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Computing the projected reachable set of switched
affine systems: an application to systems biology

Francesca Parise, Maria Elena Valcher and John Lygeros

Abstract—A fundamental question in systems biology is what
combinations of mean and variance of the species present in
a stochastic biochemical reaction network are attainable by
perturbing the system with an external signal. To address this
question, we show that the moments evolution in any generic
network can be either approximated or, under suitable assump-
tions, computed exactly as the solution of a switched affine
system. Motivated by this application, we propose a new method
to approximate the reachable set of switched affine systems. A
remarkable feature of our approach is that it allows one to easily
compute projections of the reachable set for pairs of moments of
interest, without requiring the computation of the full reachable
set, which can be prohibitive for large networks. As a second
contribution, we also show how to select the external signal in
order to maximize the probability of reaching a target set. To
illustrate the method we study a renown model of controlled gene
expression and we derive estimates of the reachable set, for the
protein mean and variance, that are more accurate than those
available in the literature and consistent with experimental data.

I. INTRODUCTION

One of the most impressive results achieved by synthetic
biology in the last decade is the introduction of externally
controllable modules in biochemical reaction networks. These
are biochemical circuits that react to external signals, as for
example light pulses [1], [2], [3] or concentration signals [4],
[5], allowing researchers to influence and possibly control the
behavior of cells in vivo. To fully exploit these tools, it is
important to first understand what range of behaviors they
can exhibit under different choices of the external signal. For
deterministic systems, this amounts to computing the set of
states that can be reached by the controlled system trajectories
starting from a known initial configuration [6], [7]. Since
chemical species are often present in low copy numbers
inside the cell, biochemical reaction networks can however be
inherently stochastic [8]. In other words, if we apply the same
signal to a population of identical cells, then every cell will
have a different evolution (with different likelihood), requiring
a probabilistic analysis.

If we interpret each cell has an independent realization, we
can then study the effect of the external signal on a population
of cells by characterizing how such a signal influences the
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moments of the underlying stochastic process. Specifically, in
this paper we pose the following question:

“What combinations of moments of the stochastic process
can be achieved by applying the external signal?”

This approach is motivated for example by biotechnology
applications, where one would like to control the average
behavior of the cells in large populations, instead of each
cell individually. More on the theoretical side, this perspective
can be useful to investigate fundamental questions on noise
suppression in biochemical reaction networks, as in [9].

The cornerstone of our approach is the observation that
while the number of copies in each cell is stochastic, the
evolution of the moments is deterministic and can either
be described or approximated by a switched affine system.
Consequently, the above question can be reformulated as a
reachability problem in the moment space. Computing the
exact reachable set of a switched affine system is in general
far from trivial, see [10], [11]. We thus start our analysis by
proposing a new method to approximate the reachable set of a
switched affine system. This is an extension of the hyperplane
method for linear systems suggested in [12] and is of interest
on its own. We then show how to apply the proposed approach
to biochemical reaction networks by distinguishing two cases:

1) If all the reactions follow the laws of mass action kinetics
and are at most of order one, the system of moments
equations is switched affine. Consequently, for this class
of networks, the above question can be solved by directly
applying the newly suggested hyperplane method in the
moments space;

2) For all other reaction networks the moments equations
are in general non-closed (i.e., the evolution of mean and
variance depends on higher order moments). We show
however that the evolution of the probability of being in
a given state can be described by an infinite dimensional
switched system and that the desired moments can be
computed as the output of such system. We then show:
i) How to approximate such an infinite dimensional
system with a finite dimensional one, by extending the
finite state projection method [13] to controllable net-
works, ii) How to compute the reachable set of the finite
dimensional system by applying the newly suggested
hyperplane method in the probability space, and iii) How
to recover an approximation of the original reachable set
from the reachable set of the finite dimensional system.

In the last part of the paper, we change perspective and,
instead of focusing on population properties, we consider the
behaviour of a single cell (i.e., a single realization of the
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process), given a fixed initial condition or an initial probability
distribution. Such perspective has been commonly employed
for the case without external signals, see e.g. [14], [15], [16],
[13]. Our objective is to show how the external signal can be
used to control single cell realizations by posing the following
question

“What external signal should be applied to maximize the
probability that the cell trajectory reaches a prespecified
subset of the state space at the end of the experiment?”

We show that such a problem can be addressed by using
similar tools as those derived for the population analysis.

Comparison with the literature: A vast literature has been
devoted to the analysis of the reachable set of piecewise-
affine systems in the context of hybrid systems, see e.g. [10],
[17], [18], [19], [20], [21], [22] among many. Our results
are different because we exploit the specific structure of the
problem at hand, that is, the fact that the switching signal is
a control variable and that the dynamics in each mode are
autonomous and affine. In other words, we consider switched
affine systems for which the switching signal is the only
control action. We also note that many different methods have
been proposed in the literature to compute the reachable set
of generic nonlinear systems. Among these there are level set
methods [23], ellipsoidal methods [24] and sensitivity based
methods [25]. For example, we became aware at the time
of submission that the authors of [26] extended our previous
works [27], [28] by suggesting the use of ellipsoidal methods.
It is important to stress that the choice of a method that
scales well with the system size is essential in our context,
since biochemical networks are typically very large. Moreover,
biologists are often interested in analyzing the behavior of
only a few chemical species of the possibly many involved
in the network. Consequently, one is usually interested in
computing the projection of the reachable set (which is a
high-dimensional object) on some low-dimensional space of
interest. The hyperplane method that we propose stands out
in this respect since, by using a method tailored for switched
systems, it allows one to compute directly the projections of
the reachable set, without requiring the computation of the
full high-dimensional reachable set first. We thus avoide the
curse of dimensionality that characterises all the previously
mentioned methods. We note that part of the results of this
paper appeared in our previous works [28], [29]. Specifically,
in [28] we first suggest the use of the hyperplane method to
compute the reachable set of biochemical networks with linear
moment equations, which we then adapted in [28] to the case
of switched affine moment equations. As better detailed in
Section IV-A, the assumptions made both in [28] and [29]
do not allow for bimolecular reactions, which are instead
present in the vast majority of biochemical networks. The key
contribution of this paper is the generalisation of our analysis
to any biochemical network by using the approach described
in point 2) above. The analysis of single cell realizations is
also entirely new.

Outline: In Section II we present the hyperplane method.
In Section III-A we review how to compute the hyperplane
constants for linear systems, while in Section III-B we propose

a new procedure for switched affine systems. In Section IV
we introduce stochastic biochemical reaction networks and the
controlled chemical master equation (CME). Additionally, we
recap how to derive the moments equations from the CME
(Section IV-A) and we derive an extension of the finite state
projection method to controlled biochemical networks (Section
IV-B). In Section V we show how to compute the reachable
set of biochemical networks and in Section VI we derive the
results on single cell realizations. Section VII illustrates our
theoretical results on a gene expression case study.

Notation: Given a < b ∈ N, we set N[a, b] := {a, a +
1, . . . , b}. Given a set S, the symbol ∂S denotes its boundary,
conv(S) its convex hull and |S| its cardinality. For a vector
x ∈ Rn, xp := [x]p denotes its pth component, |x| :=

[|x1|>, . . . , |xn|>]> and ‖x‖∞ := maxp=1,2,...,n |xp| denotes
the infinity norm. 1 denotes a vector of all ones. Given two
random variables Z1, Z2, we denote by V[Z1] and V[Z1, Z2]
their variance and covariance, respectively.

II. REACHABILITY TOOLS

A. The reachable set and the hyperplane method

Consider the n-dimensional nonlinear control system

ẋ(t) = f(x(t), σ(t)), t ≥ 0, (1)

where x is the n-dimensional state and σ the m-dimensional
input function. Set a final time T > 0 and let S be the set of
admissible input functions that we assume to be a subset of
the set of all measurable functions that map [0, T ] into Rm.
We assume that the function f : Rn×Rm → Rn is such that,
for every initial condition x(0) ∈ Rn and every input function
σ ∈ S, the solution of (1), denoted by x(t;x(0), σ), t ≥ 0, is
well defined and unique at every time t ≥ 0. The reachable
set of system (1) at time T is defined as the set of all states
x ∈ Rn that can be reached at time T , starting from x(0), by
using an admissible input function σ ∈ S.

Definition 1 (Reachable set at time T ). The reachable set at
time T > 0 from x(0) = x0, for system (1) with admissible
input set S, is

RT (x0) := {x ∈ Rn | ∃ σ ∈ S : x = x(T ;x0, σ)}. (2)

From now on we will assume that the set RT (x0) is
compact, since this will be the case for all the systems of
interest analysed in the following. Computing such a reachable
set for nonlinear systems is in general a very difficult task. For
the case of linear systems with bounded inputs a method to
construct an outer approximation ofRT (x0) as the intersection
of a family of half-spaces that are tangent to its boundary (see
Fig. 1) was proposed in [12].

We present here a generalisation of this method to sys-
tem (1). For a given direction c ∈ Rn, let us define

vT (c) := max
x∈RT (x0)

c>x, (3)

where, for simplicity, we omitted the dependence of vT (c) on
the initial condition x0. Let

HT (c) := {x ∈ Rn | c>x = vT (c)} (4)
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Fig. 1. Illustration of the hyperplane method for a convex reachable set
RT (x0) (in blue). The external parallelogram is the outer approximation, the
region in between the dotted lines is the inner approximation.

be the corresponding hyperplane. By definition of the constant
vT (c), the associated half-space

HT (c) := {x ∈ Rn | c>x ≤ vT (c)} (5)

is a superset of RT (x0). We note that if ∂RT (x0) is smooth,
then HT (c) is the tangent plane to ∂RT (x0). By evaluating
the above hyperplanes and half-spaces for various directions,
one can construct an outer approximation of the reachable set,
as illustrated in the next theorem. If the reachable set is convex
then an inner approximation can also be derived.

Theorem 1 (The hyperplane method [12]). Given system (1),
an initial condition x0 ∈ Rn, a fixed time T > 0, an integer
number D ≥ 2, and a set of D directions C := {c1, . . . , cD},
define the half-spaces HT (cd) as in (5), for d = 1, . . . , D.

1) The set

RoutT (x0) := ∩Dd=1HT (cd)

is an outer approximation of the reachable set RT (x0)
at time T starting from x0.

2) If the set RT (x0) is convex and for each d = 1, 2, . . . , D,
we select a (tangent) point

x?T (cd) ∈ RT (x0) ∩ HT (cd) (6)

then the set

RinT (x0) := conv
(
{x?T (cd), d = 1, 2, . . . , D}

)
is an inner approximation of the reachable set RT (x0)
at time T starting from x0. �

Remark 1. We note that by construction the outer approx-
imation RoutT (x0) is a convex object. Specifically, when the
number of hyperplanes tends to infinity RoutT (x0) coincides
with the convex hull of RT (x0). Similarly, for any set RT (x0),
the set RinT (x0) is an inner approximation of the convex hull
of RT (x0). However, the inner approximation of the convex
hull of a set is an inner approximation of the set itself only if
such set is convex, as assumed in the previous theorem. �

The main advantage of this method is that hyperplanes
are very easy objects to handle and visualise. The main
disadvantage is that the higher the dimension n of the state
space, the higher in general is the number of directions D

required to obtain a good characterisation of the reachable
set. In the next subsection we show how to avoid this curse
of dimensionality, in cases when only the projection of the
reachable set on a plane of interest is needed.

B. The output reachable set
Let the output of system (1) be

y(t) = Lx(t), (7)

for L ∈ Rp×n, and the output reachable set be the set of all
output values that can be generated at time T from x(0) = x0,
by using an admissible input function σ ∈ S.

Definition 2 (Output reachable set at time T ). The output
reachable set RyT (x0) from x0 at time T > 0, for system (1)
with admissible input set S and output as in (7), is

RyT (x0) := {y ∈ Rp | ∃ x ∈ RT (x0) : y = Lx}.

For simplicity, in the following we restrict our discussion
to the case of a two-dimentional output vector, that is

y(t) = Lx(t) =

[
l>1 x(t)
l>2 x(t)

]
∈ R2, (8)

for some l1, l2 ∈ Rn, the generalization to higher dimentions
is however immediate. Note that, for any pair of indices
i, j ∈ {1, . . . , n}, i 6= j, one can recover the projection of
the reachable set RT (x0) onto an (xi, xj)-plane of interest by
imposing l1 = ei and l2 = ej . The two-dimentional output
vector case can therefore be applied to study the relation
between the mean behavior of two species or between mean
and variance of a single species in large biochemical networks.

In the following theorem we show that inner and outer
approximations of RyT (x0) can be efficiently computed by
selecting only hyperplanes that are perpendicular to the plane
of interest.

Theorem 2 (Projection on a two dimensional subspace).
Consider system (1), with output (8) and initial condition
x0 ∈ Rn. Let T > 0 be a fixed time, D ≥ 2 an integer number
and choose D values γd ∈ R. Set cd := l2 − γdl1 ∈ Rn and

HyT (γd) := {y ∈ R2 | y2 ≤ γdy1 + vT (cd)},

where vT (cd) is as in (3). Set y?T (γd) := Lx?T (cd), where
x?T (cd) is defined as in (6). Then the set

Ry,outT (x0) := ∩Dd=1H
y
T (γd) (9)

is an outer approximation of RyT (x0). Moreover, if RT (x0) is
convex then the set

Ry,inT (x0) := conv
(
{y?T (γd), d = 1, 2, . . . , D}

)
(10)

is an inner approximation of RyT (x0). �

Proof: By definition, for any ȳ ∈ RyT (x0) there exists
an x̄ ∈ RT (x0) such that ȳ> = [l>1 x̄, l

>
2 x̄]. By Theorem 1,

for any direction cd it holds that RT (x0) ⊂ HT (cd). Conse-
quently, x̄ ∈ RT (x0) implies x̄ ∈ HT (cd). By substituting the
definition of cd given in the statement we get

x̄ ∈ HT (cd)⇔ (cd)>x̄ ≤ vT (cd)⇔
⇔ (l2 − γdl1)>x̄ ≤ vT (cd)⇔ l>2 x̄ ≤ γdl>1 x̄+ vT (cd).
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The last inequality implies ȳ> = [l>1 x̄, l
>
2 x̄] ∈ HyT (γd).

Consequently, RyT (x0) ⊆ HyT (γd) for any γd and therefore
RyT (x0) ⊆ Ry,outT (x0). If RT (x0) is convex, then RyT (x0)
is convex as well. The points y?T (γd) belong to RyT (x0) by
construction. Consequently, by convexity, it must hold that
Ry,inT (x0) ⊆ RyT (x0).

III. COMPUTING THE TANGENT HYPERPLANES

The success of the hyperplane method hinges on the possi-
bility of efficiently evaluating, for any given direction c, the
constant vT (c) in (3). Note that this problem is equivalent to
the following finite time optimal control problem

vT (c) := max
σ∈S

c>x(T ) (11)

s.t. ẋ(t) = f(x(t), σ(t)), ∀t ∈ [0, T ],

x(0) = x0.

In the rest of this section, we aim at solving (11). To this end,
we start by recalling the linear case, for which the hyperplane
method was originally derived in [12].

A. Linear systems with bounded input

The hyperplane method was originally proposed for linear
systems with bounded inputs

ẋ(t) = Ax(t) +Bσ(t), (12)

where x(t) ∈ Rn, A ∈ Rn×n, B ∈ Rn×m and σ(t) ∈ Rm.
Since biological signals are non-negative and bounded, we
here make the following assumption on the input set S.

Assumption 1. The input function σ belongs to the ad-
missible set SΣ := {σ | σ(t) ∈ Σ,∀t ∈ [0, T ]}, where
Σ = Σ1 × . . . × Σm. Moreover, there exist σ̄r > 0, r ∈
N[1,m], such that either (a) every set Σr is the interval
Σcr := [0, σ̄r] (continuous and bounded input set), or (b)
for every set Σr there exists 2 ≤ qr < +∞ such that
Σdr :=

{
0 = σ1

r < σ2
r < . . . < σqrr = σ̄r

}
⊂ R≥0 (finite input

set). We set Σc := Σc1× . . .×Σcm, Σd := Σd1× . . .×Σdm, and
denote by SΣc and SΣd the corresponding admissible sets.

In the case of a continuous and bounded input set, i.e. under
Assumption 1-(a), it was shown in [12] that it is possible to
solve the control problem in (11) in closed form by using the
Maximum Principle [30].

Proposition 1 (Tangent hyperplanes for linear systems with
bounded and continuous inputs). Consider system (12) and
suppose that Assumption 1-(a) holds. Define the following
admissible input function, expressed component-wise for every
rth entry, r = 1, . . . ,m, as

σ?r (t) : =


σ̄r if c>eA(T−t)br > 0;

0 if c>eA(T−t)br < 0;

0 ≤ σr ≤ σ̄r if c>eA(T−t)br = 0;

(13)

where br denotes the rth column of B. Then

vT (c) = c>eATx0 +
∑m
r=1 σ̄r

∫ T
0

[
c>eA(T−t)br

]
+
dt, (14)

where [g(t)]+ denotes the positive part of the function, namely
[g(t)]+ = g(t) when g(t) > 0 and zero otherwise. Suppose
additionally that the pair (A, br) is reachable, for every r ∈
N[1,m]. Then there exists no interval [τ1, τ2], with 0 ≤ τ1 <
τ2 ≤ T , such that c>eA(T−t)br = 0 for every t ∈ [τ1, τ2].
Consequently, a tangent point can be obtained as

x?T (c) := eATx0 +
∫ T

0
eA(T−t)Bσ?(t)dt. (15)

�

The proof follows the same lines as [12, Lemma 2.1 and
Theorem 2.1] and is omitted for the sake of brevity.

By using the explicit characterisation given in Proposition 1
together with Theorems 1 and 2, one can efficiently construct
both an inner and an outer approximation of the (output)
reachable set for linear systems with continuous and bounded
input set Σc, as summarised in the next corollary. Therein we
also show how the same result can be extended to finite input
sets Σd.

Corollary 1 (The hyperplane method for linear systems).
Consider system (12) and suppose that either Assumption 1-
(a) or Assumption 1-(b) holds. Let vT (cd) and x?T (cd) be
computed as in (14) and (15). Then RoutT (x0) and RinT (x0)
(Ry,outT (x0) and Ry,inT (x0), resp.) as defined in Theorem 1
(Theorem 2, resp.) are outer and inner approximations of
RT (x0) (of RyT (x0), resp.).

Proof: In the case of continuous and bounded input,
that is, under Assumption 1-(a), the reachable set RT (x0)
is convex and the statement is a trivial consequence on
Theorems 1 and 2 and Proposition 1. We here show that the
same result holds also under Assumption 1-(b). The proof of
this second part follows from the fact that the reachable set
RcT (x0), obtained by using the continuous input set Σc, and
the reachable set RdT (x0), obtained by using the discrete input
set Σd, coincide. To prove this, let RbbT (x0) be the reachable
set obtained using Σbbr := {0, σ̄r} for any r, that is, the set of
vertices of Σc. Consider now an arbitrary point x̄ ∈ RcT (x0),
which is a compact set. By definition there exists an admissible
input function in Σc that steers x0 to x̄ in time T . Since Σc

is a convex polyhedron, by [31, Theorem 8.1.2], system (12)
with input set Σc has the bang-bang with bound on the number
of switchings (BBNS) property. That is, for each x̄ ∈ RcT (x0)
there exists a bang-bang input function in Σbb that reaches x̄
in the same time T with a finite number of discontinuities.
Thus x̄ ∈ RbbT (x0). Since this is true for any x̄ ∈ RcT (x0),
we get RcT (x0) ⊆ RbbT (x0). From Σbb ⊆ Σd ⊆ Σc we get
RbbT (x0) ⊆ RdT (x0) ⊆ RcT (x0), concluding the proof.

B. Switched affine systems

In this section, we propose an extension of the hyperplane
method to the case of a switched affine system of the form

ẋ(t) = Aσ(t)x(t) + bσ(t), (16)

where the switching signal σ(t) ∈ N[1, I] is the input
function, I ≥ 2 is the number of modes, x(t) ∈ Rn and
Ai ∈ Rn×n, bi ∈ Rn for all i ∈ N[1, I]. We make the
following assumption.



5

Assumption 2. The switching signal σ(t) switches K times
within the finite set N[1, I] at fixed switching instants 0 = t0 <
. . . < tK+1 = T , that is, σ ∈ SKI , where

SKI := {σ | σ(t) = ik ∈ N[1, I],∀t ∈ [tk, tk+1), k ∈ N[0,K]}.

For every k ∈ N[0,K] and i ∈ N[1, I] we define Āki :=

eAi(tk+1−tk) and b̄ki = [
∫ (tk+1−tk)

0
eAiτdτ ]bi. Moreover, we

set xk := x(tk). Note that under Assumption 2 the reachable
set of system (16) consists of a finite number of points that
can be computed by solving the state equations for each
possible switching signal. Since the cardinality of the set
SKI grows exponentially with K, this approach is however
computationally infeasible even for small systems. We here
show that, on the other hand, the hyperplane constants defined
in (11) can be computed by solving a mixed integer linear
program (MILP), thus allowing us to exploit the sophisticated
software that has been developed to solve large MILPs in the
last years.

Proposition 2 (Tangent hyperplanes for switched affine sys-
tems). Consider system (16) and suppose that Assumption 2
holds. Take a vector M ∈ Rn such that M ≥ |xk| component-
wise for all k ∈ N[0,K]. Then

vT (c) = max
xk,zki ,γ

k
i

c>xK+1 (17)

s.t. zk+1
i ≤ (Āki xk + b̄ki ) + M(1− γki ),

zk+1
i ≥ (Āki xk + b̄ki )−M(1− γki ),

zk+1
i ≥ −Mγki , zk+1

i ≤Mγki ,

zki ∈ Rn, ∀k ∈ N[1,K + 1],∀i ∈ N[1, I],

γki ∈ {0, 1}, ∀k ∈ N[0,K],∀i ∈ N[1, I],

xk =
∑I
i=1 z

k
i ∈ Rn, ∀k ∈ N[1,K + 1],∑I

i=1 γ
k
i = 1, ∀k ∈ N[0,K],

x0 ∈ Rn assigned.

Proof: To prove the statement we follow a procedure
similar to the one in [32, Section IV.A]. Under Assumption 2
the switching signal σ(t) is such that σ(t) = ik,∀t ∈
[tk, tk+1),∀k ∈ N[0,K]. Therefore, the finite time optimal
control problem in (11) can be rewritten as

vT (c) = max
ik∈{1,...,I}

c>xK+1 (18)

s.t. xk+1 = Ākikxk + b̄kik ∀k ∈ N[0,K]

x0 ∈ R assigned.

Let us introduce the binary variables γki ∈ {0, 1} defined
so that, for each i ∈ N[1, I] and k ∈ N[0,K], γki = 1
if and only if the system is in mode i in the time interval
[tk, tk+1). Moreover, let us introduce a copy of the state
vector for each possible update of the system in each possible
mode: zk+1

i = (Āki xk + b̄ki )γki . Then (18) is equivalent to the

following optimisation problem

vT (c) := max
xk,zki ,γ

k
i

c>xK+1 (19)

s.t. zk+1
i = (Āki xk + b̄ki )γki , ∀i ∈ Σ,∑I
i=1 γ

k
i = 1, ∀k ∈ N[0,K],

xk =
∑I
i=1 z

k
i , ∀k ∈ N[1,K + 1],

x0 ∈ R assigned.

Finally, by using the big-M method in [33, Eq. (5b)], the first
equality constraint in the optimization problem (19) can be
equivalently replaced by

zk+1
i ≤ (Āki xk + b̄ki ) + M(1− γki ), zk+1

i ≥ −Mγki ,

zk+1
i ≥ (Āki xk + b̄ki )−M(1− γki ), zk+1

i ≤Mγki ,

leading to the equivalent reformulation given in (17).

We summarize our results on the hyperplane method for
switched affine systems in the next corollary, which is an
immediate consequence of Proposition 2 and Theorems 1, 2.

Corollary 2 (The hyperplane method for switched affine
systems). Given system (16), let x0 ∈ Rn be the initial state
and suppose that Assumption 2 holds. Let vT (cd) be computed
as in (17). Then RoutT (x0) and Ry,outT (x0) as defined in
Theorems 1 and 2 are outer approximations of RT (x0) and
RyT (x0), respectively. �

Note that in the case of switched affine systems it is not
possible to recover an inner approximation, since there is
no guarantee in general that the reachable set is convex. By
computing the convex hull of the points xK+1 in (17) for each
direction c one could however recover an inner approximation
of the convex hull of RT (x0).

IV. CONTROLLED STOCHASTIC BIOCHEMICAL REACTION
NETWORKS

A biochemical reaction network is a system comprising S
molecular species Z1, ..., ZS that interact through R reactions.
Let Z(t) = [Z1(t), ..., ZS(t)]> be the vector describing the
number of molecules present in the network for each species
at time t, that is, the state of the network at time t. Since
each reaction r is a stochastic event [8], Z(t) is a stochastic
process. In the following, we always use the upper case to
denote a process and the lower case to denote its realizations.
For example, z = [z1, ..., zS ]> denotes a particular realization
of the state Z(t) of the stochastic process at time t.

A typical reaction r ∈ N[1, R] can be expressed as

ν′1rZ1 + . . .+ ν′SrZS −→ ν′′1rZ1 + . . .+ ν′′SrZS , (20)

where ν′1r, . . . , ν
′
Sr ∈ N and ν′′1r, . . . , ν

′′
Sr ∈ N are the coef-

ficients that determine how many molecules for each species
are respectively consumed and produced by the reaction. The
net effect of each reaction can thus be summarized with
the stoichiometric vector νr ∈ NS , whose components are
ν′′sr − ν′sr for s = 1, . . . , S. We say that a reaction is of order
k if it involves k reactant units (i.e.,

∑S
s=1 ν

′
sr = k) and we

distinguish two classes of reactions:
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-uncontrolled reactions that happen, in the infinitesimal inter-
val [t, t+ dt], with probability

αr(θr, z)dt := θr · hr(z) · dt, (21)

where hr(z) is a given function of the available molecules z
and θr ∈ R≥0 is the so-called rate parameter;
- controlled reactions for which there exists an external signal
ur(t) such that the reaction fires at time t with probability

ur(t) · αr(θr, z)dt. (22)

In the following we refer to αr(θr, z) as the propensity of the
reaction and without loss of generality we assume that the con-
trolled reactions are the first Q ones. If hr(z) := ΠS

s=1

(
zs
ν′
sr

)
we say that reaction r follows the laws of mass action kinetics
as derived in [8]. Our analysis can however be applied to
generic functions hr(z), allowing us to model different types
of kinetics, as the Michaelis-Menten [34, Section 7.3].

To illustrate the following results, we consider a model of
gene expression as running example.

Example 1 (Gene expression reaction network). Consider a
biochemical network consisting of two species, the mRNA (M )
and the corresponding protein (P ), and the following reactions

∅ α1(kr,z)−−−−−−−−→ M M
α3(kp,z)−−−−−−−−→ M + P

M
α2(γr,z)−−−−−−−−→ ∅ P

α4(γp,z)−−−−−−−−→ ∅

where the parameters kr and kp are the mRNA and protein
production rates, while γr and γp are the mRNA and protein
degradation rates, respectively. The empty set notation is used
whenever a certain species is produced or degrades without
involving the other species. In this context, Z = [M,P ]>,
z = [m, p]>, θ = [θ1, θ2, θ3, θ4]> := [kr, γr, kp, γp]

> and the
stoichiometric matrix is

ν := [ν1, ν2, ν3, ν4] =

[
1 −1 0 0
0 0 1 −1

]
.

In the case of mass action kinetics the propensities αr(θr, z)
can be further specified as α1(kr, z) = kr, α2(γr, z) = γr ·
m, α3(kp, z) = kp ·m, α4(γp, z) = γp · p. �

Note that since the propensity of each reaction depends
only on the current state of the system, the process Z(t) is
Markovian. Let p(t, z) := P[Z(t) = z] be the probability that
the realization of the process Z at time t is z. Following the
same procedure as in [8] one can derive a set of equations,
known as chemical master equation (CME), describing the
evolution of p(z, t) as a function of the external signal u(t)

ṗ(z, t) =

Q∑
r=1

[p(z − νr, t)αr(θr, z − νr)− p(z, t)αr(θr, z)]ur(t)

+

R∑
r=Q+1

[p(z − νr, t)αr(θr, z − νr)− p(z, t)αr(θr, z)] , ∀z ∈ NS .

(23)

Since the previous set of equations depends on the external
signal u we refer to it as the controlled CME. Typical biochem-
ical reaction networks involve many different species, whose

counts can theoretically grow unbounded. Consequently, the
controlled CME in (23) is a system of infinitely many coupled
ordinary differential equations that cannot be solved, even
for very simple systems. Several analytical and computational
methods have been proposed in the literature to circumvent this
difficulty, see [34], [35], [36] for a comprehensive review. In
the following we limit our discussion to two methods: moment
equations [37] and finite state projection (FSP) [13].

A. The moment equations

We start by considering the case when all the reactions
follow the laws of mass action kinetics and are at most of
order one. In this case for each reaction r the propensity hr(z)
is affine in the molecule counts vector z and one can show
that the moments equations are closed (i.e., the dynamics of
moments up to any order k do not depend on higher order
moments), see for example [38]. Let x≤2(t) be a vector whose
components are the moments of Z(t) up to second order. From
[38, Equations (6) and (7)] one gets

ẋ≤2(t) = A(u(t))x≤2(t) + b(u(t)). (24)

Example 2. Consider the gene expression model of Exam-
ple 1. Assume that the reactions follow the mass action kinetics
and that an external input signal influencing the first reaction,
that is the mRNA production, is available (as in [1], [2], [3],
[4], [5]), so that α1(kr, z) := kr · u(t). Set

x≤2 := [E[M ],E[P ],V[M ],V [M,P ],V[P ]]>.

Then the moments evolution over time is expressed as

ẋ≤2(t) = Ax≤2(t) +Bu(t), (25)

where

A =


−γr 0 0 0 0
kp −γp 0 0 0
γr 0 −2γr 0 0
0 0 kp −(γr + γp) 0
kp γp 0 2kp −2γp

 , B =


kr
0
kr
0
0

 .
�

Since the input u(t) may appear in the entries of the A
matrix, the moment equations (24) are in general nonlinear.
To overcome this issue we introduce the following assumption
on the external signal u(t).

Assumption 3. The external signal u(t) can switch at most
K times within the set Σd, as defined in Assumption 1, at
preassigned switching instants 0 = t0 < . . . < tK+1 = T .

Assumption 3 imposes that the number of switchings and
their timing during a given experiment is fixed a priori.
This assumption can be motivated by the fact that changes
in the external stimulus are costly and/or stressful for the
cells. Moreover, it is trivially satisfied if the stimulus can
only be changed simultaneously with some fixed events, such
as culture dilution or measurements. The great advantage of
Assumption 3 is that, as illustrated in the following remark, it
allows us to rewrite the nonlinear moment equations (24) as a
switched affine system so that the theoretical tools described
in Section III-B can be applied.
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Remark 2. The set Σd has finite cardinality I := Πm
r=1qr

and we can enumerate its elements as ui, i ∈ N[1, I].
Consequently, for any fixed external signal u(t) satisfying
Assumption 3 we can construct a sequence of indices in N[1, I]
such that, at any time t, σ(t) = i if and only if u(t) = ui.
Such switching sequence σ satisfies Assumption 2. �

B. The finite state projection

Let us introduce a total ordering {zj}∞j=1 in the set of
all possible state realizations z ∈ NS . For the system in
Example 1, we could for instance use the mapping

z1 = (0, 0), z2 = (1, 0), z3 = (0, 1), z4 = (2, 0),

z5 = (1, 1), z6 = (0, 2), z7 = (3, 0), z8 = (2, 1), . . .

where (m, p) denotes the state with m mRNA copies and p
proteins (see Fig. 2).

Fig. 2. State space for the gene expression system of Example 1.

Following the same steps as in [13] and setting1 Pj(t) :=
p(zj , t), the controlled CME in (23) can be rewritten as the
nonlinear infinite dimensional system

Ṗ (t) = F (u(t))P (t), (26)

where P (t) is an infinite dimensional vector with entries in
[0, 1]. If the signal
u(t) satisfies Assumption 3, then (26) can be rewritten as

an infinite dimensional linear switched system

Ṗ (t) = Fσ(t)P (t), (27)

with switching signal σ(t) constructed from u(t) as detailed
in Remark 2, I = Πm

r=1qr modes and matrices Fi := F (ui).
Note that system (27) can also be thought of as a Markov
chain with countably many states zj ∈ NS and time-varying
transition matrix Fσ(t).

As in the FSP method for the uncontrolled CME [13], one
can try to approximate the behavior of the infinite Markov
chain in (27) by constructing a reduced Markov chain that
keeps track of the probability of visiting only the states
indexed in a suitable set J . To this end, let us define the
reduced order system

˙̄PJ(t) =
[
Fσ(t)

]
J
P̄J(t), P̄J(0) = PJ(0), (28)

where PJ(0) is the subvector of P (0) corresponding to the
indices in J , and [F ]J denotes the submatrix of F obtained
by selecting only the rows and columns with indices in J .

1Not to be confused with the symbol used to denote the amount of protein.

Note that while the full matrix Fσ(t) is stochastic, the reduced
matrix

[
Fσ(t)

]
J

is substochastic. Consequently, the probability
mass is in general not preserved in (28) (i.e. 1>P̄J(t) may
decrease with time). From now on, we denote by P (T ;σ)
and P̄J(T ;σ) the solutions at time T of system (27) and sys-
tem (28), respectively, when the switching signal σ is applied.
The dependence on the initial conditions P (0) and PJ(0) is
omitted to keep the notation compact. As in the uncontrolled
case, the truncated system (28) is a good approximation of
the original system (27) if most of the probability mass lies in
J . However in the controlled case we need to guarantee that
this happens for all possible switching signals. This intuition
is formalized in the following assumption.

Assumption 4. For a given finite set of state indices J , an
initial condition PJ(0), a given tolerance ε > 0 and a finite
instant T > 0,

1
>P̄J(T ;σ) ≥ 1− ε, ∀σ ∈ SKI . (29)

Note that Assumption 4 holds if and only if

1− ε ≤ min
σ∈SK

I

1
>P̄J(T ;σ)

s.t. ˙̄PJ(t;σ)=
[
Fσ(t)

]
J
P̄J(t;σ), P̄J(0) = PJ(0).

This problem has the same structure as (11). Therefore, as
illustrated in Section III-B, Assumption 4 can be checked by
solving the MILP (17) for the switched affine system (28) by
setting c = 1 and M = 1. Under Assumption 4, the following
relation between the solutions of (27) and (28) holds.

Proposition 3 (FSP for controlled CME). If Assumptions 2
and 4 hold, then for every switching signal σ ∈ SKI , it holds

Pj(T ;σ) ≥ P̄j(T ;σ), ∀j ∈ J
‖PJ(T ;σ)− P̄J(T ;σ)‖1 ≤ ε.

Proof: This result has been proven in [13] for linear
systems. We extend it here to the case of switched systems
with K switchings. Note that for any i ∈ N[1, I], Fi := F (ui)
has non-negative off diagonal elements [13]. Hence, using the
same argument as in [13, Theorem 2.1] it can be shown that
for any index set J , and any τ ≥ 0

[exp(Fiτ)]J ≥ exp([Fi]Jτ) ≥ 0, ∀i ∈ 1, . . . , I.

Consider an arbitrary switching signal σ ∈ SKI . We have

PJ(T ;σ) = [ΠK
k=0exp(Fik(tk+1 − tk)) · P (0)]J (30)

≥ ΠK
k=0[exp(Fik(tk+1 − tk))]J · PJ(0)

≥ ΠK
k=0exp([Fik ]J(tk+1 − tk)) · PJ(0) = P̄J(T ;σ).

Moreover, from 1 =
∑∞
j=1 Pj(T ;σ) ≥

∑
j∈J Pj(T ;σ) =

1
>PJ(T ;σ) and Assumption 4, we get

1
>P̄J(T ;σ) ≥ 1− ε ≥ 1

>PJ(T ;σ)− ε. (31)

Combining (30) and (31) yields 0 ≤ 1
>PJ(T ;σ) −

1
>P̄J(T ;σ) ≤ ε, thus ‖PJ(T ;σ)− P̄J(T ;σ)‖1 ≤ ε.
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V. ANALYSIS OF THE REACHABLE SET

We here show how the reachability tools of Sections II
and III can be applied to the moment equation and FSP
reformulations derived in Sections IV-A and IV-B, under
different assumptions. Fig. 3 presents a conceptual scheme
of this section.

Fig. 3. Conceptual scheme for the reachable set analysis of biochemical networks.

A. Reachable set of networks with affine propensities via
moment equations

The methods developed in Sections II and III can be applied
to the moments equations in (24) to approximate the desired
projected reachable set. To illustrate the proposed procedure,
we distinguish two cases depending on whether the external
signal u(t) influences reactions of order zero or one.

1) Linear moments equations: We start by considering the
case when all and only the reactions of order zero are con-
trolled, so that hr(z) = 1 for r ∈ N[1, Q] and hr(z) = ν′r

>
z

for r ∈ N[Q + 1, R]. This is the simplest scenario since the
system of moment equations given in (24) becomes linear

ẋ≤2(t) = Ax≤2(t) +Bu(t), (32)

see [38, Equations (6) and (7)]. Consequently, the theoretical
results of Section III-A can be applied to (32) by setting
σ(t) ≡ u(t). If the external signal u ≡ σ satisfies Assumption
1, both inner and outer approximations of the reachable set
can be computed by using Corollary 1.

2) Switched affine moments equations: If reactions of order
one are controlled then the external input u(t) appears also in
the entries of the A matrix and system (24) is nonlinear. To
overcome this issue we exploit Assumption 3. Specifically, let
σ(t) be the switching signal associated with u(t) as described
in Remark 2. Then (24) can be equivalently rewritten as the
switched affine system

ẋ≤2(t) = Aσ(t)x≤2(t) + bσ(t), (33)

with matrices Ai := A(ui), bi := b(ui), for all i ∈ N[1, I].
Consequently, the theoretical results of Section III-B can be
applied to (33) and an outer approximation of the reachable
set can be computed by using Corollary 2.

B. Reachable set of networks with generic propensities via
finite state projection

If the network contains reactions of order higher than one or
if the reactions do not follow the laws of mass action kinetics,
then hr(z) might be non-affine. In such cases, the arguments
illustrated in the previous subsection cannot be applied. We
here show how the FSP approximation of the CME derived in
Section IV-B can be used to overcome this problem.

Firstly note that, from system (27), one can compute the
evolution of the uncentered moments of Z(t), as a linear
function of P (t). 2 For example, if we let zjs be the amount of
species Zs in the state zj , then the mean E[Zs] of any species
s can be obtained as l>P (t), by setting l :=

[
z1
s , z

2
s , . . .

]>
,

and the second uncentered moment E[Z2
s ] can be obtained as

l>P (t), by setting l :=
[
(z1
s)2, (z2

s)2, . . .
]>
. Consequently

the desired projected reachable set coincides with the output
reachable set of the infinite dimensional linear switched sys-
tem (27) with linear output

y(t) =
[
l1, l2

]>
P (t), (34)

where l1 and l2 are the infinite vectors associated with any
desired pair of moments. Note that l1 and l2 are non-negative.

Example 1 (cont.) With the ordering introduced at the
beginning of the section, the uncentered protein moments up
to order two can be computed as the output of (27) by setting

l1 =
[

0 0 1 0 1 2 0 1 . . .
]>
,

l2 =
[

0 0 1 0 1 4 0 1 . . .
]>
.

(35)

Let l1j and l2j be the j-th components of the vectors l1 and l2,
respectively, as defined in (34). For a given species of interest
s and set J , we denote by

y1(t;σ) :=

∑
j∈J l

1
j · Pj(t;σ)∑

j∈J Pj(t;σ)
, y2(t;σ) :=

∑
j∈J l

2
j · Pj(t;σ)∑

j∈J Pj(t;σ)
(36)

the moments associated with l1 and l2 conditioned on
the fact that Z(t) is in J and the switching signal σ
is applied. For example if one is interested in the mean
and second order moment of a specific species Zs(t) we
get y1(t;σ) = E [Zs(t) | Z(t) ∈ J, σ(·)] and y2(t;σ) =
E
[
Z2
s (t) | Z(t) ∈ J, σ(·)

]
. The aim of this section is to ob-

tain an outer approximation of the output reachable set of
the infinite system (27) with the nonlinear output (36), by
using computations involving only the finite dimensional sys-
tem (28). To this end, we define the two entries of the output
of the finite dimensional system as

ȳ1(t;σ) :=
∑
j∈J l

1
j · P̄j(t;σ) =: (l̄1)>P̄J(t;σ)

ȳ2(t;σ) :=
∑
j∈J l

2
j · P̄j(t;σ) =: (l̄2)>P̄J(t;σ).

(37)

Theorem 3. Suppose Assumptions 3 and 4 hold. Let RyT (x0)
be the output reachable set at time T > 0 of system (27)
with output (36). Choose D values γd ∈ R and set cd :=
(l̄2)− γd(l̄1) ∈ Rn, with l̄1, l̄2 as in (37). Set

HyT (γd) := {w ∈ R2 | w2 ≤ γdw1 + v̄T (cd) + δ(γd)},

2The reachable set for the centered moments can be immediately computed
from the reachable set of the uncentered ones, since there is a bijective relation
between the set of centered and uncentered moments up to any desired order.
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where v̄T (cd) is the constant that makes the hyperplane
HT (cd) in (5) tangent to the reachable set of the finite
system (28) (i.e. v̄T (cd) can be computed as in (17)) and

δ(γd) := 2ε
1−ε · (max{0,−γd} · ‖l̄1‖∞ + ‖l̄2‖∞),

with ε as in Assumption 4. Then the set Ry,outT (x0) :=
∩Dd=1{H

y
T (γd)} is an outer approximation of RyT (x0). �

Proof: Firstly note that if the external signal u satisfies
Assumption 3 then the corresponding switching signal σ(t)
(constructed as in Remark 2) satisfies Assumption 2. Let
R̄yT (x0) be the output reachable set of the finite dimensional
system (28) with output (37). Proposition 2 guarantees that for
any direction cd the constant v̄T (cd) that makes

H̄yT (γd) := {w ∈ R2 | w2 ≤ γdw1 + v̄T (cd)}

tangent to R̄yT (x0) can be computed by solving the MILP (17)
for system (28). The main idea of the proof is to show that if
we shift the halfspace H̄yT (γd) by a suitably defined constant
δ(γd) we can guarantee that the original reachable set RyT (x0)
is a subset of the shifted halfspace HyT (γd) defined in the
statement. The result then follows since Ry,outT (x0) is defined
as the intersection of hyperspaces containing RyT (x0).

To derive the constant δ(γd) we start by focusing on the
first component of the output and for simplicity we will
omit the dependence on (T ;σ) in Pj , P̄j , y and ȳ. Take any
switching signal σ ∈ SKI . By taking into account the following
conditions: (1) l1j ≥ 0 for all j ∈ J ; (2) Pj ≥ P̄j for all j ∈ J ,
due to Proposition 3, and (3)

∑
j∈J Pj ≤ 1, we get y1 ≥ ȳ1.

Consequently, at time t = T we have

|y1 − ȳ1| = y1 − ȳ1 =
∑

j∈J l
1
j ·Pj∑

j∈J Pj
−
∑
j∈J l

1
j · P̄j

≤
∑

j∈J l
1
j ·Pj

1−ε −
∑
j∈J l

1
j · P̄j

=
(

1 + ε
1−ε

)∑
j∈J l

1
j · Pj −

∑
j∈J l

1
j · P̄j

= ε
1−ε

∑
j∈J l

1
j · Pj +

∑
j∈J l

1
j · (Pj − P̄j)

≤ ‖l̄1‖∞
(

ε
1−ε

∑
j∈J Pj +

∑
j∈J(Pj − P̄j)

)
≤ ‖l̄1‖∞

(
ε

1−ε + ‖PJ − P̄J‖1
)
≤ ‖l̄1‖∞ 2ε

1−ε ,

where we used
∑
j∈J Pj ≥

∑
j∈J P̄j ≥ 1 − ε (due to

Assumption 4), and Pj ≥ P̄j , ‖PJ−P̄J‖1 ≤ ε (following from
Proposition 3). To summarize, ȳ1 ≤ y1 ≤ ȳ1 + ‖l̄1‖∞ 2ε

1−ε .

Similarly, it can be proven that ȳ2 ≤ y2 ≤ ȳ2 + ‖l̄2‖∞ 2ε
1−ε .

Consider any pair (y1, y2) ∈ RyT (x0) and the associated
pair (ȳ1, ȳ2) ∈ R̄yT (x0) (i.e. the two output pairs obtained
from (27) and (28) when the same σ is applied). Note that
(ȳ1, ȳ2) ∈ R̄yT (x0) implies (ȳ1, ȳ2) ∈ H̄yT (γd) for any γd.
The previous relations then imply that if γd ≥ 0,

y2 ≤ ȳ2 + ‖l̄2‖∞ 2ε
1−ε ≤ γ

dȳ1 + v̄T (cd) + ‖l̄2‖∞ 2ε
1−ε

≤ γdy1 + v̄T (cd) + ‖l̄2‖∞ 2ε
1−ε = γdy1 + v̄T (cd) + δ(γd).

On the other hand, when γd < 0

y2 ≤ ȳ2 + ‖l̄2‖∞ 2ε
1−ε ≤ γ

dȳ1 + v̄T (cd) + ‖l̄2‖∞ 2ε
1−ε

≤ γdy1 + v̄T (cd) + (‖l̄2‖∞ − γd‖l̄1‖∞) 2ε
1−ε

= γdy1 + v̄T (cd) + δ(γd).

Therefore for every signal σ and every γd it holds
y2(T ;σ) ≤ γdy1(T ;σ) + v̄T (cd) + δ(γd) and consequently
[y1(T ;σ), y2(T ;σ)]> ∈ HyT (γd).

VI. ANALYSIS OF SINGLE CELL REALIZATIONS

The previous analysis focused on characterising what com-
binations of moments of the stochastic biochemical reaction
network are achievable by using the available external input.
In this section, we change perspective and instead of looking
at population properties we focus on single cell trajectories.
Specifically, we are interested in characterising the probability
that a single realization of the stochastic process will satisfy a
specific property at the final time T (e.g. the number of copies
of a certain species is higher/lower than a certain threshold)
when starting from an initial condition P (0). Note that we can
start either deterministically from a given state zi (by setting
P (0) = ei) or stochastically from any state according to a
generic vector of probabilities P (0). To define the problem
let us call T the target set, that is, the set of all indices i
associated with a state zi in the Markov chain (26) that satisfies
the desired property. Note that this set might be of infinite
size. We restrict our analysis to external signals satisfying
Assumption 3, so that we can map the external signal u to the
switching signal σ, as detailed in Remark 2. For a fixed signal
σ the solution of (27) immediately allows one to compute the
probability that the state at time T belongs to T , and thus
has the desired property, as PT (σ) := 1

>
T P (T ;σ) where 1T

is an infinite vector that has the ith component equal to 1 if
i ∈ T and 0 otherwise. Our objective is to select the switching
signal σ(t) (and thus the external signal u(t)) that maximizes
the probability PT (σ).3 That is, we aim at solving

P?T := max
σ∈SK

I

PT (σ), σ? := arg max
σ∈SK

I

PT (σ), (38)

where I is the cardinality of Σd as by Remark 2. Note that
PT (σ) in (38) is computed according to P (T ;σ) which is an
infinite dimentional vector. In the next theorem we show how
to overcome this issue and approximately solve (38) by using
the FSP approach of Proposition 3 and the reformulation as
MILP given in Proposition 2. To this end, let

σ̄? := arg max
σ∈SK

I

P̄T (σ). (39)

where P̄T (σ) := 1̄
>
T P̄J(T ;σ) is the probability that the final

state of the reduced Markov chain (28) belongs to T ∩ J at
time T given the switching signal σ, and 1̄T is a vector of
size |J | that has 1 in the positions corresponding to states of
J that belong also to T , and 0 otherwise.

Theorem 4. Suppose that Assumptions 3 and 4 hold. Then

PT (σ̄?) ≥ P?T − 2ε.

Moreover (39) can be solved by solving the MILP in (17) for
system (28) with c = 1̄T and M = 1. �

3Note that one can use the same tools to maximize the probability of
avoiding a given set D by maximizing the probability of being in T = Dc.
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Proof: Under Assumption 3 and 4, for any set T and any
signal σ, we get

1
>
T P =

∑
i∈T Pi ≤

∑
i∈T ∩J Pi +

∑
i/∈J Pi ≤

∑
i∈T ∩J Pi+ε

≤
∑
i∈T ∩J P̄i +

∑
i∈T ∩J |Pi − P̄i|+ ε

≤
∑
i∈T ∩J P̄i + ‖PJ − P̄J‖1 + ε = 1̄

>
T P̄ + 2ε,

and 1
>
T P =

∑
i∈T Pi ≥

∑
i∈T ∩J Pi ≥

∑
i∈T ∩J P̄i = 1̄

>
T P̄ ,

where we used Assumption 4 and Proposition 3 and we
omitted (T ;σ) for simplicity. To sum up, for each σ,

P̄T (σ) ≤ PT (σ) ≤ P̄T (σ) + 2ε.

By imposing σ = σ? we get P?T = PT (σ?) ≤ P̄T (σ?)+2ε ≤
P̄T (σ̄?)+2ε. By imposing σ = σ̄? we get P̄T (σ̄?) ≤ PT (σ̄?).
Combining the last two inequalities we get the desired bound.
The last result can be proven as in Proposition 2. Note that P̄
is a vector of probabilities, hence we can set M = 1.

VII. THE GENE EXPRESSION NETWORK CASE STUDY

To illustrate our method we consider again the gene expres-
sion model of Example 1 and determine what combinations of
the protein mean and variance are achievable starting from the
zero state, under different assumptions on the external signal.

A. Single input

Consider the gene expression model with one external
signal and reactions following the mass action kinetics, as
described in Example 2. In this case, the moments equations
are linear and the protein mean and variance can be obtained
by assuming as output matrix for the linear system (25)

L :=

[
0 1 0 0 0
0 0 0 0 1

]
.

Depending on the experimental setup, the external signal u(t)
may take values in the set Σd := {0, 1}, if the input is of
the ON-OFF type [1], [2], [3], [5], or in the interval Σc :=
[0, 1], if the input is continuous [4]. Corollary 1 guarantees
the validity of the following results both for Σd and Σc. The
problem of computing an outer approximation of the reachable
set of this system was studied in [27] using ad hoc methods. In
Fig. 4 we compare the outer approximation obtained therein
(magenta dashed/dotted line) with the inner (solid red) and
outer (dashed blue) approximations that we obtained using
the methods for linear moment equations of Section V-A1.
We used the parameters kr = 0.0236, γr = 0.0503, kp =
0.18, γp = 0.0121 (all in units of min−1) and set T = 360
min. Figure 4 shows that the outer approximation computed
using the hyperplane method is more accurate than the one
previously obtained in the literature. Moreover, since inner and
outer approximations practically coincide, this method allows
one to effectively recover the reachable set.

B. Single input and saturation

As second case study we consider again Example 2, but we
now assume that not all the reactions follow the laws of mass
action kinetics. Specifically, we are interested in investigating
how the reachable set changes if we assume that the number

Fig. 4. Comparison of the inner (red solid) and outer (blue dashed)
approximations of the reachable set for the protein mean and variance,
according to model (25), computed using the hyperplane method and the
outer approximation computed according to [27] (magenta dashed/dotted).

of ribosomes in the cell is limited and consequently we impose
a saturation to the translation propensity. Following [39], we
assume that the translation rate follows the Michaelis-Menten
kinetics so that

α3(kp, z) = k̃p · a·m
b+a·m instead of α3(kp, z) = kp ·m.

For the simulations we impose k̃p = 0.7885, b = 0.06, a =
0.02, so that the maximum reachable protein mean is the
same as in the case without saturation analysed in the pre-
vious subsection. The corresponding propensity function is
illustrated in Fig. 5a). All the other propensities are assumed
as in Section VII-A. Note that in this case the propensities
are not affine. Consequently, we estimate the reachable set by
using the FSP approach derived in Theorem 3. Specifically
we consider as set J the indices corresponding to states with
less than 6 mRNA copies and 40 protein copies. By assuming
T = 360 min and that u can switch any 30 minutes in the
set Σd = {0, 1}, we obtain an error ε = 2.84 · 10−4. Fig. 5b)
shows the comparison of the reachable sets obtained for the
cases with and without saturation. From this plot it emerges
that, for the chosen values of parameters, saturation leads to
a decrease of variability in the population.

a)

b)

Fig. 5. Comparison of the reachable set for the protein mean and variance, according
to the model in Example 2, when all the reactions follows the mass action kinetics (as
in Fig 4) and when the translation is saturated. Figure a): h3(z) when the translation
reaction follows the mass action kinetics (dashed blue) or the Michaelis Menten kinetics
(dashed dotted green). Figure b): comparison of the outer approximations of the reachable
sets in the two cases. The blue dashed line is as in Fig 4. The grey line is the outer
approximation of the reachable set of the FSP system (28), the green dashed dotted line
is the outer approximation of the original system (27) according to Theorem 3.
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C. Fluorescent protein and the two inputs case

Consider again Example 1, but now assume that:
1) mRNA production and degradation can both be con-

trolled, so that the vector of propensities is α(z) = [kr ·
u1(t), γr ·m ·u2(t), kp ·m, γp ·p]> and u(t) :=

[
u1(t)
u2(t)

]
;

2) the protein P can mature into a fluorescent protein F
according to the additional maturation and degradation
reactions

P
α5(kf ,z)−−−−−→ F, F

α6(γp,z)−−−−−→ ∅,

where α5(kf , z) := kf ·p, α6(γp, z) := γp ·f and kf >
0 is the maturation rate. For simplicity, the degradation
rate of F is assumed to be the same as that of P ;

3) the fluorescence intensity I(t) of each cell can be mea-
sured and is proportional to the amount of fluorescence
protein, that is, I(t) = rF (t) for a fixed scaling parameter
r > 0.

Since all the propensities are affine, the system describing the
evolution of means and variances of the augmented network
is

ẋ≤2(t) = Af (u(t))x≤2(t) + bf (u(t)), (40)

where the state vector x≤2(t) and Af (u(t)), bf (u(t)) are

x≤2= [E[M ],E[P ],E[F ],V[M,P ],V[M,F ],V [P ],V[P, F ],V [F ]]>

Af=



d1(u2(t)) 0 0 0 0 0 0 0
kp d2 0 0 0 0 0 0
0 γp d3 0 0 0 0 0
kp 0 0 d4(u2(t)) 0 0 0 0
0 0 0 γp d5(u2(t)) 0 0 0
kp (γp + kf ) 0 2kp 0 d6 0 0
0 −γp 0 0 kp γp d7 0
0 γp kf 0 0 0 2γp d8


,

bf =
[
kru1(t) 0 0 0 0 0 0 0

]>
with d1(u2(t)) = −γru2(t), d2 = −(γp + kf ), d3 = −kf ,
d4(u2(t)) = −(γru2(t) + γp + kf ), d5(u2(t)) = −(γru2(t) + kf ),

d6 = −2(γp + kf ), d7 = −(2kf + γp), d8 = −2kf .

System (40) depends on the parameter vector θ =
[kr, γr, kp, γp, kf , r] (for more details see [40, Supplementary
Information pg. 16]). For the parameters we use the MAP
estimates identified in [28] (all in min−1)

kr = 0.0236 γr = 0.0503 kp = 178.398
kf = 0.0212 γp = 0.0121 r−1 = 646.86

(41)

and we set

Lf :=

[
0 0 r 0 0 0 0 0
0 0 0 0 0 0 0 r2

]
, (42)

to compute the mean and variance reachable set for the
fluorescence intensity.

Our first aim is to compare the reachable set of such ex-
tended model with experimental data, when only one external
signal (“1in”) is available. In the case of one input, (40) is a
linear system and the methods of Section V-A1 can be applied.
Fig. 6a) shows the estimated reachable set compared with the
real data collected in [2].

Our second goal is to investigate how the reachable set
changes when both mRNA production and degradation are

a)

b)

c)

Fig. 6. Output reachable set of system (40) with output as in (42) and parameters as
in (41). Figure a) [1 external signal]: Comparison between the inner (red contour) and
outer (blue lines) approximation of the output reachable set, when the set of possible
modes is Σ1in, and the measured data. Different colors refers to data collected in different
experiments. Figure b) [2 external signals]: Outer approximation of the output reachable
set, when the set of possible modes is Σ2in. The two green dots represent the outputs
when u(t) = [1, 0.5]> ∀t and u(t) = [1, 1]> ∀t, respectively. The black crosses
represent the output for random signals in Σ2in. Figure c) [Comparison]: The red solid
line is the outer approximation obtained for u(t) ∈ Σ1in, as in Fig. a), the blue dashed
line the one for u(t) ∈ Σ2in, as in Fig. b).

controlled (“2in”), as studied in [41]. Note that in this case,
system (40) is nonlinear. We therefore set T = 300 min
and assume that switchings can occur every 20 min, so that
Assumption 3 is satisfied with K = 15 and use the hyperplane
method as described in Section V-A2 with input sets

Σ2in :=

{[
0
1

]
,

[
0

0.5

]
,

[
1
1

]
,

[
1

0.5

]}
, so that I = 4,

Σ1in :=

{[
0
1

]
,

[
1
1

]}
, so that I = 2,

respectively. Note that we set the minimum input for the
mRNA degradation to 0.5 > 0 to avoid unboundedness. With
these input choices it is intuitive that the largest possible state
is reached when the mRNA production is at its maximum and
the mRNA degradation is at its minimum. Therefore, in the
MILPs we can use the bounds M = x (T ; 0, u(t) = [ 1

0.5 ] ∀t)
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for the case of two inputs and M = x(T ; 0, u(t) = [ 1
1 ] ∀t), for

the case of one input. Fig. 6b) shows the output reachable set
for the case of two inputs. The simulation time for computing
the outer approximation with the hyperplane method was 5.6
hrs. Computing the exact reachable set by simulating all the
possible switching signals, assuming that one simulation takes
10−4 sec and neglecting the time needed to enumerate all
possible signals, would take 29.8 hrs. The black crosses in
Fig. 6b) are obtained by simulating the output of the system for
5000 randomly constructed input signals. This simulation
illustrates that random approaches might lead to significantly
under estimate the reachable set. Fig. 6c) shows a comparison
of the reachable sets obtained in Fig. 6a) and b) when the
input set is Σ1in and Σ2in, respectively.

VIII. CONCLUSION

In the paper we have: i) proposed a method to approximate
the projected reachable set of switched affine systems with
fixed switching times, ii) extended the FSP approach to
controllable networks, iii) illustrated how these new theoretical
tools can be used to analyse generic networks both from a
population and single cell perspective and iv) provided an
extensive gene expression case study using both in silico
and in vivo data. Even though our analysis is motivated by
biochemical reaction networks, our results can actually be
applied to study the moments of any Markov chain with
transitions rates that switch among I possible configurations
at K fixed instants of times. Our results hold both in case
of finite and infinite state space. Moreover, while we have
assumed here that cells are identical, we showed in [29] that
also in the case of heterogeneous population one can derive
equations describing the moments evolution. The reachable set
of such populations can be obtained, as described in this paper,
by applying Corollary 1 or 2 to such system.
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