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Convergence of Limited Communication
Gradient Methods
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Abstract—Distributed optimization increasingly plays
a central role in economical and sustainable operation
of cyber-physical systems. Nevertheless, the complete
potential of the technology has not yet been fully exploited
in practice due to communication limitations posed by
the real-world infrastructures. This work investigates fun-
damental properties of distributed optimization based on
gradient methods, where gradient information is communi-
cated using a limited number of bits. In particular, a general
class of quantized gradient methods are studied, where the
gradient direction is approximated by a finite quantization
set. Sufficient and necessary conditions are provided on
such a quantization set to guarantee that the methods
minimize any convex objective function with Lipschitz
continuous gradient and a nonempty and bounded set of
optimizers. A lower bound on the cardinality of the quan-
tization set is provided, along with specific examples of
minimal quantizations. Convergence rate results are estab-
lished that connect the fineness of the quantization and the
number of iterations needed to reach a predefined solution
accuracy. Generalizations of the results to a relevant class
of constrained problems using projections are considered.
Finally, the results are illustrated by simulations of practical
systems.

Index Terms—Cyberphysical systems, distributed opti-
mization, limited communication.

|. INTRODUCTION

enabled more economical and sustainable control and
operation of cyber-physical systems. However, these systems
usually assume the availability of high-performing communica-
tion infrastructures, which is often not practically possible. For
example, although large-scale cyber-physical systems such as

RECENT advances in distributed optimization have
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power networks are equipped with a natural communication in-
frastructure given by the power lines [1], such a communication
network has a limited bandwidth. Instead, research efforts in dis-
tributed operation of power networks usually assume high data
rates and low-latency communication technologies that are, un-
fortunately, not affordable or available today. Another example
is given by wireless sensor networks [2], where efficient usage
of communication plays a central role. In fact, these networks
are powered by battery sources for communication over wireless
links; hence, they are constrained in how much transmission they
engage. These communication limitations are especially harsh
in underwater networks, where acoustic channels are generally
used, which have strong bandwidth limits [3]. Light commu-
nications are also essential in coordinating data networks [4],
where the control channels that support the data channels are
obviously allocated limited bandwidth. Another relevant exam-
ple is within the emerging technology of extremely low latency
networking or tactile internet [5], where information, especially
for real-time control applications, will be transmitted with
very low latencies over wireless and wired networks. However,
this comes at a cost of using short packets containing limited
information.

In all the cyber-physical systems mentioned above, dis-
tributed optimization plays a central role. These systems are
networks of nodes whose operations have to be optimized by
local decisions, yet the coordination information can only go
through constrained communication channels. In this paper, we
restrict ourselves to one of the most prominent distributed opti-
mization methods, decomposition based on the gradient method,
and we investigate the fundamental properties of such a method
in terms of coordination limitations and optimality.

A. Related Literature

Decomposition methods in optimization have been widely
investigated in wired/wireless communication [6]—-[9], power
networks [10], [11], and wireless sensor networks [12], among
others. These methods are typically based on communicating
gradient information from a set of source nodes to users, which
then solve a simple local subproblem. The procedure can be
performed using 1) one-way communication where the source
nodes estimate the gradient using available information [7], [13],
[14] or 2) two-way communication where users and sources
coordinate to evaluate the gradient. We investigate the perfor-
mance of such methods using one-way communication, where
the number of bits per coordination step is limited.
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See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Bandwidth constrained optimization has already received
attention in the literature [15]-[20]. Initial studies are found
in [15], where Tsitsiklis and Luo provide lower bounds on the
number of bits that two processors need to communicate to (ap-
proximately) minimize the sum of two convex functions, each
of which is only accessed by one processor. More recently,
the authors of [16] consider a variant of incremental gradient
methods [21] over networks where each node projects its iterate
to a grid before sending the iterate to the next node. Similar
quantization ideas are considered [17]-[19] in the context of
consensus-type subgradient methods [22]. The work in [20]
studies the convergence of standard interference function meth-
ods for power control in cellular wireless systems, where base
stations send binary signals to the users optimizing the transmit
radio power. Those papers consider only the original primal op-
timization problem, without introducing its dual problem, where
quantized primal variables are communicated. However, many
network and resource sharing/allocation optimization problems
are naturally decomposed using duality theory, where it is the
dual gradients that are communicated. This motivates our stud-
ies of limited communication gradient methods.

B. Statement of Contributions

The main contribution of this paper is to investigate the con-
vergence of gradient methods, where gradients are communi-
cated using limited bandwidth. We first consider gradient meth-
ods where each coordinate of the gradient is communicated
using only 1 bit per iteration. This setup is motivated by dual de-
composition applications, where a single entity maintains each
dual variable, e.g., in the transmission control protocol (TCP)
control in [7], each dual variable is maintained by one flow line.
Since dual problems are either unconstrained or constrained to
the positive orthant RJX ,! we consider both unconstrained prob-
lems and problems constrained to Riv . We prove that when the
step size v > 0 of the gradient method is fixed, then the iterates
converge approximately to the set of optimal solutions within
some € > (0 accuracy in a finite number of iterations, where ¢
tends to 0 as ~y converges to 0. Moreover, we provide an upper
complexity bound on the number of iterations needed to reach
any € > 0 accuracy. This upper bound grows proportionally to
1/€2 as e goes to zero for unconstrained problems, and propor-
tionally to 1/e* for problems constrained by RX . We also prove
that if the step sizes (¢) are nonsummable and converge to 0,
then the iterates converge to the set of optimal solutions.

The second contribution of this paper is to investigate the
convergence of more general class of quantized gradient meth-
ods (QGMs), where the gradient direction is quantized at every
iteration. We start by identifying necessary and sufficient con-
ditions on the quantization so that the QGMs can minimize any
convex objective function with Lipschitz continuous gradients
and a nonempty and bounded set of optimizers. We show that the
minimal quantizations that satisfy these conditions have the car-
dinality N + 1, where N is the problem dimension. We prove
that for fixed step sizes v > 0, the iterates converge approxi-
mately to the set of optimal solutions within some e-accuracy,

'Depending on whether the primal problem has inequality or equality
constraints.

where e converges to 0 as y converges to 0. We provide an up-
per complexity bound on the number of iterations 7" needed to
reach any solution accuracy € > 0. This upper bound depends
on the fineness of the quantization. Moreover, we show that the
solution accuracy € > (0 converges to zero at a rate proportional
to 1/+/T or 1/+/b where T and b are the numbers of iterations
and communicated bits, respectively. We show that when the
step sizes 7y (¢) are nonsummable and converge to zero, then the
iterates asymptotically converge to the set of optimal solutions.

A conference version of this work including parts of
Sections III and V appeared in [23], but without most of the
proofs. The rest of the work is presented here for the first
time. Our previous papers [24], [25] consider similar resource
allocation problems as in this paper without communication
constraints.

C. Notation

Vectors and matrices are represented by boldface lower and
upper case letters, respectively. The set of real, positive real, and
natural numbers, are denoted by R, R, , and N, respectively. The
set of real and positive n vectors and n xm matrices are denoted
by R", R’ , and R"*", respectively. Other sets are represented
by calligraphy letters. We denote by SV, S¥~1(x, R), and
BY (x, R), respectively, the unit sphere in R”" and the sphere and
open ball centred at x with radius R in R"V. The superscript ()T
stands for transpose. We let [x] v and [x ] denote the projection
of x to the sets X and R.. || - || denotes the 2-norm. V f is the
gradient of f. The distance between a vector x € R" and a set
X C R¥ is denoted by dist (x,X) = infycx |[|[v — x]|.

Il. PRELIMINARIES AND MOTIVATING EXAMPLES

In this paper, we consider optimization problems of the form
fx)

x € X (1)

minimize
xeRN
subject to

where f:RY — R. We denote by f* and X* C X the optimal
value and the set of optimizers to Problem (1), respectively. We
consider the following class of optimization problems.
Definition 1: Let Fy, (X) denote the set of optimization prob-
lems of the form of (1), where the function f is convex and dif-
ferentiable with L-Lipschitz continuous gradient, X is closed
and convex set, and the optimal solution set X'™* is nonempty and
bounded. We write f € F, (X) to indicate that the optimization
Problem (1) with the objective function f in the class F, (&X).
For f € F,(X), itis well known that the gradient method

x(t+1) = [x(t) = y(OVF(x(1)]x @)

converges to A under appropriate step-size rules [26]. When
only the gradient direction is known, the above iterates become

V£(x(1))
IV 2
where we set x(t + 1) = x(t) if ||V f(x(¢))|| = 0. For appro-
priate diminishing step-size rules, the iterates converge to X',

and for fixed step size, the stopping condition f(x(t)) — f* < e
can be achieved for any € > 0 [27].

x(t+1) = |x(t) = () ©)
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Problems on the form of (1) often appear as dual prob-
lems used to decompose optimization problems with coupling
constraints [8], [9]. There, a distributed solution approach is
achieved by solving the dual problem using gradient methods
as given in (2) and (3). The dual gradient V(f(x(¢)) can often
be measured over the course of the algorithm, as it is the con-
straint violation in the primal problem, given dual variable x(t)
(see, e.g., [7], [13], and [14]). To perform the gradient update
in (2) and (3), the gradient or gradient direction must be com-
municated, as illustrated in the following examples. However,
since communication resources are scarce in many networks,
we consider another variant of the gradient method in (2). That
is, x(t + 1) = [x(t) — v(¢)d(t)] ., where d(t) is a quantized
gradient direction coded using limited number of bits. Before
introducing the details of our quantized methods, we provide
some application examples.

A. TCP Flow Control

Consider a communication network with /N undirected links
and S data sources. Let £ and S denote the ordered sets
{1,..., N} and {1,...,S}. Denote the capacity of link I € £
by ¢; > 0 and the transmission rate of source s € S by ¢; €
[ms, M), where mg and M are upper and lower bound on the
source. Source s € S has utility function Us : [mg, M,] — R.
The data from source s € S flow through a path consisting
of links £, C L to its destination. We denote by §; C S the
sources that use link | € £, i.e., S; := {s € S|l € L,}. Then,
the TCP flow control is to find data rates ¢5, s € S, that solve
the following optimization problem [7], [28]-[30]:

S
Z Us(gs)
s=1

maximize
q1,---598
subject to qu <, forl=1,....N
SES
qs € [ms, M), fors=1,...,5 (4

For notational ease, we write q = (g5 )ses, @ = [ [,cs[ms, M,
c = (¢))iec, and A € RV >S5 where

1, ifles,
A, = (5)

0, otherwise.

The dual problem of (4) is of the form (1), where X = ]RJ_\[ and
the dual function f : RY — R is given by

§(x) = maximize L(q,%) = L(a(x),x)

where
M
L(a.x) =Y Ui(g) —x'(Aq - ¢)

i=1

argmax U;(q;) — qi Z x. (6)
qi €[m;,M;] leL,

qi(x) =

The dual gradient is given by V f(x) = ¢ — Aq(x). The dual
gradient is bounded since the set Q is compact. Moreover, the
set of optimal dual variables is bounded from [31, Lemma 1],

and the dual gradient V f(-) is L-Lipschitz continuous from [7,
Lemma 3], provided that U; (+) are strongly concave. Therefore,
the dual iterates x(¢) in (2) or (3), and the associated primal
iterates q(¢) = q(x(t)) converge to the optimal primal/dual so-
lution of the optimization Problem (4), provided that ~(¢) are
chosen properly.

Dual gradient methods are desirable because they entail dis-
tributed solution to Problem (4), since Subproblems (6) can be
solved without any coordination between the sources S. More-
over, the gradient component V,f(x) = ¢ — 3 () ¢s(71)
can often be measured at the data link /, since it is simply the
difference between the link capacity, ¢;, and the data transferred
through the link [7]. Therefore, the algorithm can be accom-
plished using one-way communication, where each iteration ¢
consists of the following steps.

1) The links broadcast x(¢) to the sources.

2) The sources solve the local Subproblem (6) and then
transfer the source at the data rate ¢; (x(¢)).

3) The links measure the dual gradient V; f(x(t)), the data
flow through the line, to make the update (2) or (3).

The control channels used to coordinate communication
networks are often bandwidth limited. Hence, it is not prac-
tically feasible to broadcast the real-valued vector V f(x(t))
to the users. The questions we address in this paper are these:
Can we still solve the optimization problem by communicating
quantized versions of the gradient? And what are the tradeoffs
between optimality and quantization? This motivates our
investigation of limited communication gradient methods.

B. Optimal Network Flow

Consider a directed network (N, £), where A" = {1,..., N}
and £ = {1,..., E} denote the sets of nodes and edges, re-
spectively. Let v, denote the flow through the edge e € £. The
flow through the network can then be expressed by the matrix
A € RV*F defined as

1, if edge e leaves node n
A,.:=<¢ —1, ifedge e enters noden
0, otherwise.
Component n € N of Av indicates the flow injec-
tion/consumption at node n, where v = (vq,...,vg). We as-

sume that the flow injection (¢,, > 0) or consumption (¢, < 0)
ofnoden € Nisc, € Randsetc = (cy,...,cy) € RV . Then,
the optimal network flow problem is [32]-[34]

maximize Z —Ce(ve)
V..., UE
ecE
subject to Av=c

where C, : R — R are cost functions of the flow through edge
e € & If C, are p-strongly convex, then the dual gradient is
L-Lipschitz continuous with L = )Lma‘X(AAT) /s see [33,
Lemma 1]. Then, a similar one-way communication dual
decomposition algorithm can be performed as in Section II-A.
In contrast to Section II-A, the dual problem is unconstrained,
i.e., X = R . In addition, the dual variables are maintained by
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the nodes, so it is the nodes that broadcast the dual gradients,
while the edges solve the local subproblems. Nevertheless,
the dual gradient V f(x) can be measured at the nodes, as the
component V,, f(x) is simply the flow injection/consumption
of node n for a given x.

C. Task Allocation

Consider the problem of continuous allocation of N tasks
between K machines. The sets of tasks and machines are de-
noted by N ={1,...,N} and K = {1..., K}, respectively.
Let ¢ € RY denote the total amount of each task that needs to
be completed. The amount of each task done by machine k& € K
is represented by the vector w, € Wy, C RY, where W; is a
local constraint of machine k. Then, the goal is to find the task
allocation that minimizes the cost:

maximize E —Cr(wp)
Wi,..., WK
kel

Zwk =C
kel
wi, €W, fork € K 7

subject to

where O} : RY — R is the cost of performing the different
tasks on machine k£ € K. If C, are p-strongly convex, then the
dual gradient is L-Lipschitz continuous with L = (K + 1) /u;
see [30, Lemma 1]. Therefore, dual gradient methods (2) and (3)
can solve the problem. If the task manager can measure the
total amount done of each task, i.e., the dual gradient, then
a similar one-way communication coordination scheme as in
Sections II-A and II-B can solve Problem (7).

As shown later, the Lipschitz constant L will be used to
characterize several complexity bounds. Since L on the dual
gradient of the examples above is a function of primal prob-
lem parameters such as the number of users and the concavity
parameter u, those parameters affect the complexity bounds
as well.

[ll. QUANTIZED GRADIENT DESCENT METHODS

We consider general QGMs of the form
x(t+1) = [x(t) = y()d(t)] (®)

where d(t) € D C SV is a finite set of quantized gradient
directions. The following relation is between the cardinality of
‘D and communicated bits of each Iteration (8).
Remark 1: The set D can be coded using log, (|D|) bits.
We now introduce the quantization sets D used in this paper.

A. Binary Quantization

In the application examples in Sections II-A—II-C, each dual
variable is associated with a single problem component, i.e., a
link, user, or task, respectively. For example, in the TCP control
example in Section II-A, the dual variable x,, is associated with
link n. Therefore, to achieve the dual gradient Algorithm (2),
each link [ € £ can measure its flow, i.e., the dual gradient com-
ponent V, f(x(t)), and then broadcast V, f(x(t)) to the sources

that use link /. However, it might be infeasible to broadcast the
full dual gradient when the bandwidth is limited. An alternative
approach is to have the links broadcast a binary signal indi-
cating whether the associated dual variable is to be increased
or decreased, i.e., link [ broadcasts sign (V,;f(x(t))). Simi-
larly, in the network flow problem in Section II-B, each node
can measure the flow through the node and then broadcast a
binary signal indicating the direction of the associated dual gra-
dient component. This quantization can be formally expressed
as follows.

Example 1 (Signs of the gradients): Consider the QGM in
8).SetD = {(1/V/N)(ey, ez, . . ., en)|e; € {—1,1}} and take
d(t) = sign (V/(x(1))).

By using this binary quantization, we prove the convergence
of the Iterates (8) when X = R" and X = RY'. Therefore, our
results cover both the case when the optimization Problem (1)
is a dual problem associated with equality and inequality con-
strained primal problems. Our results show that the Iterates (8)
using the quantization in Example 1 converge 1) approximately
to the set of optimal values when the step sizes are fixed and 2)
asymptotically when the step sizes are diminishing and non-
summable. In Section IV, we prove the convergence in the
constrained case when X = R%Y. The convergence in the un-
constrained case X = R" is a special case of the more general
convergence results in Section V.

B. Fundamental Limit: Proper Quantization

When the quantization in Example 1 is used in the TCP
problem, then there is no collaboration between the network
links (or the nodes in the Network flow problem). As a result,
|D| =2V and log,(2") = N bits are used to broadcast the
quantized gradient direction per iteration. However, in many
applications [8], [9], the dual problem is maintained by a sin-
gle coordinator. Therefore, an interesting question is: Whether
even fewer than IV bits can be used per iteration when a single
coordinator maintains the dual problem? In that case, what is
the minimal quantization |D| so the Iterates (8) can solve the
optimization Problem (1)? More generally, for what quantiza-
tion sets D do the Iterates (8) converge to optimal solution to
the Problem (1)? To answer such questions, we now formalize
how a quantization set D enables the Iterates (8) to solve the
optimization Problem (1).

Definition 2: Consider Iterations (8). A finite set D is a
proper quantization for the problem class Fp, (X)) if for ev-
ery f € Fr(X) and every initialization x(0) € X, we can
choose d(t) € D and ~(t) € Ry, for all ¢ € N, such that
lim; ., dist (x(t), X*) = 0.

Using Definition 2, we investigate the following questions.

A) Are there equivalent constructive conditions that can be

used to determine whether D is a proper quantization or
to construct such quantization sets?
B) What is the minimal quantization, i.e., size | D|, for which
D is a proper quantization?

C) What are the connections between the fineness of the
quantization, i.e., the size of |D|, and the possible con-
vergence rate of the algorithm?
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For the class 77, (R”") of unconstrained problems, the next
few paragraphs answer all these questions. However, as shown in
Section ITI-C, a proper quantization set D for the class F7 (R™)
might not be a proper quantization for 7 (X) when X is a
proper subset of RV

Question A): Consider the following definition.

Definition 3: The finite set D is a f-cover if 6 € [0,7/2)
and for all g € SV~!, there is d € D such that ang(g,d) =

os 1 ({(g,d)) < 0. Equivalently, forallg € SV !, thereisd €
D such that cos( ang (g, d)) > cos(f) > 0.

Informally, D is a §-cover if for any nonzero vector in RY,
there exists some element in D such that the angle between them
is smaller than or equal to 0. The following theorem shows that
Definition 3 of f-cover is actually equivalent to Definition 2 of
proper quantization for the problem class 77, (RY).

Theorem 1: Consider a finite set D C S¥~!. D is a proper
quantization for the class Fy (RY) (see Definition 2) if and
only if there exists 6 € [0,27) such that D is a f-cover (see
Definition 3).

Proof: The proof is found in Appendix A. |

Unlike Definition 2 of proper quantization, Definition 3 is
constructive in the sense that it can be used to determine if a
set D is a proper quantization and to construct such sets. For
example, we can use Definition 3 and Theorem 1 to show that
the quantization scheme in Example 1 is a proper quantization
for the problem class F7 (RV).

Lemma 1: The quantization in Example 1 is a #-cover with
cos(f) = 1/v/'N.

The lemma follows from the fact that for any x € SV 1, if
we choose d = (1/v/N) sign (x), then

N
E - sign (x;)

cos( ang (x, d)) =

é\

1 , 1 , 1
> =3 %= x| = —~.
RN TR VN

Lemma 1 proves that the quantization in Example 1 is a proper
quantization. We give some other interesting #-covers now.
Example 2 (Minimal proper quantization: |D| = N + 1):

Set D= {ey,...,ey,—1/V/N}, where e; is the ith ele-
ment of the normal basis and 1 = (1,...,1) € RY. Clearly,
|D| = N + 1, so D can be coded using only log, (N + 1) bits.
We show below in Theorem 2 that this is a minimal proper
quantization, as there does not exist proper quantization D
with |D| < N. We show in Lemma 7 in Appendix J that D is a
0-cover with

os(0) = !
\/N2 +2V/N(N —1)

Example 3 (Example in R*: |D| = n): Forevery n € N set
27k
D7z{lcos<7r/n) kO,l,,nl}

sin(27k/n)
Clearly, if n > 3, D,, is a #-cover with § = 7 /n.

€))

C

€ R?

Example 4 (Normal basis: |D| = 2N): Let D = {e;, —ey,

e,—€,...,ey,—ey}. |[D|=2N and D is a 6-cover
with cos(f) = 1/v/N since for all xe&SN~!, if we
choose d = sign (x;)e;, where i = argmax;_;  y|[x;|, then

cos(ang (x,d)) = (x,d) = x; - sign (x;) = |x;| > 1/V/N.

For constant f€(0,7/2), it can be of interest to find the 0-
cover D, which has minimal cardinality |D|. This problem has
been investigated in the coding theory literature [35], [36].

Question B): The minimal proper quantization for the prob-
lem class 77, (RY) is |D| = N + 1. We already have a proper
quantization with |D| = N + 1; see Example 2. The following
result shows that there does not exist a quantization set D with
fewer elements than N + 1.

Theorem 2: Suppose that D C S¥ ! and |D| < N. Then, D
is not a proper quantization.

Proof: The proof is in Appendix B. |

This result shows that the minimum data rate needed for the
algorithm to converge is log, (N + 1) bits/iteration. To the best
of our knowledge, there are no similar results on minimal quan-
tizations for distributed optimization methods in the existing
literature.

Question C): In Section V, we study the convergence of It-
erates (8) for the problem class F (RY) when D is a f-cover.
When the step size is constant, i.e., y(t) = -, then we show
that any solution accuracy ||V f(x)|| < e and f(x) — f* <e
can be achieved, for € > 0. We also give an upper bound on
the number of iterations/bits needed to achieve that accuracy.
An implication of the results is that after 7" € N iterations, the
accuracy ||V f(x)|| < o \F can be reached using appropri-
ate constant step-size ch01ce where M > 0 is some constant.

Finally, we show how to choose the step sizes so that every limit
point of the algorithm is an optimizer of Problem (1).

C. Fundamental Limit: What If There Are Constraints?

We now show by simple examples why a 6-cover D might
not be a proper quantization for the problem class F7, (X') when
the feasible set X' is a proper subset of R". These examples
are illustrated in Fig. 1(a) and (b). Both figures demonstrate
scenarios, where a single step of Iteration (8) is taken from x. In
both figures, D = {d;,dy,d3} is a f-cover with 6 = /3. The
feasible region is depicted by gray color. The curves depict the
contours of the objective function f. The dotted lines depict the
angle 6.

Fig. 1(a) depicts a scenario, where Iteration (8) may have a
nonoptimal stationary point, even though D is a #-cover. The
point x is a stationary point, since —d; is orthogonal to the
constraint. However, x is not an optimal solution of Problem (1),
since the gradient V f (x) is not orthogonal to the constraint. This
example shows that the equivalence established in Theorem 1
does not generalize to the constrained case. Fig. 1(b) shows that
the Iterates (8) can go in the opposite direction of the optimal
solution. The Iterate (8) is a not a descent direction; hence, the
objective function value is increasing. The optimal solution of
Problem (1) and the Iterate (8) are denoted by x* and [x —
~d1]x, respectively.
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' [x—vdi]x
: i

(a) (b)

Fig. 1. lteration of (8) starting at x. x is in the middle of the figure
marked by a big filled circle. The feasible set X is marked by the shaded
region. x* and f* are the optimizers and optimal value. D = {d;,d2,d3s}
is a f-cover with § = /3. In (a), x is a fixed point of the algorithm. In (b),
the algorithm takes the step [x — vdi]x.

IV. CONVERGENCE—BINARY QUANTIZATION

In this section, we investigate the convergence of the QGM

x(t +1) = {xa) - j/(]% sign <Vf<x<t>>>] (10)

for solving the optimization Problem (1) when X = ]Rf . We
make the additional assumption that the gradients V f are B-
bounded, i.e., ||V f(x)|| < B for all x € RY .2 In the next sec-
tion, which considers unconstrained problems, we allow the
gradients to be unbounded.

In the analysis, we take advantage of the following property
of optimal solution x*.

Lemma 2: Consider optimization Problem (1) with & =
RY. For a > 0, define the function

Lo(x) =[x = [x = aVf(x)]"].

Then, x € X* if and only if L, (x) = 0.
Proof: The proof is found in Appendix C. |
We investigate the convergence of the iterates in (10) when
the step sizes are fixed in Section IV-A and when the step sizes
are diminishing in Section I'V-B.

Y

A. Constant Step Size

In this section, we study the convergence of Iterates (10) when
the step size (t) is constant, i.e., when ~y(t) = ~ for all ¢. We
show that the Iterates (10) can approximately solve optimization
Problem (1) up to any e-accuracy, provided that the step size
v > 0is small enough. By approximately solving (1), we mean
that we can find x € RY that approximately satisfies certain
optimality conditions. In particular, we consider the following
two types of optimality conditions for Problem (1):

L,(x)<e¢
fx)=f <e

(12)
13)

Type-1:
Type-2:

2This assumption is only needed in this section. The dual gradient is generally
bounded if the primal problem is strongly convex and has bounded feasible set;
see [26, Proposition 6.1.1]. For example, the dual gradient is bounded in the
TCP problem in Section II-A.

A point x is an optimal solution to optimization Problem (1) if
and only if (12) [or (13)] holds with € = 0. The Type-1 optimal-
ity condition is a generalization of the optimality condition that
||V f(x)|| = 0forunconstrained problems. The Type-2 optimal-
ity condition simply states that the distance from the obtained
objective value to the optimal value is less than . We now show
that both Type-1 and Type-2 approximate optimality conditions
can be reached in finite number of iterations.

1) Stopping Condition of Type-1: We start by showing that
the Type-1 optimality condition can be reached for all € > 0 in
a finite number of iterations. The following lemma is essential
in proving the result.

Lemma 3: Suppose f € Fr(RY) and Vf is B-bounded.
Suppose € > 0 and o > 0 are such that

Lo(x)=||x =[x —aVf(x)]T]| >« (14)
Then, the following holds:
n
/ ([x T sign (V1) ) < ) — 8(e,0.7)
where 6(e, a,y) = (% - ’7)%’%

Proof: The proof is provided in Appendix D. |

The lemma shows that if L, (x) > 0 for some x € RY,
then the objective function value f(x) will decrease with Iter-
ates (10), provided that the step size v(t) > 0 is small enough.
We use this intuition to provide an upper bound on the number of
iterations needed to achieve the Type-1 approximate optimality.

Theorem 3: Suppose f € Fi,(RY), V f is B-bounded, x(t)
are generated by (10), and define the set

Xy (e) == {x € RY|Lo(x) < €} (15)

Then, for any € > 0 and v € (0,2¢*/(a? BN3/%)), there exists
T € N U {0} such that x(T) € X, (¢), with T bounded by

2(f(x(0)) = f*)a* BN?/?
~v(2¢2 — Lya2? BN3/2) —‘

The upper bound in (16) is minimized when the step size v* =
¢ /(La® BN3/?) is used.

Proof: Let €¢>0 be given and choose any + €
(0,2¢%/(La® BN?®/2)). Then, from Lemma 3, we have for all
x(t) ¢ X, (¢) that

flx(t+1)) < f(x(t) = (e, ,7)

where 0(e, o, 7) > 0. By recursively applying (17), it follows
that if x(¢) ¢ X, (¢) for all ¢t < s, then

OSf(X(S))—f* gf(x(O))—f*—sg(e,'y,H) (18)

Therefore, there must exist 7' < [(f(x(0)) — f*)/d(e,a,¥)]
such that x(7T') € X, (¢); otherwise, we can use (18) with
s = [(f(x(0)) — f*)/0(e,a,7)] +1 to get the contradic-
tion that f(x(s)) < f*. By rearranging T < [(f(x(0)) —
f*)/8(e,a,y)], we obtain the bound in (16). The optimal step
size v* = €2 /(La? BN*/?) comes by maximizing the denomi-
nator in (16). [ |

The theorem shows that the Type-1 approximate optimality
condition can be reached in a finite number of iterations. More-
over, (16) provides an upper complexity bound on the algorithm,

T < [ (16)

a7



1362

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 63, NO. 5, MAY 2018

showing the number of iterations needed to reach any € > 0 ac-
curacy. When the step size is 7* = €2 /(La?> BN?/?), then the
upper bound in (16) increases proportionally to 1/¢* as € goes to
zero. In Section V-A, we show that this bound can be improved
for unconstrained problems (where it increases proportionally
to 1/€% as € goes to zero).

2) Stopping Condition of Type-2: We now show that the
Type-2 approximate optimality can be reached for any € accu-
racy. The following lemma is used to obtain the result.

Lemma 4: Suppose that f € F,(RY), Vf is B-bounded,
and the iterates x(¢) are generated by (10). Then, for all € > 0,
a>0,v(t) € (0,7), with ¥ = 2¢>/(a? BN?/?), and T € N

such that x(T) € X, (e)

F(x(t)) < Fule) + ga% forallt >T  (19)
where F, : R, — R U {oo} is given by
Fo (k) = sup{f(x)[x € Xo(r)}. (20)

Moreover, there exists x > 0 such that for all € € [0, k], the
following holds: 1) X, (¢) is bounded; and 2) F, (¢) < oo. It
also holds that lim, o+ F, (¢) = f*.

Proof: The proof is provided in Appendix E. |

The lemma is useful in deriving Type-2 optimality conditions,
since it connects the results from Theorem 3 to the quantity
f(x(t)) — f* via the function F,, () defined in (20). In partic-
ular, the lemma provides a bound on f(x(t)) that depends on
F, () and the step size. Therefore, since lim,_o+ F, (¢) = f*,
we can enforce f(x(t)) — f* to be arbitrarily small after some
time 7T, i.e., for all ¢ > T, by choosing a small enough step size.
The idea is now formalized.

Theorem 4: Suppose that f € Fr(RY), V f is B-bounded,
and the iterates x(t) are generated by (10). Then, for any ¢ > 0,
there exists step size v > 0 and 7' € N such that f(x(t)) —
fr<eforalt>T.

Proof: The result follows directly from Lemma 4 and
Theorem 3. u

Theorem 4 proves that the Type-2 optimality condition
[see (13)] can be achieved for any ¢ > 0 in a finite number
of iterations. However, unlike for the Type-1 optimality con-
dition, we could not provide an explicit step-size choice or a
bound on the number of iterations needed to achieve the € > 0
accuracy.

B. Diminishing Step Size

We now consider the diminishing step-size case. The fol-
lowing result shows that the step sizes can be chosen so that
Iterates (10) converge asymptotically to the optimal solutions of
Problem (1).

Theorem 5: Suppose that f € Fr(RY), V f is B-bounded,
and the iterates x (¢) are generated by (10), where lim; o v(t) =
0 and > 7, 7(t) = oco. Then, x(t) converges to the set
of optimal solutions of the optimization Problem (1), i.e.,
lim; . dist (x(t), X*) = 0.

Proof: The proof is provided in Appendix F. |

The step-size choice in the theorem is also necessary to ensure
that lim; ., dist (x(t), X*) = 0 holds for all f € 7, (RY),

with Vf being B-bounded. To see why, consider the scalar

function
0.5(x — 1),
) = {|x—1|—0.5,

ifle—1<1

. (21)
otherwise.
Then, f has the unique optimizer * = 1 and satisfies the as-
sumptions of Theorem 5.

Let us first show that if lim;_ . 7y(¢) #0, then
lim; o dist (x(t), X*) # 0.If y(¢t) > 0 does not converge to
zero, then there exists I € (0, 1) and a subsequence ¢;, such that
~(t) > I for infinitely many ¢ € N. Then, either |z (t; + 1) —
a*| or |xz(tx) — «*| must be larger than or equal to /2 for all
k € N because if |z(t;) — 2*| < I/2,then |x(ty + 1) — 2*| >
I/2. Therefore, |x(t) — x*| > I/2 for infinitely many ¢ € N,
solimsup,_,. dist (z(t), X*) > I/2.Let us next show that if
> 7(t) < oo, then lim; o, dist (z(¢), X*) # 0. Take z(0) =
24+ 370, y(t). Then, z(t) > x(0) — 320 _ y(t) > 2 for all
t € N, soliminf, ., dist (z(t),X*) > 1.

The advantage of using diminishing step sizes, as in
Theorem 3, is that the algorithm can asymptotically converge
to the set of optimal values. Moreover, diminishing step-size
rules can be implemented even if problem parameters such as
the Lipschitz constant L are unknown, unlike when the step size
is constant. On the other hand, it is more complicated to char-
acterize the convergence rate, similar to (16), when diminishing
step sizes are used.

V. CONVERGENCE—GENERAL QUANTIZATION

In the previous section, we studied QGMs, where a partic-
ular quantization based on the sign of the gradient was used
for constrained optimization problems. As we discussed in
Section III-B, for unconstrained problems, a more general class
of quantizations called 8-covers (see Definition 3) ensures that
the QGMs can minimize any f € F7 (RY). In this section, we
formally prove this, i.e., if the quantization is a f-cover, then the
QGMs converge 1) approximately to an optimal solution when
the step sizes are constant and 2) asymptotically to an optimal
solution when the step sizes are nonsummable and converge to
zero. Moreover, we study how the quantization fineness, i.e.,
0, affects the algorithm convergence. We first consider the case
when the step sizes are fixed, i.e., ¥(¢) =+, in Section V-A.
Then, in Section V-B, we consider diminishing step sizes.

A. Constant Step Size

Similar to Section IV-A, we consider the following two types
of approximate optimality conditions:

Type-1: Vx| <e

fx@)—f"<e

1) Stopping Condition of Type-1: We start by showing that
Type-1 approximate optimality can be achieved for any € >
0 in a finite number of iterations. Furthermore, we provide a
lower and an upper bound on the number of iterations needed
to achieve the e-accuracy (that depends on 6). A key result used
to obtain the result is the following lemma.

(22)

Type-2: (23)
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Lemma 5: Suppose f € Fr(RY), e >0,0¢€ [0,7/2),x €
RY, ||[Vf(x)||>¢, andd € SV, where ang (V f(x),d) < 6.
Then

f(X - ’Yd) < f(X) - 5(677’9)

where §(e,v,0) = (Z“’Z& —v)%y. Clearly, 6(e,v,60) >0
when «y € (0,2cos(0)e/L).

Proof: The proof is provided in Appendix G. |

The lemma shows that if ||V f(x)|| > 0 and ang (V f(x),
d) < 6 < 7/2 for some x € RY, then the objective function
value can be decreased by taking a step in the direction —d, i.e.,
f(x—~d) < f(x) for small enough v > 0. Therefore, if D is
a f-cover, then we can always find d € D and a step size y > 0
such that f(x — vd) < f(x). We now use this intuition from
Lemma 5 to provide the upper and lower bounds on the number
of iterations that are needed to reach the Type-1 optimality
condition.

Theorem 6: Suppose that f € Fr (RY), D is a f-cover (see
Definition 3), the iterates x(¢) are generated by (8), and define
the set

(24)

X(e) = {x e RY[||Vf(x)|| < e} (25)

Then, the following holds:
a) For any € > 0, if v € (0,2 cos(#)e/L), then there exists
T € N U {0} such thatx(T") € X'(e), with T'bounded by

2(f(x(0)) = f*)
= [7(2008(9)6 - wa '

The upper bound in (27) is minimized with the optimal
step size v* = cos(0)e/ L.

b) Given a fixed step size v > 0 and scalar x > 0, if we
choose €(k,7) = k + vL/(2 cos ) then there exists T' €
N U {0} such that x(T") € X(e(k,7)), with T bounded
by

(26)

< V@‘(O»—fl ' a7

cos(0)yk
¢) (Lower Bound on T") For any step size v > 0 and € > 0
if x(T) € X(e), then QU <7,

Proof: a) The proof follows the same arguments as the proof

of Theorem 3 using Lemma 5 in place of Lemma 3.
b) The result can be obtained by substituting ¢(x, ) in (27).
¢) Using the fact that the gradient V f is L-Lipschitz contin-

uous, we have

IV f(x(t)) = Vf(x(t + D) < LIIx(t) = x(t + 1| < L.
Therefore, using the triangle inequality, we have
V@) = Ly < [IVf(x(t+1))]| forallteN.
Recursively applying the inequality gives
IV SO = Lyt < IV (x(@))]]-

Hence, ||V f(x(t))||<e can only hold when ¢>

IV F )] =€)/ (L). u
Theorem 6(a) proves that if D is a #-cover, then the Type-1
optimality condition [see (22)] can be achieved with e-accuracy

in a finite number of iterations, for all ¢ > 0. Moreover, the theo-
rem gives an upper bound on the number of iterations needed to
achieve such e-accuracy. This bound decreases as 6 decreases,
i.e., as the quantization becomes finer. Even though the bound in
(27) is on the number of iteration, since log, (|D|) bits are com-
municated per iteration, the results shows that in the worst-case
scenario

{ 2(f(x(0) = *)
~v(2cos(f)e — L)

are needed to find x € RY such that ||V f(x)|| < e.

Theorem 6(b) demonstrates what e-accuracy can be achieved
for a given step size. The parameter x captures a tradeoff be-
tween the e-accuracy and the number of iterations needed to
achieve that e-accuracy. By optimizing over both v and « in
Theorem 6(b), we can find an optimal bound on the accuracy ¢
that can be guaranteed in 7" iterations. That is to find v and &
that solve the following optimization problem:

—‘ log, (|D]) bits

mil}{iglize e(k,v) =k + m’y
subject to M <T,
cos(0)vk
v,k > 0. (28)

Formally, this bound is given as follows.

Corollary 1: For any T' € N, we have the following.

i) The minimal bound €(x, ) achieved in T iterations, i.e.,
the solution to Problem (29), is

o VLOO) — )

cos(0)VT &
where the corresponding optimal ~ and « are
SN EFCOETI P Lgs((»;;% ) a0
ii) If the step size +y is chosen as v* in (31), then
IV (D) < € 3D
where € is as in (30) and
x(T) = argmin [|Vf(x)]. (32)

xe{x(t)[t=0,....,T}

Proof: 1) First note that Problem (29) is convex, which can
be seen by equivalently writing it as

minKi.rAI/lize K+ %5(9)7
: fx(0) = f7\ 1
AT T ) D k<
subject to ( cos(0)T 5 Kk <0,
¥,k >0 (33)

and recalling that the reciprocal 1/ is a convex function for
~ > 0. It can be checked that * and ~* satisfy the Karush—
Kuhn-Tucker (KKT) condition with the Lagrangian multiplier
A =1

ii) Follows directly from part i). ]
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In addition to minimizing the bound €(x, ), Corollary 1 gives
insights into the convergence of Iterations (8). For example,
when T is fixed, then the upper bound in (30) gets larger as
0 decreases. As a result, when the quantization set D becomes
coarser, then less accuracy can be ensured. Moreover, the results
show that ||V f (x*(T"))|| converges, in the worst case, at the rate
1/VT t00.

In Corollary 1, we used the step size v* given in (31). To
compute v*, the optimal objective function value f* is needed,
which is usually not available prior to solving Problem (1).
However, some bounds on the quantity f(x(0)) — f* are often
available. Any such upper bound K € R, with K > f(x(0)) —
f*, can be used to obtain similar results as to those in Corollary 1
by replacing f(x(0)) — f* by K.

Corollary 2: Take T € N and K € R such that K >

f(x(0)) — f*. If we choose the step size as v = 2K/(LT),
then
X V2LK
IV (x"(T))I] < cos(O)VT (34)

where x* (t) is chosen as in (33).

‘We next demonstrate how the convergence results translate to
Type-2 stopping conditions [see (23)].

2) Stopping Condition of Type-2: We now show that the
Type-2 approximate optimality [see (23)] can be achieved for
any accuracy €>0. The result is based on the following lemma.

Lemma 6: Suppose f € Fr(RY), D is a f-cover, and the
iterates x(t) are generated by (8), then:

a) forany e > 0,~(t) € (0,%), where ¥ = 2 cos(f)e/L, and

T € N such that x(T") € X(¢), the following holds:

f(x(t)) < F(e) + §72, forall t >T  (35)
where F': R, — R U {co} is given by
F(k) =sup{f(x)|x € X(k)}. (36)

There exists £ > 0 such that for all € € [0, x], X(¢) is
bounded and F'(e) < oo. Moreover, lim, g+ F(e) = f*.
b) if f is p-strongly convex, then we have

F(e) < f* +€/(2p).

Proof: The proof is provided in Appendix H. |

Lemma 6 is useful in obtaining Type-2 approximate optimal-
ity, as it connects the quantity f(x(¢)) — f* to Theorem 6 via
the function F'(€) in (37). In particular, part a) of Lemma 6
bounds f(x(t)) by a constant that depends on F(-), where F(e)
converges to f* as e converges to 0. Therefore, by using the
dependence of F'(€) on X(¢), defined in (26), we can connect
f(x(t)) — f* to the convergence result in Theorem 6 to en-
sure that the Type-2 stopping condition can be achieved for any
€ > 0. Part b) of Lemma 6 then illustrates how the upper bound
on f(x(t)) depending on F'(€) can be further improved when f
is p-strongly convex. These ideas are formally illustrated in the
following theorem.

Theorem 7: Suppose f € Fr,(RY), D is a §-cover, and x(t)
are generated by (8). Then, for any € > 0:

(37

a) there exists a step size 7 >0 and 7' € N such that

f(x(t)) — f* <eforallt > T,
b) moreover, if f is p-strongly convex and y € (0,7), where
- — min {QCOS VT \/>}
then f(x(t)) — f* < eforall t > T, where
2(f(x(0)) = /) W
T< . 38
: L@ cos(0) /e — L) oY

Proof: a) The result follows directly from Lemma 6(a) and
Theorem 6(a).

b) Since v € (0,2cos(0)+/pe/L), it follows from
Theorem 6(a) that there exists 1" bounded as in (27) such that
x(T) € X(\/p€). From Lemma 6(a), for all t > T that

FOxlt)) = f* < F(Jf0) = '+ 57 < 5+ 5 =

where the second inequality follows from Lemma 6(b) and that
v < \/€/L. [ |

Theorem 7 shows that when D is a f-cover, the Type-2 opti-
mality condition [see (23)] can be achieved in a finite number of
iterations. For general functions, the theorem does not provide
a step size -, that can achieve any particular e-accuracy, even
though such ~, always exist. This is challenging in general, as
it can be difficult to bound the function F'(-) for general convex
functions f(). Nevertheless, part b) of the proof shows that
when f is p-strongly convex, then a range of step sizes that
ensure a given € > ( accuracy is provided. Moreover, when f is
p-strongly convex, then we can obtain similar bound on num-
ber of iterations needed to achieve that e-accuracy as in (27) in
Theorem 6(a).

B. Diminishing Step Size

‘We now consider the diminishing step-size case. The follow-
ing result shows that the step sizes can actually be chosen so
Iterates (8) converges to the optimal solution to Problem (1).

Theorem 8: Suppose that f € Fr (RY), D is a f-cover, and
that the iterates x(¢) are generated by (8). If the step sizes y(t) >
0 are chosen so that lim;_ y(¢) = 0 and ZtV:o ~(t) =
lim; .o dist (x(t), X*) = 0.

Proof: The proof is provided in Appendix I. ]

The step-size choice in the theorem is necessary to ensure that
lim; ., dist (x(t), X*) = Oforall f € F; (RY), consider the
scalar function f defined in (21).

Theorem 8 shows that when D is a f-cover, then there exists
a step-size rule such that every limit point of the QGMs is
an optimal solution to Problem (1). A particular implication
of this result is that every f-cover is a proper quantization; see
Definition 2. Therefore, Theorem 8 actually proves one direction
of the equivalence established in Theorem 1.

00, then

VI. NUMERICAL ILLUSTRATIONS

We now illustrate how the studied algorithms perform on two
of the application examples discussed in Section II. We compare
the numerical performance with some of the theoretical results
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Fig. 2. Optimality measure L, (-) from (11) (a), dual (b), and primal

(c) objective function value at every iteration for different step sizes.
The resource allocations ¢; (t) (d) at every iteration when v = 0.1. (a)
Optimality condition [see (11)]. (b) Dual objective function. (c) Relative
primal objective value. (d) Allocation q(¢) when v = 0.1.

in this paper and with algorithms that use perfect communication
with no quantization.

A. TCP Flow Control With Binary Feedback

We illustrate the convergence of Iterates (10) on the TCP flow
control in Section II-A. We consider a network with S' = 20
sources and N = 100 links. We use the same utility functions
as in Experiment 1 of [7, Sec. VI-B], i.e., Us(gs) = 1000 log
(1+gs), for s € S. Similarly, as in [28], we generate the net-
work matrix A [see (5)] randomly so each entry of A is 1 with
the probability 1/2 and 0 otherwise. We set ¢; = 1 foralll € L.
The local constraint of each source is [0, 1]. We consider the
step sizes v = 0.005 , 0.01, 0.05, 0.1, 0.5, and 1. Note that in
the figures described below, some of lines that appear to be thick
lines actually show some fluctuations.

Fig. 2(a) depicts the optimality measure L;(x(t)); see (11)
in Lemma 2. From Lemma 2, x € Rf is an optimal solution
to Problem (1) if and only if L;(x) = 0. For all step sizes 7,
the measure L (x(t)) converges to some small error floor and
then fluctuates slightly there. For smaller step sizes -, the opti-
mality measure L; (x(t)) converges to smaller values, roughly
to 2.6, 0.16, 0.019, 0.009, 0.002, 0.001 for v =1, 0.5, 0.01,
0.005, 0.001, and 0.0005. These results show that the step-size
choices v in Theorem 3 are conservative. For example, to en-
sure € = 0.1 accuracy in Theorem 3, the step sizes should be
~v € (0,0.00002), but in this example, the step size chooses
~ < 0.1 and achieves the ¢ = 0.1 accuracy.

Fig. 2(b) and (c) depicts the dual and primal objective func-
tion values at every iteration. The figures demonstrate a similar
convergence behavior of the primal/dual objective function val-
ues as in the optimality measure L;(x(t)) in Fig. 2(a). For
the dual objective value, these results agree with the results in

10°
S 10 g
¥ g
= 5]
> 107 N
---Equation (2)
—Equation (3)
102
0 20 40 60
t
(a)
Fig. 3. (a) Dual gradient and (b) primal objective function value at

every iteration when 2, 3, and 4 bits are communicated per iteration. The
results are compared with the algorithms in (2) and (3). (a) Dual gradient.
(b) Objective function.

Theorem 4. Finally, Fig. 2(d) illustrates the convergence of the
data rate allocation to each source when 7. The results show
that the all the data rate allocations converge after roughly 3500
iterations and then fluctuate slightly there.

B. Task Allocation

We now illustrate the performance of the QGMs on the Task
Allocation Problem (4) from Section II-A with K = 4 machines
and N = 2 tasks. For each machine i = 1,2, 3,4, we have the
cost function Cj (q;) = a;q} ; + biq} ,, where a; and b; are uni-
form random variables on the interval [1, 5]. The private con-
straint of machine i = 1,2,3,4 is Q; = {(x,y) € R?|z,y >
0,z + y < 3}. Clearly, —C; are strongly concave with concav-
ity parameters ;; = min{a;, b; } > 1. It can be verified that the
dual gradient is L-Lipschitz continuous with L = 4/p, where
p=min{y, ..., ps}. The step size is v = 0.1 and the initial-
ization is x(0) = (0,0) (recall that x is the dual variable). We
use the quantization set D from Example 3 when 2, 3, and 4
bits are communicated per iteration, i.e., when |D| = 4,8, 16,
see Remark 1.

Fig. 3 depicts the norm of the gradient and the primal ob-
jective function at every iteration of the algorithm. The norm
of the gradient ||V f|| reaches the accuracy € = 0.1 in roughly
51, 56, and 65 iterations using 204, 168, and 130 bits when 2,
3, and 4 bits are communicated per iteration, respectively. We
compare the results to Iterations (2) and (3), where no quanti-
zation is done, i.e., infinite bandwidth is used. Fig. 3(a) shows
that by using 4 bits per iteration, the results achieved by the
QGM are almost as good as when the full gradient direction is
communicated using Iterations (3). However, the QGMs do not
perform as well as Iterations (2); this is to be expected, since in
Iterations (2) the full direction and magnitude of the gradient is
known. These results illustrate that we can dramatically reduce
the number of bits communicated without sacrificing much in
performance.

VIl. CONCLUSION AND FUTURE WORK

This paper studied gradient methods where the gradient di-
rection is quantized at every iteration of the algorithm. Such
methods are of interest, for example, in distributed optimization,
where the gradient can often be measured but has to be com-
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municated to accomplish the algorithm. An instance of such a
procedure is dual decomposition, where primal problems that
are scattered between different entities are solved in a distributed
fashion by performing a gradient descent on the dual problem;
see Section II for examples. Our results show that a variant of
the projected dual descent taking the sign of the dual gradients,
ie.,

x(t+1) = [x(t) = (1) sign (VF(x(1))]x

converges to the optimal solution under mild conditions on f
when X = RY and X = ]RX ,1.e., for dual problems associated
with primal problems with equality and inequality constraints,
respectively. Therefore, when different entities maintain the
components of the variable x, then each entity only needs
to broadcast one bit per iteration to ensure convergence to
the optimal solution. Our results also show that when a
single entity maintains x, then the minimal quantization has
cardinality N + 1; for smaller quantizations, there exists an
optimization problem that the QGMs cannot solve. Therefore,
only log, (N + 1) bits/iteration are communicated instead of
N bits/iteration as when the components of x are maintained
by different entities in (40). We also connect fineness of the
quantization to the convergence rate of the algorithm to the
available bandwidth (bits/iteration). The convergence rate
improves as the bandwidth is increased.

Future work will consider how to additionally quantize the
magnitude of the gradient to get a better tradeoff between con-
vergence rate and available bandwidth. Moreover, it is inter-
esting to see if the results can be generalized to nonsmooth
optimization problems.

(39)

APPENDIX A
PROOF OF THEOREM 1

Proof: Let us start by showing by contradiction that D
being a proper quantization for the problem class Fz (R™)
implies that there exists 6 € [0,7/2) such that D is a
f-cover. Suppose there does not exists such 6. Then,
min, cgv -1 maxqep cos( ang (a,d)) <0, since the function
g(a) = maxqgep cos(ang (a,d)) = maxqep(a,d) is continu-
ous and SV ! is compact. Therefore, there exists a € SV !
such that cos(ang(a,d)) <0 for all d € D. In particular,
we have for all d € D that (a,d) = cos(ang(a,d)) < 0. By
choosing x(0) = a, using Iterations (8) and Cauchy—Schwarz
inequality, we conclude that for all £ € N

t—1

1x(6)]] = (a,x(1)) = (a,a) = Y 4(t)(a,d(t)) > 1

i=0

where the inequality follows from the fact that ||a|| = 1 and
that for all d € D, we have (a,d) < 0. If we choose f(x) =
(L/2)||x|[?, then f € F1(RY) and f has the unique optimizer
x* =0, but dist (x(t),X*) =||x(¢)|| > 1, for all ¢t € N.
Since dist (x(t), X*) > 1forall d(t) € D and v(t)€R, we
can conclude that D is not a proper quantization.

The fact that D being a f-cover implies that D is a proper
quantization follows from Theorem 8 in Section V-B, where we

showed that for all f € Fy,(RY), we can choose d(t) € D and
~(t) € Ry such that lim;_, dist (x(t), X*) = 0. [ ]

APPENDIX B
PROOF OF THEOREM 2

Proof: First, consider the case where either |D| < N or
|D| = N and the elements of D are linearly dependent. Then,
Span(D) is a proper subspace of RY, so there exists a nor-
mal a € SV~ such that cos(ang (a,d)) = (a,d) < 0 for all
d € Span(D). Since D C Span(D), D is not a H-cover for any
0 € [0,7/2), and the result follows from Theorem 1.

Let us next consider the other case, where |D| = N and the
vectors of D are linearly independent, i.e., Span(D) = R,
Define D € RY*Y such thatfori = 1,..., N,rowiin D is the
ith element of D, where the elements have some arbitrary order.
Then, D is invertible, and we can choose a = —D ™11, where
1 € RY is a vector of all ones. Then, we have fori =1,..., N
that (d;,a) = —d;D~'1 = —1. Hence, as in the previous case,
we get that (a,d) <0 for all d € D implying that D cannot
be a f-cover for any 6 € [0,7/2), and the result follows from
Theorem 1. ]

APPENDIX C
PROOF OF LEMMA 2

Proof: Since f and X are convex, x € X" if and only if
the KKT optimality conditions hold for x [32, Sec. 5.5]. It
can be checked that since X = Rf , the optimal dual variable
associated with x € X* is A = V f(x). Therefore, the KKT
conditions reduce to the following three conditions holding for
alli=1,...,N: (1) V;f(x)x; = 0; (i) V; f(x) > 0; and (iii)
x; > 0. We now show both directions of the proof.

First, assume that L(x) = 0. We show that (i)-(iii) hold,
so x € X*. We have x =[x — aVf(x)]" or x; = [x; —
aV; f(x)]T, fori=1,...,N. So (i) holds because if x; # 0,
then V,; f(x) = 0, and if V; f(x) # 0, then x; = 0. Similarly,
(ii) holds because if x; # 0, then V; f(x) =0, and if x; = 0,
then V,; f(x) > 0. Finally, (iii) holds because [-]* is the pro-
jectionto R .

Now, assume x € X™*, so (i)—(iii) above hold. If x; = 0 for
somei =1,...,N,thenx; = [x; — oV, f(x)]T, since by (ii),
V. f(x) > 0. Otherwise, if x; > 0, then V, f(x) = 0 by (i), so
X; = |—qu — aV;f(x)Tr. |

APPENDIX D
PROOF OF LEMMA 3

Proof: For all § € [0, 1], we have

< lx = [x—aVi(| (40)
< Bllx =[x —aVf(x)]" [« (41)
= Blx; =[x —aVif(x)]"| 42)
<|xi =[x —aBBsign(Vif(x)]"]  43)

where, in (42), i = argmax; |z; (t) — [z;(t) — aV; f(x(t))]"],
(40) comes from the bound in (14), (41) comes from the equiva-
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lence of the 2- and co-norms, (42) comes by using the definition
of 7, (43) comes from (63) and (64) in Lemma 8 in Appendix J,
and that ||V f|| < B. By taking § = v/(aBV/'N) in (44), we
get

€y o1+
OzBN — |XL ’—XL—| ‘
where X = x — (7/v/N) sign (Vf(x)). Moreover, from (42)
and the nonexpansiveness of projections (see [26, Proposition
B.11-¢)]), we have

(44)

— SVl (45)

Therefore, we have
(Vi(x),x—[x]") = ﬁ;vjf(x)(xj —[x;17)  6)
Z'Vif(x)(xi —[xi]") 47)
_ﬁ (48)

where (47) comes from the fact that every component of the sum
is nonnegative (see (65) in Lemma 8 in Appendix J), and (48)
comes from using the bound in (44) and (45). Inequality (48)
and the descent lemma [37, eq. (2.1.6)] yield

FARTT) < f(x) = (VF(x),x = [X]7) + gllx— [x]]?

ey L

< - . 2

where the last term comes from the fact that ||x — [X]1|| < v

by the nonexpansiveness of the projection. |
APPENDIX E

PROOF OF LEMMA 4

Proof: Step 1: We prove by induction that (19) holds for all
t > T.Whent = T, then (19) holds because f(x(T)) < F, ()
by definition of E, [see (20)]. Now, suppose (19) holds for
t > T. We will show that (19) also holds for ¢t + 1. Consider
first the case when x(¢) € X,, (¢). Then, from [37, eq. (2.1.6)]

Fx(t 4 1)) < F0x(0) — (9 e(0), x(1) — [%(0)])
+ 2 Ix(e) — =P

< Fa(e) + %#
where x(t) = x(t) — (v(t)/v/N) sign (V. f(x(t))), the second
inequality comes from the fact that (i) that f(x(t)) < F, (¢)
since x(t) € X, (€), (ii) that the inner product term is nonneg-
ative because every term of the sum [see (46)] is nonnegative
following (65) in Lemma 8, and (iii) that ||x(t) — [%(¢)]T|| <
7 because of the nonexpansiveness of the projection [-]*
(see [26, Proposition B.11-c)]). Otherwise, if x(t) ¢ X, (¢), then
f(x(t+1)) < f(x(t)) by Lemma 3, yielding the result.
Step 2: We will prove that there exists x > 0 such that (i)
X, (€) is bounded set and (ii) F, (€) < co for all € € [0, x].

Part (i) follows directly from Lemma 9 in Appendix J. To prove
part (ii), note that X, (¢) is closed set and also bounded for all
¢ € [0, k] for some x > 0 from part (i). In particular, X, (¢) is
compact set forall e € [0, k] so the supremum in (20) is attained,
and hence, F,, (¢) < oc.

Step 3: We will prove that lim,_,y: F,,(¢) = f*. In partic-
ular, we show that F,, is continuous at 0, which implies the
result, since F, (0) = f*. Take any sequence (e;)pen in R
such that limy,_,., €, = 0. Then, there exists K € N and a se-
quence (x(k))ren such that f(x(k)) = F,(e) holds for all
k > K, since X, (¢) is compact for all € € [0, k], where & is
chosen as in Step 2. Moreover, by the definition of X, (e), we
have that limy,_,~, L, (x(k)) = 0. Now, since L,, is a continu-
ous function, we can conclude that for every limit point x of
(x(k))ren, itholds that L, (x) = 0,i.e.,x € X* or f(X) = f*.
Since f(x) = f* holds for every limit point of (x(k))ren
and f is continuous, we can conclude that limy ., f(x(k)) =

hHlkHDO Fa(ﬁk) = f*. [ |

APPENDIX F
PROOF OF THEOREM 5

Proof: Step 1: We will prove by contradiction that for any
a>0

I:= lifm inf L, (x(t)) = 0. (49)
L —00

Suppose, to the contrary, that / > 0. Choose T such that

Lo (x(t)) > I/2and y(t) < min{1, I?/(4La* BN3/?)} for all

t > T'. Then, by Lemma 3, we get forall ¢ > T

FOxt 1) < Fx(t) ~ s + 207 (s0)
= ) - D
+ (200 - e ) £
< flx(t) - D 1)

Since (52) holds for all ¢ > T, we obtain

t—1

12
~ 8a2BN3/2 ZV(T), fort > T.
=T
(52)

Since y(t) is nonsummable (52) implies that lim; ., f(x(t)) =
—o0, which contradicts the fact that X is nonempty. Therefore,
we can conclude that I = 0 [see (50)].

Step 2: We will prove that lim; ., f(x(t)) = f*. Lete >0
be given. Choose x > 0 such that F, (k) < f* + €/2, where
F, (k) is defined in (20) of Lemma 4, such x exists since
lim,_q+ F(€) = f*. Now, choose T such that x(T") € X, (x)
[see (15)] and for all ¢ > T, it holds that y(t) < 5 := /€/L,
such T exists because of (49) and that lim; ., v(¢) = 0. Then,
from (19) in Lemma 4, we have for all ¢ > 7" that

fx() < f(x(T))

= €.

N

fxE) = fF<Fa(r) =+ < -+

N
DN
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Step 3: We will prove that the sequence x(t¢) is bounded.
Take x > 0 such that F, (k) < oo, where F, is defined in
(20), such k exists by Lemma 4. From (49), x(t) € X, (k)
holds for infinitely many ¢ € N. Let x(¢;), with k € N, be
the subsequence of all x(t) € X, (k). Choose T' € N such that
y(t) < € /(La?> BN?/?) for all t > T. Then, by following the
same steps as used to obtain (51) and (52) and using the fact that
f(x(tr)) < F,(k), we have for every k € N such that t;, > T
and all ¢ € N such that t;, <t < t;,; that

_ 2

Fx(t)) < Fulh) ~ gy 3 2(7)

T=t}
Therefore, since f* < f(x(t)), we have that

(7

wBN3/2 _
S o) < 25N B - 1),

€

(33)

T=1}

We also have from Lemma 4 that X, () is bounded, so there
exists A € Ry such that ||x|| < A for all x € X, (k). As a
result, for all ¢ > T and k(t) = max{k € N|t;, <}, we get

t—1

@)l < > lx(r+1) = x(n)]| + [|x(t)

T:tk(f/)

t

< Y qn+A4

=1 (1)

where the first inequality comes by writing x(t) as a telescoping
series starting at x(t;,) together with the triangle inequality and
the second inequality comes from the relation

[Ix(t +1) =@l = |[[*)]" = x@)|| < 7(t)
for all te€N, where x(t)=x(t)— (v(t)/VN)sign
(Vf(x(t))). Thus, from (53), we can conclude that the

sequence x(t) is bounded.

Step 4: We will prove lim;_, dist (x(t),X*) =0 by
contradiction. Suppose that there exists € > 0 and a subse-
quence x(t;) such that dist (x(¢x), X*) > € for all k € N.
Then, since x(t) is bounded, so we can without loss of gen-
erality restrict x(¢;) to a convergent subsequence to some
point X, so limy_, x(t;) = X. Now, since f is continuous
and lim; ., f(x(t)) = f*, we can conclude that f(x) = f*
and x € X*. Then, lim; . X(t;) = x € X* contradicts that
dist (x(ty), X*) > eforall k € N. [ |

APPENDIX G
PROOF OF LEMMA 5

Proof: By using that the gradients of f are L-Lipschitz con-
tinuous, we can apply the descent lemma (see, for example, [37,
eq. (2.1.6)] or [26, Proposition A.24]). The descent lemma states

that for all v, we have

Flx =) < 60— (VS(x),d)y + 2Py (54

L
0+ (57 (V7A0)) 69
)+ (g'y—cos ) v (56)
—4(e,7,0) (57)

where (55) comes from that ||d|| =1, (56) comes from
that ang (Vf(x),d) <0, ||[Vf(p)||>e since x ¢ X (e), and
(VI(x),d) = [[Vf(x)|| cos(ang (d, V f(x))). u

APPENDIX H
PROOF OF LEMMA 6

Proof: a) The result can be proved using Steps 1-3 used to
prove Lemma 4, using ||V f()||, X(€), F(€), and Lemma 5 in
place of L, (+), X, (), F,, (¢) and Lemma 3, respectively.

b) For any x € X(e) [37, eq. (2.1.19) in Th. 2.1.10]

2

Fx) < f* + iHVf(xm? <5

where we have used that V f(x*) = 0 for all x* € X™*. ]

APPENDIX I
PROOF OF THEOREM &

Proof: The results can be proved using Steps -4 used
to prove Theorem 5. The main difference is that here Step
1 is to prove that liminf, . ||V f(x(¢))|| =0, instead of
liminf; o L, (x(t)) = 0 as in the proof of Theorem 5. More-

over, here, we use [[Vf(-)|[, X(e), F(e), Lemma 5, and
Lemma 6(a) in place of L, (-), X, (), F,(¢), Lemma 3, and
Lemma 4, respectively. |
APPENDIX J
ADDITIONAL LEMMAS

Lemma 7: Consider D defined in Example 2 of
Section ITI-B. D is a f-cover with the 6 in (9).

Proof: We show that for 6 defined in (9), it holds for any
x € SV that there exists d € D; such that (3) holds.

First, consider the case where x;> cos(#) for some compo-
nent j. Then, for e; €D, we get cos( ang (x,€;)) = (x,€;) =
x; > cos(6). Therefore, we finalize the proof by showing that
ifx € S¥!andx; < cos(f) fori =1,..., N, then

cos(ang (1)) = L z > cos(6)

Without loss of generality, let the components of x be ordered
sothatx; > 0ifi=1,...,Kandx; <0ifi=K +1,...,N,
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where K is the number of positive components of x. Then
K
-y
i=1
L (K cos(f) — /1 — Kcos(0)2> (59)
VN

where (58) comes by using that Zfi | x? = 1 and the inequality
between the 1 and 2 norm, i.e.,

(58)

=

-
Il
—

Y
\

N N K
E Ix;| > E x2=,[1- E x?
i=K+1 i=K 11 i=1

and (59) comes by noting that (58) is decreasing and that x; <
cos(#) for all 7. Now, by inserting our choice of cos(6) from (9)
in (59), we get

K- \/N? 4 2/N(N-1) - K
VN2 4 2/ N(N - 1)

(60)

N—l—\/N2+2\/N(N—1)—(N—1)
\/N\/J\ﬂ +2V/N(N —1)

(61)
N VN
VN\/N? + 2V N(N - 1)

where (61) comes from the fact that (60) is decreasing in K
and K < N — 1, and (62) comes by using that N2 +2VN
(N—-1)— (N —1)=((N = 1)+ VN)2. [

Lemma 8: Forall 3 € [0,1],2 € Randz, a1, a9 € R, with
a1 < g, the following holds:

= cos(f) (62)

Ble =Tz —2]"| < |o — [z — B2]"| (63)
|z — [z — 2]t < |z — [2 — azz]"| (64)
0<z(x—[zr—az]). (65)

Proof: We first prove (63). Direct inspection shows that

if
¢1<x,m>::mw—w—ﬂ*l:{gz" ifziz

£ >
¢52(3f372’75)1:|95_[Jc_ﬁdﬂ:{f,'/z'7 ifi;gz

Therefore, for z € Ry, we have ¢1(z,z,0) = Blz| = ¢o
(x,2,0) if ¢ € [2,00), ¢1(x, 2,08) = B < Blz] = ¢a(x, 2, 5)
if x € [Bz,2], and ¢y (x,2,0) = fx < ax = ¢po(x,2,0) if x €
[0,82]. So ¢1(x,z,0) < ¢o(x,2,8) for all z,z € R, and
B € [0, 1], which yields (63).

Equation (64) follows directly from using the definition
of ¢9(-). To prove (65), we use the fact that sign(z)[z —
apz]" < sign(z)xorbyrearranging0 < sign (z)(x — [z —
a1z]"). By multiplying |z| on both sides, we obtain (65). N

Lemma 9: Suppose X™* is bounded. Then: (i) there exists
£>0 such that X (€) defined in (26) is bounded for all e<x. (ii)
If ||V f(x)|| < B forall xeRY, then there exists x>0 such that
X, () in (15) is bounded for all e<.

Proof: (i) Take any x* € X and choose R > 0O sothat A* C
BY (x*, R). Take k1 > 0 given by

1
k1 = — minimize ||V f(x)]|*.

66
L xesV -1 (x*,R) (66)

Note that such a x; exists since SV~ (x*, R) is compact and
k1 > Osince SV~ (x*, R) N X'* is empty. Moreover, using [37,
(2.1.8) in Th. 2.1.5], that V f (x*) = 0, and (66), we have for all
x € SV (x*, R) that

(Vf(x),x—x") > (1/DVII > k1. (6D

We now show that for all x € RY \ BY(x*, R), we
have ||V f(x)|| > x, where k = k1 /R. Take some x € RV \
BY (x*, R), and let X denote the unique point in the intersection
of the line segment [x*, x| and SV ~!(x*, R), such an x exists
because x € RV \ BY (x*, R) and x* € BY (x*, R). Consider
now the function G : [0, 00) — RY with

G(r) =Vf(x"+7(x—x")).

Clearly, G(0) = Vf(x*) =0, G(1) = Vf(X), and there ex-
ists 7 > 1 such that G(7) = V f(x). By using that gradients
of convex functions are monotone, i.e., for all x;,xs € RY,
it holds that (V f(x;) — Vf(x2),x1 — x2) > 0, we conclude
that for 7, 72 € R with 7y > 79, itholds that (G(11) — G(72),
(11 — 1) (X —x*)) > 0. Rearranging this,

(68)

(G(m), (x = x")) > (G(72), (x —x)), forTi > (69)
By combining (67) and (69), we get that

(G(7), x=x")) 2 (G(1), (x =x")) Z k1. (70)

Hence, by the Cauchy-Schwarz inequality, we have
[IVf(x)||R = ||G(7)||R > k1 and by rearranging we get
[|IVf(x)|| > x1/R = k. Since ||V f(x)|| > & holds for all x €
RN \ BN (x*, R), we can conclude that X'(€) is bounded for
€ < K.

(ii) We prove the result by contradiction. Suppose X, (k)
is unbounded for all x > 0. Then, there exists a sequence xF e
RY such thatlimy, .« [|x*|| = coand limy o, Lo (x*) = 0. We
prove the contraction in the following steps.

Step 1: We will show that there exists < > 0 and R such
that ||V f(x)|| > & holds for all x € RY and ||x — x*|| > R.
If there exists x* € X* such that ||V f(x*)|| = 0, then the re-
sult follows from part (i). Therefore, without loss of generality,
suppose we can take x* € X* with ||V f(x*)|| > 0. Then, the
set 7 :={j=1,...,N, |V, f(x*) # 0} is nonempty. We also
have, using the KKT conditions [32, Sec. 5.9.2], that x € A
if and only if the following three conditions hold: (A) x € RY;
B)V,f(x)>0fori=1,...,N;and (C) V, f(x)x; = 0 for
i=1,...,N.

We first show that (V f(x),x — x*) > 0 for all x € RY \
X*. Consider first the case when x € RY \ X* and x; > 0 for
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some j € J. Then, we have
N

(VF(x),x —x*) > (VF(x),x = x*) 2 DV, f(x*)x; > 0
i=1

where the first inequality comes by the monotonicity of V f, the
second inequality comes by the optimality condition (C), and
the final inequality comes by the optimality condition (B), the
fact that V; f(x*) > 0 for all j € 7, and that x; > 0 for some
j € J. Consider next the case when x € RY \ X* and x; = 0
for all j € J. Then, V, f(x) # V, f(x*) for some i, because
otherwise the optimality conditions (A), (B), and (C) hold for x
so x € X*. In particular, ||V f(x) — V f(x*)|| > 0. Therefore,
we have [37, eq. (2.1.8)]

<Vf(x),x—x*>2<Vf(x*)7x—x*>+%||Vf(x)—Vf(x*)H2

which is strictly larger than 0 since (V f(x*),x —x*) > 0 for
all x € RY and that ||V f(x) — Vf(x*)|| > 0.

Now, take R >0 such that X* C BY(x*,R). Then,
since SV (x*, R)NRY is compact, there exists ri =
ming csv -1 (- g)rRY (Vf(%),x = x*) > 0. We can now fol-
low same arguments as in the proof of part (i) to show that
[|[Vf(x)|| > R, where & = k1 /R.

Step 2: We will show that the following inequality holds for
allx € RY \ BY (x*, R):

cos(ang (Vf(x),x —x*)) > (71)

o =

where R and & are defined as in Step 1. Take some x € RY \
BY (x*, R). Similarly as in part (i), let X denote the unique point
in the intersection of the line segment [x*, x] and SV ! (x*, R).
Moreover, take 7 > 1 such that x = x* + 7(X — x*) and define
G :[0,00) — RY as in (68). Then, by rearranging (70) and
multiplying both sides with 1/R

* K1 1

- s - >
Cos(ang(Vf(x),x X ))Z R ||G(7A')|| =
where k1 and & are defined as in part (i) and Step 1.

Step 3: We will show that the subsequence x* can be restricted
so that (a) limy, o, Vf(x*) = f for some f € R" and (b) for
each component ¢ = 1,..., N either limy_, xf =0 or x; >
W, for some W > 0. We first show (a). Since V f is bounded by
B, the sequence V f(x") is bounded. Therefore, we can restrict
the sequence x* so that V f(x*) is a convergent subsequence
with limy ., Vf(x") = f. To show (b), for each component
i=1,...,N, we restrict the sequence x* so that x¥ > W if
x¥ does not converge to 0 and taking W = max W;.

Step 4: We will prove that f; =0 for i ¢ 7 :={i=
1,...,N | limy, . x¥ = 0}. We prove the result by contradic-
tion. Without loss of generality, suppose f; > 0 for some i ¢ Z,
the case when f; < 0 follows same arguments. Then, there ex-
ists K € N suchthat V; f(x*) > ny := f;/2 > Oforallk > K.
This together with that x¥ > W implies that |x¥ — [x} —
Vi f(x*)]4|>min{ng, W} =: n>0. Therefore, L, (x*)>n
for all k > K, contradicting that lim; ., L, (x*) = 0.

Step 5: We will prove contradiction when Z is empty. From
Step 4, we have f = 0. However, we also have from Step 1 that

| =

|[Vf(x)|| > & forall x € RY \ BN (x*, R). Since BN (x*, R)
is bounded and lim, .., ||x(¢)|| = oo, we have that ||f|| > & >
0, which contradicts that f = 0.

Step 6: We will prove contradiction when Z is nonempty.
Consider the sequence z* = (x* — x*)/(||x* — x*||). Since z*
is bounded, we can restrict the subsequence x” so that z* has
a convergent subsequence, with the limit z. We have z; = 0 for
i € Z and ||z|| = 1, since || - || is continuous function and z*
convergent sequence. Therefore, as both V f(x*) and z* are
convergent sequences and the inner product (-, -) is continuous
function, the sequence (V f(x"),z") is convergent and has the
limit (f,z) = 0. However, for all x* € RY \ BY (x*, R)

[N

(Vf(x"),2") = IIVf(X"')IICOS(ang(Vf(Xk),zk))Z%

where the inequality comes by (71) in Step 2. |
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