
ar
X

iv
:1

70
1.

07
48

2v
1 

 [c
s.

S
Y

]  
25

 J
an

 2
01

7
1
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Abstract—We study feedback control for discrete-time linear
time-invariant systems in presence of quantization both inthe
control action and in the measurement of the controlled vari-
able. While in some application the quantization effects can be
neglected, when high-precision control is needed, quantization
has to be explicitly accounted for in control design. In thispaper
we propose a switched control solution for minimizing the effect
of quantization of both the control and controlled variables in
the case of a simple integrator with unitary delay, a model that is
quite common in the computing systems domain. We show that
the switched solution outperforms the one without switching,
designed by neglecting quantization, and analyze necessary and
sufficient conditions for the controlled system to exhibit periodic
solutions in presence of an additive constant disturbance affecting
the control input. Simulation results provide evidence of the
effectiveness of the approach.

Index Terms—quantized feedback control, switched control,
practical stability, computing system design, limit cycle.

I. I NTRODUCTION

This paper deals with quantized feedback control for
discrete-time linear time-invariant control systems. In par-
ticular, we consider the effect of quantization of both the
measurements and the control actions.

In general, any digital implementation of a control system
entails input and output quantization. This is typically the
case when the output measurements used for feedback and
the control actions applied to the controlled process are trans-
mitted via a digital communication channel. Depending on the
specific application, quantization effects can become relevant
and significantly affect the controlled system performance.
While in some applications the quantization effects can be
neglected, when high-precision control is needed, quantization
has to be explicitly accounted for in control design.

The emerging area of network based control (see e.g.
[1]) has further fostered investigations on quantized feedback
control given that information between plant and controller
is exchanged through a communication channel with limited
bandwidth.

Given a system that is stabilized by a standard linear time-
invariant feedback controller when there is no quantization,
the problem addressed herein is to find a switched controller
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that steers the system towards the smallest possible invariant
set that includes the origin when its control input and output
are quantized. In [2] global asymptotic stability of the origin
is guaranteed for systems with saturating quantized measure-
ments that are stabilizable by linear time-invariant feedback.
The proposed hybrid control design methodology relies on
the possibility of changing the resolution of the quantizer,
zooming in and out depending on the state behavior. A similar
approach has been adopted in [3].

Other approaches have been proposed in [4]–[8], even
including packet-dropouts effects, [9], [10]. However, inall
the cited papers, the only quantized quantity is the controlled
variable, and the effect of quantized control actions is ne-
glected. In [5], it is proven that given an unstable discrete
time system that is stabilizable, there is no control strategy
that makes all closed-loop trajectories asymptotically goto
zero, and that if a linear feedback of the quantized state
is adopted, then, the closed-loop system behaves chaotically.
In this setup, only practical stability can be achieved, which
means that the state converges, in some sense, to a certain set
that plays the role of an equilibrium. The analysis is carried out
in absence of disturbances. In [11], the special case of scalar
linear systems with quantized time-invariant static feedback is
considered. Most paper on quantized state feedback consider
linear systems. The work in [12] extends [13] to a nonlinear
setup. In [14], the impact of limited information on nonlinear
control design is discussed.

Here, we focus on a discrete time linear system described
by an integrator with a one time-unit delay. The system is
affected by an additive disturbance on the control input and
both control input and controlled output measurements are
quantized.

Despite its simplicity, this system structure appears in sev-
eral problems pertaining to the domain of computing systems.
It represents the dynamics from reservation to cumulated CPU
time in task scheduling, a typical source of disturbance being
the latency of the preeemption interrupt [15], [16]. It models
the disturbance to error dynamics in clock synchronizationfor
wireless sensor networks, where the most relevant source of
disturbance is given by temperature variations in the oscillator
crystals [17]. It plays a role in server systems [18], queuing
systems [19], and so forth, as can be observed from the variety
of problems mentioned in [20]–[23]. Quantizers are presentin
virtually the totality of these applications, and dealing with
their effect is actually important when high-performance is
required. In fact, several of the problems just listed require zero
error in the presence of constant inputs, hence the relevance
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of quantization becomes apparent.
The considered linear system is stabilizable and in absence

of quantization one can introduce a standard proportional-
integral (PI) controller to bring the state trajectories tozero,
in presence of a constant disturbance input. We then propose
a switched variant of this PI controller to address quantization
and minimize its effect on the feedback control system perfor-
mance. More specifically, we show that when the disturbance
is constant, the switched control solution presents an invariant
set for the quantized control input and output variables such
that the quantized output is either zero or has a unitary
(minimum resolution) amplitude. A reachability analysis study
shows that, if the PI controller is suitably tuned, this invariant
set is a global attractor. Necessary and sufficient conditions
for the existence of a periodic solution in the (not quantized)
control input and output variables are given as well.

A. Notation

We now introduce some notation that will be used in the
paper developments.

Definition 1 (Sign function). The sign function of a real
numberz is defined as:

sign (z) :=











1, z > 0

0, z = 0

−1, z < 0

Definition 2 (Integer part of a number). The integer part of
a real numberz is defined as:

int (z) :=

{

⌊z⌋, z ≥ 0

⌈z⌉, z < 0

Definition 3 (Fractional part of a number). The fractional part
of a real numberz is defined as:

frac (z) := z − int (z)

A quantizer maps a real-valued function into a piecewise
constant function taking values in a discrete set, and here it is
defined as the rounding operator.

Definition 4 (Rounding operator). Given a real numberz, its
roundingρ : R → Z is defined as:

ρ (z) :=

{

sign (z) · | int (z) |, 0 ≤ frac (z) < 1
2

sign (z) · (| int (z) |+ 1) , 1
2 ≤ frac (z) < 1

Definition 5 (Rounding error). Given a real numberz, its
rounding error is:

∆z := z − ρ (z) .

Notice that according to the provided definitions, the round-
ing error of a real numberz is always bounded as|∆z| ≤ 1

2 .
Finally, note that given two real numbersa ∈ R, andb ∈ R,

we have thatρ (ρ (a) + b) = ρ (a) + ρ (b).

B. Structure of the paper

The rest of the paper is organized as follows. Section II
first describes the control scheme without switching and
highlights how quantization deteriorates the performanceof
the controlled system. The switched solution that allows for
minimizing the effect of quantization is then presented in the
same section. Section III provides necessary and sufficient
conditions for entering the invariant set, and a reachability
analysis for identifying the controller parameter tuning that
makes such an invariant set a global attractor. Section IV
gives necessary and sufficient conditions for the existenceof
periodic solutions. Finally, Section V provides evidence of the
effectiveness of the approach via a simulation study, while
Section VI concludes the paper.

II. BASIC CONTROL SCHEME AND ITS SWITCHED VARIANT

We consider a system with control inputu and outpute,
which is governed by the following equation

e(k + 1) = e(k) + ρ (u(k)) + d(k), (1)

whered is some additive disturbance on the quantized control
actionρ (u).

The outpute represents some error signal and should be
driven to zero by compensating the disturbanced through the
control inputu. To this purpose, quantized measurement of
e are available for feedback. Due to the quantization of both
u and e, the disturbance might not be exactly compensated
and the goal is to design an output feedback compensator so
thate is kept below the minimum resolution as defined by the
quantizer (ρ (e) = 0).

The transfer function between theresidual disturbance
ρ (u) + d and the controlled variablee is given by

P (z) =
1

z − 1
, (2)

which is a discrete time integrator with a one time unit delay.
Suppose that disturbanced is constant, and neglect the quan-

tization for the time being. Then, a discrete-time Proportional
Integral (PI) controller described via the transfer function:

R(z) =
1− αz

z − 1
, (3)

would suffice to drivee to zero with a rate of convergence
that can be set via the parameterα. Indeed, if we neglect the
quantizers, the effect of the disturbanced on the outpute can
be described via the (closed-loop) transfer function

F (z) =
P (z)

1 +R(z)P (z)
=

z − 1

z(z + α− 2)
,

which corresponds to an asymptotically stable linear system if
1 < α < 3. Hence, in the absence of quantization effects, the
PI controller guarantees that the error converges to zero inthe
presence of a constant disturbance, with a rate of convergence
that depends on the parameterα. If α = 2, outpute would be
brought to zero in two time units.

Figure 1 shows the resulting control scheme, including the
quantizers.
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1− αz

z − 1
ρ (·) 1

z − 1
ρ (·)u ρ (u)+ e

ρ (e)

d

+

Figure 1: Basic control scheme with quantizers.
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Figure 2: The effect of quantization in the control scheme in
Figure 1.

A. The effect of quantization

As anticipated in the introduction, whenever high-precision
control is needed, the effect of quantization can significantly
deteriorate the performance of the controlled system. Indeed,
quantization effects are not negligible in almost all the appli-
cations where a digital implementation is in place.

In particular, in the case of the scheme in Figure 1, a
constant disturbance may cause the error to end up in a limit
cycle. This is due to the fact that the disturbanced is acting
directly onP (z), that integrates over time the residual between
it and the quantized control inputρ (u(k)). The integrated
residual disturbance is not detectable on the quantized output
ρ (e) as long as it is smaller than1/2 in amplitude due to the
rounding effect. This causes the controller to react whenever
the rounding of the integrated residual disturbance switches
to 1 or −1, steering the controlled system to a limit cycle of
amplitude2. An example of this effect is shown in Figure 2,
with α = 1.4, d(k) = d =

√
2, and the control system

initialized ase(0) = 2, u(0) = 0.

B. The proposed switched control scheme

In this section, we propose a switched control scheme that
reduces the effect of quantization, steering the system to a
limit cycle of an amplitude that is half of the one obtained
with the control scheme in Figure 1. The proposed solution
has the advantage of still sticking to simple controllers that
lead to an easily implemented system in an embedded device,
with very low overhead.

1− αz

z
ρ (·) 1

z − 1
ρ (·)

z−1

+ u ρ (u)+ e

ρ (e)

+

d

+

Figure 3: Proposed switched control scheme.

The controller is composed by a linear part with transfer
function

R̃(z) =
αz − 1

z
.

and a switched part where the control actionũ computed by
R̃(z) is set as the input to the following modified integrator:
{

u(k + 1) = u(k) + ũ(k + 1), if ρ (e(k + 1)) 6= 0

u(k + 1) = ρ (u(k)) + ũ(k + 1), if ρ (e(k + 1)) = 0

that finally computes the actual control inputu, based on
the quantized error measurementρ (e). Figure 3 shows the
resulting switched control scheme.

Note that ifρ (e(k + 1)) 6= 0, then, the effect ofρ (e) on u
is describe by the transfer functionR(z) of the PI controller
previously presented. Furthermore, in absence of quantization,
the two schemes in Figures 3 and 2 coincide.

The switched control system dynamics is characterized by
the state variablesu ande, and can be expressed as follows:

• if ρ (e(k + 1)) = ρ (e(k) + ρ (u(k)) + d(k)) = 0, then:
{

e(k + 1) = e(k) + ρ (u(k)) + d(k)

u(k + 1) = ρ (u(k)) + ρ (e(k))
(4)

• if ρ (e(k + 1)) = ρ (e(k) + ρ (u(k)) + d(k)) 6= 0, then:






e(k + 1) = e(k) + ρ (u(k)) + d(k)
u(k + 1) = u(k) + ρ (e(k))

− αρ (e(k) + ρ (u(k)) + d(k))
(5)

III. I NVARIANT SET ANALYSIS

In this section we prove that, for a constant disturbance
d(k) = d, the proposed control scheme admits an invariant
set in the quantized state variablesρ (e) andρ (u), and within
that set the amplitude of the quantized error oscillations is 1.

We characterize the conditions under which the control
system enters this invariant set. We then present a numerical
reachability analysis providing insight on how to choose the
parameterα in order to make the identified invariant set a
global attractor.

To this purpose it is convenient to express the control input
as the quantized disturbance compensation term− ρ

(

d
)

plus
the residual:

u(k) = − ρ
(

d
)

+ u(k), (6)
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and let

∆d = d− ρ
(

d
)

, (7)

be the rounding error of the disturbance. We can then rewrite
the control system dynamics in the state variablese andu as:

• if ρ (e(k + 1)) = ρ (e(k) + ρ (u(k)) + ∆d) = 0, then:
{

e(k + 1) = e(k) + ρ (u(k)) + ∆d

u(k + 1) = ρ (u(k)) + ρ (e(k))
(8)

• if ρ (e(k + 1)) = ρ (e(k) + ρ (u(k)) + ∆d) 6= 0, then:






e(k + 1) = e(k) + ρ (u(k)) + ∆d

u(k + 1) = u(k) + ρ (e(k))
− αρ (e(k) + ρ (u(k)) + ∆d)

(9)

which better shows that the rounding error of the distur-
bance is integrated by the process dynamics.

Theorem III.1. Let 1 < α < 3
2 , and consider the system

described by(8) and (9). If, at some timek

− 1

2
< e(k) <

1

2
(10a)

1 ≤ α− u(k) sign (∆d) <
3

2
(10b)

− 1

2
< u(k) <

1

2
(10c)

then, for all the subsequent time stepsk + h, h > 0:

(ρ (e(k + h)) , ρ (u(k + h))) ∈
{(0, 0), (sign (∆d) ,− sign (∆d))} . (11)

Moreover, {(0, 0), (sign (∆d) ,− sign (∆d))} is the smallest
invariant set for ρ (e) and ρ (u), when the system evolves
starting from(10).

Proof. Let us first consider the case where∆d = 0. Given the
error evolution in (8)-(9), we get from (10) that:

e(k + 1) = e(k) + ρ (u(k)) + ∆d = e(k).

Then ρ (e(k + 1)) = ρ (e(k)) = 0, and by (10a) the system
evolves according to (8):

{

e(k + 1) = e(k) + ρ (u(k)) + ∆d

u(k + 1) = ρ (u(k)) + ρ (e(k))
⇒

{

e(k + 1) = e(k)

u(k + 1) = 0
(12)

The first equation satisfies (10a), and the second equa-
tion satisfies both (10b) and (10c), so that the correspond-
ing system keeps evolving according to (12). In addition,
(ρ (e(k + 1)) , ρ (u(k + 1))) is equal to(0, 0), and the system
will keep staying in(0, 0) for all time k+h, with h > 0. This
concludes the proof for the case when∆d = 0.

We now consider the case when0 < ∆d ≤ 1/2. Derivations
for the case−1/2 ≤ ∆d < 0 are analogous, and hence
omitted. Given (10c), we have:

e(k + 1) = e(k) + ρ (u(k)) + ∆d = e(k) + ∆d.

Since−1/2 < e(k) < 1/2 in (10a), and0 < ∆d ≤ 1/2, then

−1

2
< e(k) + ∆d < 1,

and

ρ (e(k + 1)) = ρ (e(k)) =

{

0, |e(k) + ∆d| < 1
2

1, 1
2 ≤ e(k) + ∆d < 1

(13)

We can then distinguish the following two cases:

1) ρ (e(k + 1)) = ρ (e(k) + ρ (u(k)) + ∆d) = 0
2) ρ (e(k + 1)) = ρ (e(k) + ρ (u(k)) + ∆d) = 1

Case 1): The system evolves according to (8):
{

e(k + 1) = e(k) + ρ (u(k)) + ∆d

u(k + 1) = ρ (u(k)) + ρ (e(k))
⇒

{

e(k + 1) = e(k) + ∆d

u(k + 1) = 0,
(14)

so that in one step the quantized state is brought to zero:
(ρ (e(k + 1)) , ρ (u(k + 1))) = (0, 0). Since the first equation
in (14) satisfies (10a), and the second satisfies both (10b)
and (10c), we are back then to (13).

Case 2): The system evolves according to (9):






e(k + 1) = e(k) + ρ (u(k)) + ∆d

u(k + 1) = u(k) + ρ (e(k))
− α ρ (e(k) + ρ (u(k)) + ∆d)

⇒

{

e(k + 1) = e(k) + ∆d

u(k + 1) = u(k)− α
(15)

By (10b), we have:

− 3

2
< u(k)− α ≤ −1,

hence

ρ (u(k + 1)) = ρ (u(k)− α) = −1,

so that(ρ (e(k + 1)) , ρ (u(k + 1))) = (1,−1).
If we next compute:

e(k + 2) = e(k + 1) + ρ (u(k + 1)) + ∆d

= e(k + 1)− 1 + ∆d,

sincee(k+1) = e(k)+∆d, and in this case1/2 ≤ e(k)+∆d <
1:

− 1

2
< e(k + 1)− 1 + ∆d <

1

2
,

we then have

ρ (e(k + 2)) = 0.

The dynamics therefore evolves according to (8), i.e.,
{

e(k + 2) = e(k + 1) + ρ (u(k + 1)) + ∆d

u(k + 2) = ρ (u(k + 1)) + ρ (e(k + 1))
⇒

{

e(k + 2) = e(k + 1)− 1 + ∆d

u(k + 2) = −1 + 1 = 0
(16)

so that(ρ (e(k + 2)) , ρ (u(k + 2))) = (0, 0). In 2 steps the
quantized state is brought to zero. The first equation in (16)
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satisfies hypothesis (10a), the second satisfies both (10b)
and (10c), hence we are back to (13).

All the above shows that starting from (10), the system
ends up evolving in the invariant set{(0, 0), (1,−1)} for
(ρ (e) , ρ (u)). Now we need to prove that this is the smallest
invariant set.

Note that we have just shown that from (10) the system
either enters the invariant set in(0, 0) or in (1,−1), and in
this latter case it evolves to(0, 0) in one time step. Also, in
both cases the system is back to set (10), withu = 0 (see
equations (14) and (16)). We then need to show that the
quantized state cannot keep being in(0, 0) indefinitely, but
it will eventually switch to(1,−1). This is indeed the case
because according to equation (14), the system keeps being
in (10) with u = 0 and keeps integrating the rounding error
until e (necessarily) exceed1/2. Then, we are in case 2 since
ρ (e) = 1, and the quantized state switches to(1,−1).

Proposition III.2. Let 1 < α < 3
2 , and consider the switched

control system described by(8) and (9). If, at some timek, the
state satisfies(10), then, for all the time stepsk + h, h > 1:

e(k + h) = e(k + h− 1) + ρ (u(k + h− 1)) + ∆d (17)

u(k + h) = −αρ (e(k + h)) (18)

Proof. Equation (17) follows immediately from the system dy-
namics in (8)-(9). Based on the proof of Theorem III.1, (18) is
trivially satisfied when∆d = 0 since in this caseρ (e(k)) = 0,
and the system evolves according to (12). Let∆d 6= 0. If
ρ (e(k + 1)) = 0, then u(k + 1) = 0 (see equation (14)).
If instead, ρ (e(k + 1)) = sign (∆d), then u(k + 1) =
u(k) − α sign (∆d), and in one time stepu(k + 2) = 0 (see
equations (15) and (16)).

After time k+2, u keeps its value to0, whenρ (e) = 0. It
become−α sign (∆d) as soon asρ (e) = sign (∆d), and then
gets back tou = 0 in one time step. As a consequence, it is
possible to expressu(k + h), with h > 1, as:

u(k + h) = −αρ (e(k + h)) ,

thus concluding the proof.

An example of possible evolution of the system is shown in
Figure 4, forα = 1.1, ∆d = 0.4, when the switched control
system (8) and (9) is initialized ate(0) = 0.2, andu(0) = 0.6.
The green square in the figure indicates the initial condition,
while the red area indicates the region (10). The top graph in
Figure 4 shows the phase plot of the system. After the state
enters the red area, it ends up in the invariant set characterized
in Theorem III.1. The central and bottom graphs represent the
time evolution of the state variablese andu and their quantized
version.

Theorem III.1 provides conditions under which the sys-
tem ends up in an invariant set where the quantized state
variablesρ (e(k)) and ρ (u(k)) range between the values0
and sign (∆d), and0 and− sign (∆d), respectively, with an
excursion of amplitude equal to1. However, depending on
the value ofα and of ∆d the system may end up on a
different invariant set. Figure 5(a) shows an example of another
invariant set, obtained forα = 1.1, ∆d = −0.3, when

Figure 4: Example of a trajectory entering the invariant set
characterized in Theorem III.1. The top graph shows the phase
plot in the state variablese and u. The lower plots show
the time evolution of the state variables and their quantized
versions.

the system (8) and (9) is initialized ate(0) = −0.2, and
u(0) = 0.6. The red area indicated in the figure is the set (10).
Apparently, in this case, the invariant set is:

(ρ (e) , ρ (u)) ∈ {(0, 1), (1, 0)},

with a quantized state excursion of amplitude1.
There is, however, also another invariant set where the

excursion in amplitude of the quantized error is equal to
2. Figure 5(b), shows the results obtained forα = 1.1,
∆d = −0.5, when the system (8) and (9) is initialized at
e(0) = −0.5, andu(0) = 1.5. In this case:

(ρ (e) , ρ (u)) ∈ {(−1, 2), (1,−1)}. (19)

Similarly, for ∆d = 0.5 we get:

(ρ (e) , ρ (u)) ∈ {(−1, 1), (1,−2)}. (20)

Apparently we get this kind of invariant set with an am-
plitude 2 for the quantized error excursion when|∆d| = 0.5,
while for |∆d| 6= 0.5 only invariant sets where the excursion
amplitude is1 appear. The switched controller then performs
better than the linear PI for almost all∆d values.

Notice also that when|∆d| = 0.5 the invariant set (19)
or (20) is reached only from a subset of initial conditions.
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Figure 5: Example of invariant sets that can be obtained withthe proposed switched scheme. The left column shows the case
where the trajectory ends up in an invariant set with excursion of amplitude1 for the quantized statee andu. Both the phase
plot (top graph) and the time evolution of the state variables e andu with their quantized versions (lower plots) are reported.
The right column shows the case where the trajectory ends up in an invariant set with excursion of amplitude2. Both the
phase plot (top graph) and the time evolution of the state variablese andu with their quantizations (lower plots) are reported.

A. Reachability analysis

In order to better characterize when the system reaches
the invariant set identified in Theorem III.1, we performed
a numerical analysis to study from which initial conditions
region (10) is reachable. Providing an analytical reachability
analysis for the considered system is quite involved and
far from being trivial, due to the quantization effect. In
addition, most of the available tools for performing such an
analysis (e.g., SpaceEx [24], Flow* [25], KeYmaera [26],
or Ariadne [27]) are meant for continuous time dynamical
systems [28].

Figure 6 shows the area identified performing such an analy-
sis as a function ofα ∈ [1.001, 1.499] (see Theorem III.1) and
∆d ∈ [−0.5, 0.5] taking 500 and1000 equally spaced values,
respectively. System (8)-(9) was initialized for the analysis
with (e(0), u(0)) ∈ [−10, 10]2, taking 1000 equally spaced
values per coordinate. Note that[−10, 10]2 can be taken as
representative of the whole state space because for larger
values of (e, u) the quantization errors become negligible.
Outside that set one can therefore assume the system to behave
linearly, causing any trajectory to end up in the set itself.

In the inner part of the closed curve in Figure 6, for all
the considered initial conditions the trajectory ends up inthe
invariant set identified in Theorem III.1.

Statement 1. If 5/4 < α < 3/2 and |∆d| < 0.5, the invariant

1 1.1 1.2 1.3 1.4 1.5

−0.4

−0.2

0

0.2

0.4

α

∆
d

Figure 6: The inner part of the closed curve represent the
set of values forα and ∆d for which the invariant set of
Theorem III.1 is a global attractor as a function ofα and∆d.

set in Theorem III.1 is globally attractive.

As mentioned before, for|∆d| = 0.5, the system may end
up in an invariant set where the amplitude of the excursion
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for the quantized state is2.

IV. L IMIT CYCLES ANALYSIS

In this section, we analyze the evolution of the switched
control system within the invariant set in Theorem III.1, and
determine possible periodic solutions fore andu jointly with
their periodp. We start by defining the notion ofn-periodic
limit cycle of periodp.

Definition 6 (n-periodic limit cycle of periodp). An n-
periodic limit cycle of periodp, with n, p ∈ N, is a solution
of the switched control system(8)-(9) such that

{

e(k + p) = e(k)

u(k + p) = u(k)
, ∀k ≥ k

for somek ≥ 0, and the quantized state(ρ (e) , ρ (u)) switches
n times per period.

Theorem IV.1. A necessary and sufficient condition for the
switched control system to evolve according to an-periodic
limit cycle of periodm within the invariant set in Theorem III.1
is that the disturbance rounding error is rational and satisfies

|∆d| =
n

m
, with 1 ≤ n < m, andn,m ∈ N.

Proof. Note that when the system is within the invariant set
of Theorem III.1, the algebraic relation (18) holds. Therefore,
we just need to show that the state variablee evolves on the
n-periodic limit cycle of periodm.

We start by showing that a necessary condition for this to
hold is that|∆d| is rational.

Suppose that at a certain time steph the system is within the
(minimal) invariant set of Theorem III.1. Assume also, without
loss of generality, that(ρ (e(h)) , ρ (u(h))) = (0, 0). This
entails that|e(h)| < 0.5 and that the inputρ (u(h))+ d to the
process is equal to∆d sinceρ (u(h)) = − ρ

(

d
)

from equa-
tion (6). Indeed, the input to the process keeps constant and
equal to∆d for k time steps, until|e(h+ k)| exceeds or gets
equal to0.5 if ∆d > 0, −0.5 if ∆d < 0. At time h+ k, then,
ρ (e(h+ k)) 6= 0 and the pair(ρ (e(h+ k)) , ρ (u(h+ k)))
switches to(sign (∆d) ,− sign (∆d)) in the invariant set. The
number of stepsk is given by the following formula

k = λ(∆d, x
+(0)) :=

⌈

0.5 sign (∆d)− x+(0)

∆d

⌉

, (21)

where we sete(h) = x+(0). Observe thatλ(∆d, x
+(0))

approaches infinity as∆d tends to zero, in accordance with
Theorem III.1 where the invariant set is composed only of the
value 0 if∆d = 0.

The valuex+(1) taken bye(h+ k + 1) can be obtained as

x+(1) = x+(0) + λ(∆d, x
+(0))∆d +∆d − sign (∆d) , (22)

since the process integrates an input that is constant and equal
to ∆d for k = λ(∆d, x

+(0)) steps, and then receives as input
ρ (u(h+ k))+d = ρ (u(h+ k))−ρ

(

d
)

+d = − sign (∆d)+
∆d at timeh+ k.

If x+(1) is equal tox+(0), then the evolution of statee of the
system is periodic with periodλ(∆d, x

+(0))+1, and we have

a 1-periodic limit cycle of periodk + 1, because one single
switch is needed within the invariant set to reset the state of
the process to its original value, and this requiredk+1 steps.
If x+(1) 6= x+(0), we can further iterate the same reasoning
by consideringi > 1 switches within the invariant set and
computingx+(i), i > 1. If there exists some integerN > 1
such thatx+(N+h) = x+(h), for someh ≥ 0, then, the state
of the process evolves according to anN -periodic limit cycle.

More specifically, we need to compute

x+(N+h) = x+(h)+

+

N−1
∑

i=0

λ(∆d, x
+(i+h))∆d +N(∆d − sign (∆d)),

and setx+(N+h) = x+(h), which reduces to solving
(

N−1
∑

i=0

λ(∆d, x
+(i+h)) +N

)

|∆d| = N.

For this equation to admit a solution we must have

|∆d| =
N

L
,

where we setL =
(

∑N−1
i=0 λ(∆d, x

+(i+h)) +N
)

. Note that
sinceL is an integer larger thanN , for a periodic trajectory of
the state processe to exist, the absolute value of disturbance
quantization error|∆d| must be a rational number of the
form n

m
with n < m. Irrational values for|∆d| are then

incompatible with periodic solutions.
We now show that the condition|∆d| = n

m
being a rational

number is sufficient to have an-periodic limit cycle of period
m.

Observe that by definition ofλ as the minimum number of
steps needed forρ (e(h+ k)) 6= 0 starting frome(h) = x+(0),
we have that

e(h+ k) =x+(0) + λ(∆d, x
+(0))∆d

∈
{

[0.5, 0.5 + ∆d) ∆d > 0

(−0.5 + ∆d,−0.5] ∆d < 0
.

This entails thatx+(1) in (22) satisfies

x+(1) ∈
{

[−0.5 + ∆d,−0.5 + 2∆d) ∆d > 0

(0.5 + 2∆d, 0.5 + ∆d] ∆d < 0

irrespectively ofx+(0). And this hold true for everyx+(i) value
of e after i-th switches within the invariant set, withi ≥ 1.

Let |∆d| = n
m

, wheren andm are coprime integers,m >
n ≥ 1,we next show that, after at least one switch has occurred
within the invariant set, then, the switched control systemstarts
evolving according to an-periodic limit cycle of periodm. We
refer to the case when∆d > 0. The same reasoning applies
to ∆d < 0.

If there were no further switches after timeh + k when
e(h + k) = x+(1), then,e(h + k +m) would take values in
[x+(1), x+(1) +m∆d] = [x+(1), x+(1) + n] since the system
would integrate a constant input equal to∆d for m steps.
However, as soon ase becomes larger than or equal to the
threshold0.5, then, its value is decreased by1, so that if there
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Figure 7: Evolution of the switched control system when∆d =√
2/3.

were exactlyn switches in the time frame[h+k, h+k+m],
then,e(h+k+m) = x+(1) = e(h+k) and a periodic solution
would be in place. Now, in order to show that there are exactly
n switches in the time frame[h+ k, h+ k+m], one should
simply check that[x+(1), x+(1) + n] contains{0.5 + i, i =
0, 1, . . . , n− 1} and does not contain0.5 + n.
Clearly, 0.5 + i is contained in[x+(1), x+(1) + n] for i = 0
andi = n−1, sincex+(1) > −0.5. Now we need to show that
x+(1) +n < 0.5+n to conclude that[x+(1), x+(1) +n] does
not contain0.5 + n. Indeed, sincex+(1) < −0.5 + 2∆d, we
have thatx+(1)+n < n+2∆d−0.5, which entailsx+(1)+n <
n+ 0.5 given that∆d ≤ 0.5.

This concludes the proof.

Figure 7 plots the evolution of the state of the control system
for ∆d =

√
2/3, α = 1.1, e(0) = 0.2, and u(0) = 0.6.

Notice that since∆d is irrational, the obtained trajectory is
not periodic.

Figure 8 shows an example of an1-periodic limit cycle of
period5 obtained for∆d = 0.2 = 1

5 , starting from the initial
condition e(0) = −0.4, u(0) = 0.2. Figure 9 shows a2-
periodic limit cycle of period5 for ∆d = −0.4 = 2

5 starting
from the same initial conditione(0) = −0.4, u(0) = 0.2.

The following corollary directly follows from Theorem III.1
and Theorem IV.1, and summarizes the results of the limit
cycle analysis.

Corollary IV.2. If 1 < α < 3
2 and |∆d| = n

m
, wheren,m ∈

N, 1 ≤ n < m, and |∆d| < 1
2 , then the switched control

system(8)-(9) admits a limit cycle where the errore is kept

Figure 8: Evolution of the switched control system when∆d =
1/5.

within [−0.5+∆d, 0.5+∆d) if ∆d > 0, and within(−0.5+
∆d, 0.5 + ∆d] if ∆d < 0 with a corresponding quantized
version excursion of1.

Proof. We only need to show thate is kept within [−0.5 +
∆d, 0.5+∆d) if ∆d > 0, and within(−0.5+∆d, 0.5+∆d]
if ∆d < 0. Suppose that∆d > 0. By Theorem III.1 and
Proposition III.2, we have that at some timek > 1 after
entering the invariant setρ (e(k)) = ρ (u(k)) = 0, and
u(k) = 0. Then, the error evolves starting from|e(k)| < 1/2,
according to (17) which becomes:

e(k + h) = e(k + h− 1) + ∆d (23)

(since ρ (e) = ρ (u) = 0), until 1/2 ≤ e(k + h) <
1/2 + ∆d, when ρ (e(k + h)) = 1 and henceu(k + h) =
−αρ (e(k + h)) = −α. At time k + h+ 1, the error is reset
to e(k + h+ 1) = e(k + h) + ∆d − 1, so that−1/2 + ∆d ≤
e(k+ h+ 1) < −1/2+ 2∆d, and we are back to the integral
dynamics (23) becauseρ (e) = ρ (u) = 0. From this analysis
it follows that −1/2 + ∆d ≤ e < 1/2 + ∆d. Analogous
derivations can be carried out for the case∆d < 0.

Remark 1. The reachability numerical analysis in Sec-
tion III-A shows that the limit cycle in Corollary IV.2 is
globally attractive.

V. SIMULATION RESULTS

We first present some simulation results comparing the three
cases when no quantization is present in the control scheme,
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Figure 9: Evolution of the switched control system when∆d =
2/5.

and when quantization is present and either the PI or its
switched extension is implemented. Notice that in the absence
of quantization the PI controller and its switched extension
coincide. Figure 10 reports the simulation runs for the three
cases for a finite horizon of30 time units. In all three plots
the error is normalized, i.e., a unitary resolution is assumed.
The value used forα is 11/8, and∆d =

√
2 − 1, while the

system state is initialized ate(0) = 0, andu(0) = 0.
While in the absence of quantization the error converges

to 0 with the designed controller, when quantization is in
place it is not possible anymore to guaranteeing convergence
to zero. In the case of PI control, the error oscillates in the
area[−1, 1], while in the case of its switched extension, it ends
up oscillating in the region[0, 1] according to Statement 1 and
Theorem III.1. It is worth noticing that for the chosen valueof
∆d the evolution of the control system state cannot be periodic
by Theorem IV.1. This is reflected in the evolution ofe that
oscillates in the gray area, but always assumes different values
in the set.

We now consider a time-varying disturbance, which is
initially constant and takes the valued = d1 = 2.6 (∆d =
−0.4 < 0), then, starts decreasing linearly at timek = 50 till
it hits the valued = d2 = 2.4 at k = 250 (∆d = 0.4 > 0),
and finally keeps constant.

The results of the simulation with the switched controller
are shown in Figure 11, with the errore, the control signalu,
and the disturbanced on the left column, and their quantized
versions on the right column. The system is initialized with
e(0) = 0, u(0) = 0, and we setα = 11/8.

−1

0

1

2
(a) e(k)

−1

0

1

2
(b) e(k)

ρ (e(k))

0 5 10 15 20 25 30

−1

0

1

2

k

(c) e(k)

ρ (e(k))

Figure 10: Behavior of quantized (red line with squares) and
non quantized (blue line with circles) error in a simulationrun:
(a) without quantizers, (b) with the standard PI with quantizers,
and (c) with the switched PI with quantizers.

Note that the abrupt change of sign of∆d when the
disturbance crosses the threshold2.5 at timek = 150 causes a
transient which can be seen from the error behavior, and it is
reflected in the quantized version only later, at timek = 175,
when the quantized error starts oscillating between[−1, 1]
and correspondingly the quantized control input oscillates
between[−4,−1]. Such oscillations then stop when the (new)
invariant set described in Theorem III.1 is reached according
to Statement 1. The quantized error then exceeds the minimum
resolution only temporarily during the (delayed) transient
cause by the threshold crossing. In the case of the standard PI
controller, the quantized error and the quantized control input
keep oscillating between[−1, 1] and [−4,−1], respectively,
for the whole time horizon, irrespectively of the fact that the
disturbance crosses the threshold (see Figure 12).

If we change the valued2 and set it equal tod2 = 2.501, the
threshold2.5 is not crossed by the disturbance and the system
keeps evolving in the same invariant set (see Figure 13).

The results presented next refer to a simulation campaign
aimed at investigating the effect of the disturbance magnitude
on the control performance, with and without the proposed
switched extension.

The campaign was carried out by choosing the values ofd
reported in Table I. For each value ofd, two models – one
with bare PI control and the other with switched PI – were
initialized to e(0) = 0 and u(0) = 0, and then subjected to
a constant disturbance of the selected amplitude. Data were
collected from the two simulated experiments just described
over a finite horizon ofH = 1000 time units. We assess
performance by computing the Root Mean Square (RMS)
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Figure 11: Simulation with a time-varying disturbance and the switched PI controller.
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Figure 12: Simulation with the time-varying disturbance inFigure 11 and the standard PI controller.

value of the quantized error, that is defined as:

RMSρ(e) =

√

√

√

√

1

H

H−1
∑

i=0

ρ (e(i))2

whereH is the length of the simulation.
Table I summarizes the results and shows that the proposed

switched scheme decreases theRMSρ(e) by 30%.

VI. CONCLUSIONS AND FUTURE WORK

A switched control scheme was proposed for reducing the
degradation effect due to the quantization of both control and
controlled variables in a system described as an integrator
with unit delay. Set invariance and limit cycles analysis were
performed, jointly with a numerical reachability study, to
assess the switched control scheme performance and provide

disturbance RMS performance index
d standard PI switched PI

±0.01 0.138 0.100
±0.02 0.197 0.141
±0.04 0.281 0.200
±0.05 0.314 0.223
±0.1 0.446 0.316
±0.2 0.631 0.447
±0.4 0.893 0.632

±(
√
2− 1) 0.909 0.643

Table I:RMS performance index of the simulation campaign.

guidelines for control tuning. In particular, necessary and
sufficient conditions for the presence ofn-periodic limit cycles
of periodp were discussed. Finally, simulation results back up
the proposed solution.

Future work will concern the evaluation of the proposed
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Figure 13: Simulation with a time-varying disturbance thathas constant quantized value, using the switched PI controller.

approach in specific types of applications, where the quan-
tization effect is relevant. Results are confined to a specific
class of systems. Further investigations are needed to extend
the proposed approach to a larger class of problems.
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[23] K. J. Åström and R. M. Murray,Feedback systems: an introduction for
scientists and engineers. Princeton university press, 2010.

[24] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O.Lebeltel,
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[25] X. Chen, E.Ábrahám, and S. Sankaranarayanan,Flow*: An Analyzer
for Non-linear Hybrid Systems. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013, pp. 258–263.

[26] A. Platzer and J.-D. Quesel,KeYmaera: A Hybrid Theorem Prover for
Hybrid Systems (System Description). Berlin, Heidelberg: Springer
Berlin Heidelberg, 2008, pp. 171–178.

[27] P. Collins, D. Bresolin, L. Geretti, and T. Villa, “Computing the evolution
of hybrid systems using rigorous function calculus,” inAnalysis and
Design of Hybrid Systems, 2012, pp. 284–290.

[28] X. Chen, S. Schupp, I. B. Makhlouf, E.́Abrahám, G. Frehse, and
S. Kowalewski, A Benchmark Suite for Hybrid Systems Reachability
Analysis. Cham: Springer International Publishing, 2015, pp. 408–414.


	I Introduction
	I-A Notation
	I-B Structure of the paper

	II Basic control scheme and its switched variant
	II-A The effect of quantization
	II-B The proposed switched control scheme

	III Invariant set analysis
	III-A Reachability analysis

	IV Limit cycles analysis
	V Simulation results
	VI Conclusions and future work
	References

