bounded estimate, A is assumed to be Hurwitz.

The idea for estimating the reachable set is to consider a Lyapunov function V (x) and find a region RV̇ outside which the
derivative V̇ (x, w) of the Lyapunov function is negative definite for any w ∈ W , i.e.

RV̇ =
{
x ∈ Rnx | V̇ (x, w) < 0, ∀w ∈ W

}
(4)

where the derivative V̇ (x, w) of the Lyapunov function depends on both x and w in view of the system dynamics in (1). In
the following, the dependence of the derivative of the Lyapunov function on x and w will be omitted whenever obvious. We

1 The expression ‘estimate of the reachable set’ has to be intended as an outer estimate of the reachable set that contains the true reachable set.
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have that, inside RV̇ , one cannot guarantee V̇ < 0. Let us now denote with R the region defined by the smallest level set of
V which contains the region RV̇ , i.e.

RV̇ ⊆ R =
{
x ∈ Rnx | V (x) ≤ 1

}
. (5)

Note that, without loss of generality we take the smallest level set to be one, since the Lyapunov function V (x) can always be
scaled appropriately with a positive scalar. Then, using invariance theory [25], R is an outer estimate of the reachable set,
since, along the border of R every trajectory of (1) is pushed inside R for any w ∈ W .

Summarizing, using the S-procedure [26], the estimation of the reachable set for the linear system (1) can be obtained by
solving the following problem

V̇ − λ1(w′Rww − 1) − λ2(1 − V ) < 0

λ1, λ2 > 0
(6)

which expresses the fact that V̇ is negative definite for anyw ∈ W and for x such that V (x) ≥ 1. In addition, we needX0 ⊆ R,
i.e. x′

0R0x0 ≤ V (x0), ∀x0 ∈ X0. For a quadratic Lyapunov function V (x) = x′Px and the linear system (6) the estimation of the
reachable set can be written in the following LMI form

max Tr P

s.t.[
A′P + PA + λ2P PB

B′P −λ1Rw

]
< 0

λ1, λ2 > 0, λ1 ≤ λ2

R0 ≤ P

(7)

where themaximization of the trace of P is away tomake the outer estimateR as small as possible around the true reachable
set.

We can now extend the previous ideas to switched linear systems in the form

ẋ(t) = Aσ (t)x(t) + Bσ (t)w(t), x(0) = x0 (8)

subject to (2) and (3), and with σ ∈ M = {1, 2, . . . ,M}. In order to have a well-posed problem with bounded estimate, all
matrices Aσ , σ ∈ M are assumed to be Hurwitz. Let us assume the switching signal σ (·) satisfies the following definition.

Definition 1 (Dwell-time Switching). For a switching signal σ (·) and time instants t ≥ t ≥ 0, let N(t, t) denote the number of
discontinuities of σ in the open interval

[
t, t

)
. The switching signal σ (·) is said to have dwell time τd if there exists a positive

number τd such that

N(t, t) ≤ 1 +
t − t
τd

. (9)

With this definition, we are now ready to formulate the problem at hand:

Problem 1 (Reachable Set Estimation Under Dwell-time Switching). Consider the switched linear system (8) subject to
conditions (2), (3), and dwell-time switching (9). Find an outer estimateR of the reachable set, i.e. the level set of a Lyapunov
function as in (5) such that along the border of R every trajectory of (8) is pushed inside R for any w ∈ W .

3. Estimation based on exponential decrease/bounded increase properties

In stability of switched linear systems with dwell-time switching it is customary to use a multiple Lyapunov function
exploiting the following properties [27]:

• Exponential decrease: in between switching instants, the Lyapunov function decreases exponentially;
• Bounded increase: at switching instants, there is a bound on the possible increase of the Lyapunov function.

Similar properties can be used to estimate the reachable set, as stated by the following two lemmas.

Lemma 1. Consider the switched linear system (8) subject to conditions (2), (3), and (9). If there exist a family of positive definite
Lyapunov functions Vi : Rnx → R+, i ∈ M , with Vi(0) = 0, positive scalars λ1, λ2 > 0 and µ ≥ 1 such that

V̇i − λ1(w′Rww − 1) − λ2(1 − Vi) < 0, ∀i ∈ M (10a)

Vj(x(tk)) ≤ µVi(x(tk)), ∀i ̸= j ∈ M (10b)
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where tk are the switching instants, then, for the dwell time

τd >
ln(µ)

ζ
(11)

with 0 < ζ < λ1, the estimate of the set reachable by any initial state

x0 ∈ X 0 =
{
x0 ∈ Rnx | Vσ (0)(x0) ≤ β

}
⊇ X0 (12)

with β = λ2/(λ2 − ζ ) is

R =
{
x(t) ∈ Rnx | Vσ (t)(x(t)) ≤ µβ

}
. (13)

Proof. First, define the Lyapunov function V (x(t)) = Vσ (t)(x(t)) (in the following the explicit dependence of this Lyapunov
function on the state might be omitted when obvious, and only dependence on time will be indicated). Note that (10a) can
be written as

V̇i − λ1w
′Rww + λ1Vi − ϵ(1 − Vi) < 0, ∀i ∈ M

with λ2 = λ1 + ϵ. After choosing 0 < ζ < λ1 we have

V̇i + ζVi + (λ1 − ζ )Vi − λ1w
′Rww − ϵ(1 − Vi) (14)

= V̇i + ζVi +
[
(λ2 − ζ )Vi − λ1w

′Rww − ϵ
]

(15)

≤ V̇i + ζVi + [(λ2 − ζ )Vi − λ2] . (16)

Let us define β = λ2/(λ2 − ζ ): in view of (16) we recognize two cases in between switches:

(a) for V (t) ≥ β we have exponential decrease of V (·)
(b) for V (t) < β then V (·) may be increasing.

Case (a). We assume that V (t) ≥ β for t ∈
[
t, t + T

)
, where T > 0 is some time instant for which V (t + T ) ≥ β . Then,

exploiting the exponential decrease condition of (14) we have, for t ≤ t ≤ t + T ,

V (t) ≤ µN(t,t)e−ζ (t−t)V (t)

≤ µe
(
ln(µ)
τd

−ζ

)
(t−t)V (t)

where second inequality has been obtained by using (9). We obtain V (t) ≤ µV (t) for τd > ln(µ)/ζ , which implies that there
exists a time for which V enters the ball defined by β .

Case (b). If we are inside the ball defined byβ , in view of (10a)we cannot exit the ball, unless a switching occurs. Furthermore,
we have, at switching instants tk,

Vσ (t+k )(x(tk)) ≤ µVσ (tk)(x(tk))

which implies that a switch might bring me outside the ball β , after which, we are in case (a) again.
We conclude, by looking at the overall behavior of the Lyapunov function V (·), that (13) is an estimate of the reachable

set, for all initial states satisfying (12).

Remark 1. It is interesting to study the effect of ζ in (11) on the dwell time and on the estimate of the reachable set. We
note that, for ζ → 0

τd → ∞, β →
λ1 + ϵ

λ1 + ϵ
= 1 (17)

which gives us the maximum dwell time and the smallest estimate of the reachable set. On the other hand, for ζ → λ1

τd →
ln(µ)
λ1

, β →
λ1 + ϵ

ϵ
> 1 (18)

we obtain the minimum dwell time and the largest estimate of the reachable set.

A second lemma for estimation of the reachable set can now be stated, which is based also on exponential de-
crease/bounded increase conditions, but for the family of shifted Lyapunov functions Ṽi = Vi − 1, i ∈ M .
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Lemma 2. Consider the switched linear system (8) subject to conditions (2), (3), and (9). If there exist a family of positive definite
Lyapunov functions Ṽi + 1 = Vi : Rnx → R+, i ∈ M , with Ṽi(0) = −1, positive scalars λ1, λ2, γ , φ, δ > 0, and µ ≥ 1 such that

˙̃V i − λ1(w′Rww − 1) + λ2Ṽi < 0, ∀i ∈ M (19a)

Ṽj(x(tk)) ≤ µṼi(x(tk)) − γ (Ṽi(x(tk)) − δ), ∀i ̸= j (19b)

Ṽj(x(tk)) ≤ µδ − φ(δ − Ṽi(x(tk))), ∀i ̸= j (19c)

where tk are the switching instants, then, for the dwell time

τd >
ln(µ)
λ2

(20)

the estimate of the set reachable by any initial state

x0 ∈ X 0 =
{
x0 ∈ Rnx | Vσ (0)(x0) ≤ 1 + δ

}
⊇ X0 (21)

is given by

R =
{
x(t) ∈ Rnx | Vσ (t)(x(t)) ≤ 1 + µδ

}
. (22)

Proof. We first notice that (19b) implies

Ṽj(x(tk)) ≤ µṼi(x(tk)) for Ṽi(x(tk)) ≥ δ, ∀i ̸= j (23)

while (19c) implies

Ṽj(x(tk)) ≤ µδ for Ṽi(x(tk)) ≤ δ, ∀i ̸= j. (24)

Define the shifted Lyapunov function Ṽ (x(t)) = Ṽσ (t)(x(t)) (in the following the explicit dependence of this function on the
state might be omitted when obvious, and only dependence on time will be indicated) and note that (19a) implies decrease
of Ṽ (·) at exponential rate λ2 for Ṽ (t) ≥ 0. This time we define three cases

(a) for Ṽ (t) ≥ δ we have exponential decrease of Ṽ (·) at rate λ2, with possible jumps as in (23)
(b) for 0 ≤ Ṽ (t) < δ we have exponential decrease of Ṽ (·) at rate λ2, with possible jumps as in (24)
(c) for Ṽ (t) < 0 then Ṽ (·) may be increasing, and we might have jumps as in (24).

Case (a). We assume that Ṽ (t) ≥ δ for t ∈
[
t, t + T

)
, where T > 0 is some time instant for which Ṽ (t + T ) ≥ δ. Then,

exploiting the exponential decrease condition we have, for t ≤ t ≤ t + T ,

Ṽ (t) ≤ µN(t,t)e−λ2(t−t)Ṽ (t)

≤ µe
(
ln(µ)
τd

−λ2

)
(t−t)Ṽ (t)

where the second inequality has been obtained by (9). We obtain Ṽ (t) ≤ µṼ (t) for τd > ln(µ)/λ2, which implies that there
exists a time for which Ṽ (·) enters the ball defined by δ.

Case (b). We assume that at time t we have 0 ≤ Ṽ (t) < δ. Inside the ball defined by δ we still have exponential convergence
in between switches. So, due to the bounded effect of the jump as in (19c), it suffices to find the dwell-time τd with which
we will decay inside δ again after a jump, i.e.

µδe−λ2τd = δ.

It turns out that τd > ln(µ)/λ2, i.e. with this dwell time we cannot leave the region defined by Ṽ (t) ≤ µδ.

Case (c). Finally, in this case we have that, in view of (19a), we cannot exit the ball defined by the zero level set of Ṽ (·), unless
a switching occurs. In addition, at switching instants tk,

Ṽσ (t+k )(x(tk)) ≤ µδ

in which case we are in case (a) and (b) again.
We conclude, by looking at the overall behavior of the shifted Lyapunov function Ṽ (·), that for τd > ln(µ)/λ2 the estimate

of the reachable set is (22) for all initial states satisfying (21).

Remark 2. The reason why Lemmas 1 and 2 are not symmetrical (Lemma 1 has only one jump condition (10b), while
Lemma 2 has two jump conditions (19b) and (19c)) is that the condition Ṽj(x) ≤ µṼi(x) with µ ≥ 1 cannot be ensured in the
entire state space. For this reason, we impose that Ṽj(x) ≤ µṼi(x) is valid only outside a certain ball defined by δ.
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Remark 3. Both Lemmas 1 and 2 can be implemented numerically by means of linear matrix inequalities with quadratic
Lyapunov functions. The disadvantage of Lemma 2with respect to Lemma 1 is that it involvesmoremultipliers. On the other
hand, Lemma 2 might give some advantage since, differently from Remark 1, it may not require to enlarge the estimate of
the reachable set if we decrease the dwell time.

4. Estimation without exponential decrease/bounded increase properties

The previous lemmas are based on the well-known exponential decrease/bounded increase conditions. We now provide
alternative conditionswhich exploit the evolution of the system in between two switches. First the following definitionmust
be given.

Definition 2 (τ -reachable Set). Consider the switched linear system (8) under conditions (2) and (3), and dwell-time
switching τd. The τ -reachable set is the set that can be reached by the portions of trajectories of (8) defined in [tk + τ , tk+1),
k ∈ N+, where tk are the switching times.

The meaning of the τ -reachable set is that, instead of looking at the entire trajectory of (8), we neglect the portions
of trajectories defined in the open interval [tk, tk + τ ), and we look at the remaining portions of trajectories defined in
[tk + τ , tk+1). Since we are dealing with switched linear systems with dwell-time switching τd, it is relevant to estimate
where the trajectories are after the dwell time τd, i.e. have an estimate of the τd-reachable set. Let us denote such estimate
with Rτd . An estimate of the τd-reachable set is provided by the following lemma.

Lemma 3. Consider the switched linear system (8) subject to conditions (2), (3), and (9). If there exist a family of positive definite
Lyapunov functions Vi : Rnx → R+, i ∈ M , with Vi(0) = 0, positive scalars λ1, λ2, λ3, λ4 > 0 such that

V̇i − λ1(w′Rww − 1) − λ2(1 − Vi) < 0, ∀i ∈ M (25a)

Vj(x(tk + τd)) ≤ Vi(x(tk))
+ λ3(w′Rww − 1) − λ4(Vi(x(tk)) − 1), ∀i ̸= j (25b)

where tk are the switching instants, then for any initial state in the set

x0 ∈ X 0 =
{
x0 ∈ Rnx | Vσ (0)(x0) ≤ 1

}
⊇ X0 (26)

an estimate of the τd-reachable set is given by

Rτd =
{
x(t) ∈ Rnx | Vσ (t)(x(t)) ≤ 1

}
(27)

for t ∈ [tk + τd, tk+1).

Proof. The proof is based on invariant set theory. Define the Lyapunov function V (x(t)) = Vσ (t)(x(t)). In between switches,
condition (25a) guarantees that, for every disturbance satisfying (3), any state x for which V (x) ≥ 1 satisfies V̇ < 0, w ∈ W ,
which means that the trajectories outside V (x) ≥ 1 are attracted inside the level set, and the trajectories already inside the
level set will not leave the set.

The occurrence of a switch from subsystem i to jmight cause the trajectory to leave the set V (x) ≤ 1: however, for every
point on the border of the level set Vi(x) = 1, condition (25b) implies that Vj(x(tk + τd)) ≤ Vi(x(tk)) ≤ 1, i.e. we inside the
level set again. This, together with uniqueness of the solution of the switched system, implies that any point inside the set
V (x) ≤ 1 will return inside the set at time τd after any switch. As a result (27) is an estimate of the τd-reachable set for any
initial state in (26), which concludes the proof.

Lemma 3 does not provide directly any estimate R of the reachable set, but it suggests a way to estimate the reachable
set. The idea is to find, for every 0 ≤ T < τd and for the same Lyapunov function in (25), the level set κ of V such that

RT =
{
x(t) ∈ Rnx | Vσ (t)(x(t)) ≤ κ

}
(28)

for t ∈ [tk, tk + T ). By doing this, we are parameterizing the estimate of the reachable set as a function of T , where T denotes
the distance from the last switching instants. This is formalized in the second part of Lemma 3, whose straightforward proof
is omitted.

Lemma 3 (Continued). For the same family of positive definite Lyapunov functions Vi : Rnx → R+, i ∈ M , of the first part
Lemma 3, if there exist positive scalars λ5, λ6 > 0 and κ ≥ 1 such that

Vj(x(tk + T )) ≤ κ + λ5(w′Rww − 1) − λ6(1 − Vi(x(tk))), ∀i ̸= j, T ∈ [0, τd) (29)
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where tk are the switching instants, then for any initial state in the set

x0 ∈ X 0 =
{
x0 ∈ Rnx | Vσ (0)(x0) ≤ 1

}
⊇ X0 (30)

an estimate of the T-reachable set is given by

RT =
{
x(t) ∈ Rnx | Vσ (t)(x(t)) ≤ κ

}
(31)

for t ∈ [tk + T , tk+1).

By exploiting the result in the second part of Lemma 3, not only the reachable set can be estimated for T → 0, but it is
possible to define different estimates RT of the T -reachable set depending on the distance T from the switch: eventually, for
T → τd, we have κ → 1 and convergence of RT to Rτd .

5. Numerical implementation of Lemma 3

The last step is how to implement the conditions in Lemma 3. In the following we propose two numerical approaches via
Linear Matrix Inequalities (LMIs): the first one is based on the matrix exponential of the state subsystemmatrices, while the
second one is based on a time-scheduled Lyapunov function.

5.1. Matrix exponential-based approach

Take a set of disturbance inputsw(s), s = 1, . . . , S, whose convex hullWc satisfiesW ⊆ Wc . The numerical implementation
of the matrix exponential-based approach is formalized in the following theorem.

Theorem 1. If the following is satisfied

max
M∑

m=1

Tr Pm (32a)

s.t.[
A′

iPi + PiAi + λ2iPi B′

iPi
PiBi −λ1iRw

]
< 0 (32b)

λ1i , λ2i > 0, λ1i ≤ λ2i (32c)[
eA

′
iτdPjeAiτd − Pi + λ4Pi eA

′
iτdPjBiw

(s)

w(s)′B
′

iPje
Aiτd w(s)′B

′

iPjBiw
(s)

− λ4i

]
≤ 0 (32d)

λ4i > 0, s = 1, . . . , S (32e)

R0 ≤ Pi (32f)

where Bi =
∫ τd
0 eAi(τd−s)Bids, then an outer estimate of the τd-reachable set is

Rτd =
{
x(t) ∈ Rnx | x′(t)Pσ (t)x(t) ≤ 1

}
(33)

for t ∈ [tk + τd, tk+1). Once the family of Lyapunov function has been found via (32a)–(32f), the estimates of the T-reachable sets
at different time instants T can be calculated from

min κ (34a)

s.t.[
eA

′
iTPjeAiT − λ6Pi eA

′
iTPjB̌iw

(s)

w(s)′B̌′

iPje
AiT w(s)′B̌′

iPjB̌iw
(s)

− κ + λ6i

]
≤ 0 (34b)

λ6i > 0, κ ≥ 1 (34c)

where B̌i =
∫ T
0 eAi(T−s)Bids and the estimate is given by

RT =
{
x(t) ∈ Rnx | x′(t)Pσ (t)x(t) ≤ κ

}
(35)

for t ∈ [tk + T , tk+1).
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Proof. The proof follows directly from the two steps of Lemma 3, taking into account that (32) derives from (25), while
(34) derives from (29). In particular, the following reasoning lies behind the LMIs (32) and (34). For a linear systemwe have,
when the subsystem i is active in the interval [tk, tk + τd)

x(tk + τd) = eAiτdx(tk) +

∫ τd

0
eAi(τd−s)Biwds (36)

We observe that, for a constant w(s), we can bring w(s) outside the integral and write (32d) as a result of condition (25b).
The main intuition is that, by using the superposition principle for linear systems, if the input is a convex combination of
w(s), then the state will also be the convex combination of the resulting outputs, which leads to evaluating different LMIs for
different w(s). The proof is concluded by substituting (36) in (25b) and (29), and by noticing that multipliers λ3 in (25b) and
λ5 in (29) disappear due to substituting the variable w with its realizations w(s), s = 1, . . . , S.

Remark 4. Note that in (32) and (34) no exponential decrease/ bounded increase property of the Lyapunov function is
used, but rather the evolution of the subsystems via the subsystem state matrices. With respect to this, the approach can
be regarded as an extension of the famous stability condition in [28]. Also note that the idea of having different estimates
RT , depending on the time passed after the switch, can be used with Lemmas 1 and 2 as well, with the difference that more
conservative conditions will be obtained, due to the need for the exponential decrease/bounded increase properties.

5.2. Time-scheduled based approach

A second approach to the numerical solution of Lemma 3, can be derived by observing that the idea of having different
estimates RT , 0 ≤ T < τd can be formalized via the celebrated time-scheduled Lyapunov function approach [29,30].
The crucial idea behind the time-scheduled Lyapunov function approach is that the Lyapunov function can be taken to be
time-dependent in between tk and tk+τd, and constant in between tk+τd and tk+1. Timedependence is created bypartitioning
the dwell time τd =

∑L
l=0δ

[l]
τd
, by taking different ‘samples’ P [l]

i , l = 0, . . . , L of the Lyapunov matrix and by interpolating
them as

P(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P [l]
i + (P [l+1]

i − P [l]
i )

t − tk
δ

[l+1]
τd

tk +

l−1∑
r=0

δ[r]
τd

≤ t

≤ tk +

l∑
r=0

δ[r]
τd

P [L]
i tk +

L∑
r=0

δ[r]
τd

≤ t ≤ tk+1

(37)

where i = σ (tk). The numerical implementation of the time-scheduled based approach is formalized in the following
theorem.

Theorem 2. If the following is satisfied

max
M∑

m=1

L∑
l=1

Tr P [l]
m (38a)

s.t.[
Ṗ [l]
i + A′

iP
[l]
i + P [l]

i Ai + λ2iP
[l]
i B′

iP
[l]
i

P [l]
i Bi −λ1iRw

]
< 0 (38b)[

Ṗ [l]
i + A′

iP
[l+1]
i + P [l+1]

i Ai + λ2iP
[l+1]
i B′

iP
[l+1]
i

P [l+1]
i Bi −λ1iRw

]
< 0 (38c)[

A′

iP
[L]
i + P [L]

i Ai + λ2iP
[L]
i B′

iP
[L]
i

P [L]
i Bi −λ1iRw

]
< 0 (38d)

P [L]
i − P [0]

j ≥ 0, l = 0, . . . , L − 1, i ̸= j (38e)

λ1i , λ2i > 0, λ1i ≤ λ2i (38f)

R0 ≤ P [L]
i (38g)

where Ṗ [l]
i =

P[l+1]
i −P[l]

i
δ
[l+1]
τd

and Bi =
∫ τd
0 eAi(τd−s)Bids, then an outer estimate of the τd-reachable set is

Rτd =

{
x(t) ∈ Rnx | x′(t)P [L]

σ (t)x(t) ≤ 1
}

(39)
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for t ∈ [tk + τd, tk+1). Furthermore, an outer estimate of the T-reachable set is given by

RT =
{
x(t) ∈ Rnx | x(t)′Pσ (t)(T )x(t) ≤ 1

}
(40)

for t ∈ [tk + T , tk+1).

Proof. While the matrix exponential-based approach involves two steps (32) and (34) in the spirit of Lemma 3, the explicit
definition of the interpolation (37),makes it possible for the time-scheduled based approach to require a unique optimization
step (38). For this peculiar characteristic, it is more straightforward to prove Theorem 2 via a special case of Lemmas 1 and
2 with µ = 1: first, note that for µ = 1 Lemmas 1 and 2 coincide (for Lemma 2 we can select γ = 0 and φ = µ); second,
note that Lemmas 1 and 2 are valid also for non-autonomous Lyapunov functions (i.e. explicitly dependent on time, e.g. as
in (37)).

After these observations, we take V (t) = x′(t)Pσ (t)(t)x(t), with Pσ (t)(t) as in (37), and we note that conditions (38) amount
to the same conditions in Lemma 1 with µ = 1: in particular, using Lemma 3 in [29] we derive that (38b) and (38c) implies
(10a) in between [tk, tk + τd) (with Ṗ [l]

i being part of the time derivative of the Lyapunov function (37)). In addition, (38d)
implies (10a) in between [tk + τd, tk+1). At switching times, we have that (38e) implies Vσ (t+k )(x(tk)) ≤ Vσ (tk)(x(tk)). The proof
is concluded by noticing that the estimate of the set reachable is given by

R =
{
x(t) ∈ Rnx | Vσ (t)(x(t)) ≤ 1

}
which, by using the interpolation (37), results in the estimate of the τd-reachable set (39) and the estimate of the T -reachable
set (40).

The following remarks follow:

Remark 5. As revealed by the proof of Theorem 2, the time-scheduled Lyapunov function approach provides a nice
connection between Lemmas 1 and 2 (for µ = 1), and Lemma 3. One might be tempted to think that solving Lemmas 1
and 2 for µ = 1 requires a common Lyapunov function (in view of the condition Vj(x(tk)) ≤ Vi(x(tk)), which for a common
Lyapunov function automatically becomes Vj(x(tk)) = Vi(x(tk))). The time-scheduled Lyapunov function approach, however,
overcomes the need for a common Lyapunov function by allowing

x′(tk)P
[0]
σ (t+k )

x(tk) ≤ x′(tk)P
[L]
σ (tk)

x(tk)

with possibly different Lyapunov functions.

Remark 6. The time-scheduled Lyapunov function approach might be computationally more expensive than the matrix
exponential -based approach, since it involvesmore positive definitematrices P [l]

i , l = 0, . . . , L. On the other hand, it requires
to select less multipliers (in particular, we do not need the multipliers λ4i in (32d)) and, furthermore, it does not require to
approximate the set (3) with a convex hull Wc that satisfies W ⊆ Wc .

6. Numerical example

The following switched system is used to validate the proposed ideas

A1 =

[
−0.5 −0.4
3 −0.5

]
, B1 =

[
0.2 0
0 0.2

]
A2 =

[
−0.5 −3
0.4 −0.5

]
, B2 =

[
0.2 0
0 0.2

]
which is a disturbance version of the celebrated switched system example with ‘orthogonal’ phase planes.

For Lemma 1 we used λ1 = 0.3, λ2 = 0.4, and µ = 5. Fig. 1 shows the results of Lemma 1 with infinite dwell time
(ζ → 0) and smallest estimate of reachable set (level set β = 1): we can verify that the reachable set coincides with the
reachable sets of the stand-alone subsystems. Fig. 1 also shows the results of Lemma 1 with minimum dwell time (ζ → λ1,
τd = 5.36) and largest estimate of reachable set (level set β = 5). Validation of Lemma 1 (for minimum dwell time) for 1000
initial conditions inside the initial set is presented in Fig. 2.

For Lemma 2 we used λ1 = 0.3, λ2 = 0.4, µ = 7.5, φ = 5.0, δ = 1.6, and γ = 2.5. Fig. 3 shows the results of Lemma 2
where, differently from Lemma 1, the size of the estimate of reachable set (level set 1 + µδ = 13) is not influenced by the
dwell time (τd = 5.04). It is then interesting to compare Lemmas 1 and 2: for this example we see that Lemma 2 leads to not
only a smaller dwell time, but also a smaller estimate of the reachable set than Lemma 1. Validation of Lemma 2 for 1000
initial conditions inside the initial set is presented in Fig. 4.

For Lemma 3 (using the matrix exponential-based implementation) we used λ1 = 0.3, λ2 = 0.4, λ4 = 0.3, and λ6 = 0.5.
Fig. 5 shows the results of Lemma 3 for the dwell time τd = 5.04: the estimates of T -reachable sets are given at the following
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Fig. 1. Lemma 1: infinite dwell time: X 0 (smaller dash-dotted), R (smaller solid); minimum dwell time: X 0 (larger dash-dotted), R (larger solid).

Fig. 2. Validation of Lemma 1.

time instants from the switch: 0, 1.01, 2.01, 3.02, and 4.03. The corresponding level sets are κ = 5.98, 4.81, 3.20, 2.02, 1.31,
which decrease toward one as indicated by Lemma3. The smallest set in Fig. 5 corresponds to the estimate of the τd-reachable
set: it can be also seen that the estimates are sensibly smaller than in Lemmas 1 and 2 (note the different scale in Fig. 5 and
following figures). Validation of Lemma 3 for 1000 initial conditions inside the initial set is presented in Fig. 6.

For Lemma 3 (using the time-scheduled Lyapunov function implementation) we used λ1 = 0.3 and λ2 = 0.4. In order
to have a fair comparison with the exponential matrix-based implementation, we split the dwell time τd = 5.04 in 5 equal
parts, which correspond the same instants previously mentioned: 1.01, 2.01, 3.02, and 4.03. Fig. 7 shows the estimates of
T -reachable sets: the smallest set in Fig. 7 corresponds to the estimate of the τd-reachable set. It can be also seen that the
estimates are comparablewith the ones in thematrix exponential-based implementation. Validation of this implementation
of Lemma 3 for 1000 initial conditions inside the initial set is presented in Fig. 8.

Finally, Table 1 compares the approaches from a computational point of view, in terms of the decision variables and
inequalities arising from the solution of Lemmas 1–3. It can be seen that Lemmas 1 and 2 are computationally less intensive
(while giving more conservative results): in particular, Lemma 2 is slightly more intensive than Lemma 2 as discussed in
Remark 3. Lemma 3 (in its double implementation, the matrix exponential-based or the time-scheduled based) involves
more decision variables and inequalities: in particular, for the example at hand, thematrix exponential-based approachwith
S = 6 (the number of points used to approximate the disturbance set) is less costly than the time-scheduled based approach
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Table 1
Computational cost of different lemmas.

No. decision var. No. constraints

Lemma 1 16 6
Lemma 2 20 7
Lemma 3, S = 6 (matrix exp.) 84 8
Lemma 3, L = 5 (time sched.) 116 36

Fig. 3. Lemma 2: X 0 (dash-dotted), R (solid).

Fig. 4. Validation of Lemma 2.

with L = 5 (the number of points used to interpolate the Lyapunov function). This is consistent with what discussed in
Remark 6. Finally, it has to be noted that the computational cost of the matrix exponential-based approach will increase
with S, while the computational cost of the time-scheduled based approach will increase with L.

7. Conclusions

This work addressed the problem of (outer) estimation of reachable sets in switched linear systems subject to dwell-time
switching. The main contribution of this work was to overcome the need for exponential decrease/bounded increase of
the Lyapunov function (i.e. exponential decrease in between switching times and bounded increase at switching times).
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Fig. 5. Lemma 3 (exponential matrix-based): Rτd (dash-dotted), RT for different T (solid).

Fig. 6. Validation of Lemma 3 (exponential matrix-based).

This was done by introducing a new notion of reachable set: the τ -reachable set, i.e. the set that can be reached by the
trajectories defined at time τ after the switch. Such extended notion of reachable set have been used to parametrize the
estimate of the reachable set as a function of the distance from the switch. In this way one can obtain an ‘envelope’
of estimates depending how much time passed from the last switch. Two numerical approaches have been provided to
implement such parametrization: the first approach exploits the evolution of the system in between switches via the
matrix exponential of the state subsystemmatrix, while the second approach exploits a time-scheduled Lyapunov function
approach. Both approaches can be implemented via linear matrix inequalities, and a numerical example was provided to
show the effectiveness of the proposed methods.
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Fig. 7. Lemma 3 (time-scheduled Lyapunov): Rτd (dash-dotted), RT for different T (solid).

Fig. 8. Validation of Lemma 3 (time-scheduled Lyapunov).
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