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Abstract—We study feedback control for discrete-time linear
time-invariant systems in presence of quantization both inthe
control action and in the measurement of the controlled vari
able. While in some application the quantization effects oa be
neglected, when high-precision control is needed, quanttion
has to be explicitly accounted for in control design. In thispaper
we propose a switched control solution for minimizing the diect
of quantization of both the control and controlled variables in
the case of a simple integrator with unitary delay, a model tlat is

quite common in the computing systems domain. We show that

the switched solution outperforms the one without switchir,
designed by neglecting quantization, and analyze necesyaand
sufficient conditions for the controlled system to exhibit griodic
solutions in presence of an additive constant disturbanceffecting
the control input. Simulation results provide evidence of he
effectiveness of the approach.

Index Terms—quantized feedback control, switched control,
practical stability, computing system design, limit cycle

|. INTRODUCTION

that steers the system towards the smallest possible amtari
set that includes the origin when its control input and otitpu
are quantized. In_[2] global asymptotic stability of thegbmi
is guaranteed for systems with saturating quantized measur
ments that are stabilizable by linear time-invariant fesaxio
The proposed hybrid control design methodology relies on
the possibility of changing the resolution of the quantizer
zooming in and out depending on the state behavior. A similar
approach has been adopted!in [3].

Other approaches have been proposedlin [4]-[8], even
including packet-dropouts effects,| [9],_110]. However, ait
the cited papers, the only quantized quantity is the cdetiol
variable, and the effect of quantized control actions is ne-
glected. In [[5], it is proven that given an unstable discrete
time system that is stabilizable, there is no control sgpate
that makes all closed-loop trajectories asymptoticallytgo
zero, and that if a linear feedback of the quantized state
is adopted, then, the closed-loop system behaves chaytical

This paper deals with quantized feedback control fdp this setup, only practical stability can be achieved, alihi

discrete-time linear time-invariant control systems. lar-p

means that the state converges, in some sense, to a cettain se

ticular, we consider the effect of quantization of both thEhat plays the role of an equilibrium. The analysis is caroat

measurements and the control actions.

in absence of disturbances. [n[11], the special case oiscal

In general, any digital implementation of a control systedinear systems with quantized time-invariant static feskois
entails input and output quantization. This is typicallye thconsidered. Most paper on quantized state feedback conside
case when the output measurements used for feedback WagRr systems. The work in_[12] extends [13] to a nonlinear

the control actions applied to the controlled process anestr

setup. In[[14], the impact of limited information on nonlare

mitted via a digital communication channel. Depending an tifontrol design is discussed.

specific application, quantization effects can becomevagie

Here, we focus on a discrete time linear system described

and significantly affect the controlled system performancy an integrator with a one time-unit delay. The system is
While in some applications the quantization effects can (géfected by an additive disturbance on the control input and

neglected, when high-precision control is needed, quaiibiz
has to be explicitly accounted for in control design.

both control input and controlled output measurements are
quantized.

The emerging area of network based control (see e.g.Despite its simplicity, this system structure appears i se

[1]) has further fostered investigations on quantized feet

eral problems pertaining to the domain of computing systems

control given that information between plant and controlidt represents the dynamics from reservation to cumulated CP
is exchanged through a communication channel with limitddme in task scheduling, a typical source of disturbancadei

bandwidth.

the latency of the preeemption interrupt[15], [16]. It mtsde

Given a system that is stabilized by a standard linear timée disturbance to error dynamics in clock synchronizaftion
invariant feedback controller when there is no quantizatiowireless sensor networks, where the most relevant source of

the problem addressed herein is to find a switched controlfégturbance is given by temperature variations in the lasoi
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crystals [1¥]. It plays a role in server systems|[18], quguin
systems|[19], and so forth, as can be observed from the yariet
of problems mentioned in_[20]=[23]. Quantizers are pregent
virtually the totality of these applications, and dealinghw
their effect is actually important when high-performanse i
required. In fact, several of the problems just listed regjméro
error in the presence of constant inputs, hence the relevanc
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of quantization becomes apparent. B. Structure of the paper
The considered linear system is stabilizable and in absencerhe rest of the paper is organized as follows. Sedfion II

of quantization one can introduce a standard proportiongfsi describes the control scheme without switching and
integral (PI) controller to bring the state trajectorieszero, highlights how quantization deteriorates the performaote

in presence of a constant disturbance input. We then prop@sg controlled system. The switched solution that allows fo
a switched variant of this PI controller to address quatitBa minimizing the effect of quantization is then presentedtia t
and minimize its effect on the feedback control system perfa;ame section. Sectidnllll provides necessary and sufficient
mance. More specifically, we show that when the disturbanggngitions for entering the invariant set, and a reachsubil

is constant, the switched control solution presents arrigwa analysis for identifying the controller parameter tunimgtt

set for the quantized contro! inp_ut and output variablesh§upnakes such an invariant set a global attractor. Sedfidn IV
that the quantized output is either zero or has a unitagg,es necessary and sufficient conditions for the existerice
(minimum resolution) amplitude. A reachability analysisdy  periodic solutions. Finally, Sectidfl V provides evidenééhe

set is a global attractor. Necessary and sufficient comtitiogection V] concludes the paper.

for the existence of a periodic solution in the (not quart)ze
control input and output variables are given as well.

Il. BASIC CONTROL SCHEME AND ITS SWITCHED VARIANT
_ We consider a system with control inputand outpute,
A. Notation which is governed by the following equation

We now introduce some notation that will be used in the e(k+1) = e(k) + p (u(k)) + d(k), (1)
paper developments.
whered is some additive disturbance on the quantized control
actionp (u).

The outpute represents some error signal and should be
driven to zero by compensating the disturbarddérough the
control inputu. To this purpose, quantized measurement of
e are available for feedback. Due to the quantization of both
-1, 2<0 u and e, the disturbance might not be exactly compensated
and the goal is to design an output feedback compensator so
thate is kept below the minimum resolution as defined by the
quantizer p (e) = 0).

Definition 1 (Sign function) The sign function of a real
numberz is defined as:

1, z>0
sign(z):=4¢0, z2=0

Definition 2 (Integer part of a number)The integer part of
a real numberz is defined as:

-0 The transfer function between thesidual disturbance
int (2) := 2], 2= p (u) + d and the controlled variable is given by
[z], z2<0 )
- . : P(z) = —, )
Definition 3 (Fractional part of a numberYhe fractional part z—1

of a real number: is defined as: which is a discrete time integrator with a one time unit delay
Suppose that disturbandes constant, and neglect the quan-
tization for the time being. Then, a discrete-time Propori

. S . . Integral (PI) controller described via the transfer fuonoti
A quantizer maps a real-valued function into a piecewise

constant function taking values in a discrete set, and hése i _l-az
- | R(z) = —= 3)
defined as the rounding operator.

frac (z) := z — int (2)

z—1"

Definition 4 (Rounding operator)Given a real numbet, its Would suffice to drivee to zero with a rate of convergence
roundingp : R — Z is defined as: that can be set via the parameterindeed, if we neglect the

guantizers, the effect of the disturbanten the outpuk can

) sign (z) - |int (2) |, 0 < frac(z) < % be described via the (closed-loop) transfer function
Z) =
p sign (z) - (|int (2) [+ 1), 3 <frac(z) <1 F(2) P(z) z—1
Z) = =
- ) . . 1+ R(2)P(z) z2(z+a-2)
Definition 5 (Rounding error) Given a real numbee, its ) ) ) _
rounding error is: which corresponds to an asymptotically stable linear syste
1 < a < 3. Hence, in the absence of quantization effects, the
A, i=2—p(2). PI controller guarantees that the error converges to zetioein

presence of a constant disturbance, with a rate of conveegen
Notice that according to the provided definitions, the reundhat depends on the parameterlf o = 2, outpute would be
ing error of a real number is always bounded ag\,| < % brought to zero in two time units.
Finally, note that given two real numberss R, andb € R, Figure[1 shows the resulting control scheme, including the
we have thap (p (a) +b) = p(a) + p (D). quantizers.
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Figure 3: Proposed switched control scheme.

The controller is composed by a linear part with transfer
function

R(z)z az—l.

and a switched part where the control actiorcomputed by
R(z) is set as the input to the following modified integrator:

u(k+1) =u(k) +a(k +1), if ple(k+1))#0
uk+1)=puk)+ak+1), if ple(k+1))=0
k that finally computes the actual control input based on

) o the quantized error measuremanfe). Figure[3 shows the
Figure 2: The effect of quantization in the control scheme IRsulting switched control scheme.

Figure[1. Note that ifp (e(k + 1)) # 0, then, the effect o (¢) onu
is describe by the transfer functidi(z) of the Pl controller
previously presented. Furthermore, in absence of qudiatiza
the two schemes in Figuré$ 3 dnd 2 coincide.

As anticipated in the introduction, whenever high-premisi  The switched control system dynamics is characterized by
control is needed, the effect of quantization can signifigan the state variableg ande, and can be expressed as follows:
deteriorate the performance of the controlled system.ddde , ple(k+1)) = p(e(k) + p(u(k)) + d(k)) = 0, then:
guantization effects are not negligible in almost all thelap
cations where a digital implementation is in place. {e(k +1) =e(k) + p(u(k)) +d(k)

A. The effect of quantization

In particular, in the case of the scheme in Figlte 1, a u(k 4+ 1) = p(u(k)) + p(e(k)) )

constant disturbance may cause the error to end up in a limit
cycle. This is due to the fact that the disturbancis acting ¢ if p(e(k +1)) = p(e(k) + p (u(k)) +d(k)) # 0, then:
Qirectly onP(z), that integrates_overtime the residual between ek +1) = e(k) + p (u(k)) + d(k)
it and the quantized control inpyt(u(k)). The integrated w(k+1) = u(k) + p(e(k))
residual disturbance is not detectable on the quantizgalibut —ap(elk) + p(ulk)) + d(k))
p(e) as long as it is smaller thaty2 in amplitude due to the
rounding effect. This causes the controller to react whenev
the rounding of the integrated residual disturbance swich
to 1 or —1, steering the controlled system to a limit cycle of In this section we prove that, for a constant disturbance
amplitude2. An example of this effect is shown in Figure 2d(k) = d, the proposed control scheme admits an invariant
with o = 1.4, d(k) = d = /2, and the control system set in the quantized state variabje&) andp (v), and within
initialized ase(0) = 2, u(0) = 0. that set the amplitude of the quantized error oscillatians i
We characterize the conditions under which the control
system enters this invariant set. We then present a nurherica
reachability analysis providing insight on how to choose th
In this section, we propose a switched control scheme thggrametera in order to make the identified invariant set a
reduces the effect of quantization, steering the system tagl@bal attractor.
limit cycle of an amplitude that is half of the one obtained To this purpose it is convenient to express the control input
with the control scheme in Figui€ 1. The proposed solutias the quantized disturbance compensation terp(d) plus
has the advantage of still sticking to simple controlleratththe residual:
lead to an easily implemented system in an embedded device, _
with very low overhead. u(k) = —p (d) +7(k), (6)

(®)

IIl. I NVARIANT SET ANALYSIS

B. The proposed switched control scheme



and let Since—1/2 < e(k) < 1/2in (108), and) < A4 < 1/2, then

Ag=d-p(d), ) —%<e(/€)+Ad<1,

be the rounding error of the disturbance. We can then rewrggd
the control system dynamics in the state variablesndw as:

. B _ B _ B o, le(k) + A < &
o if ple(k+ 1)) =p(e(k)+ p(ulk)) + Ayg) =0, then: ple(k+1))=ple(k)) = {1’ % <e(k) + Ay <1 (13)
{ e(k+1) = e(_) p(a(k)) + A (8) We can then distinguish the following two cases:
uk +1) = p (@k)) + p(e(k)) 1) ple(k +1)) = p(e(k) + p (a(k)) + Ag) = 0
o if ple(k+ 1)) = p(e(k) + p (k) + Ag) # 0, then: 2) p(e(k+1)) =p(e(k) +p k) + Ag) =1
Casel[1) The system evolves according {d (8):
e(k+1) =e(k) +p (k) + Aq _
ﬂ(k + 1) (k’) p (e (k)) 9) { e(k+1)= e(k) +p (u(k)) + Ay -
—apl(e (k)+p( (k) + Ag) u(k+1) = p (k) + p(e(k))
which better shows that the rounding error of the distur- {i(k +1) =e(k) + Ag (14)
bance is integrated by the process dynamics. u(k+1) =0,
Theorem Ill.1. Let1 < o < 2, and consider the systemS© that in one step the quantized state is brought to zero:
described by@) and (@). If, at some timek (p(e(k+1)),p(k+1))) = (0,0). Since the first equation
in (14) satisfies [(10a), and the second satisfies Hothl (10b)
_1 <e(k) < 1 (10a) and [I0F), we are back then {0{13).
2 2 5 Case[2) The system evolves according fd (9):
1 <a—ma(k)sign(Ag) < 5 (10b) { ek +1) =e(k) + p (@k)) + Ag
1 1 a(k+1) =7u(k) + p (e(k)) =
Tp Tk <y (10c) —ap(e(k) +p (k) + Ag)
then, for all the subsequent time steps- i, h > 0: {e(k +1)=e(k) + Ay (15)
(p (el + b)) .p ((h + 1) € wl ) =) —e
{(0,0), (sign (Aq), —sign(Ag)}.  (11) By (L0W), we have:
Moreover, {(0,0), (sign (Ag), —sign (Ag))} is the smallest - g <ulk) —a< -1,
invariant set forp (e) and p (@), when the system evolves
starting from (@0). hence
Proof. Let us first consider the case whekg = 0. Given the p(ak+1)) = p (k) - a) = -1,
error evolution in[(B){(), we get froni_(110) that: so that(p (e(k + 1)), p (@(k + 1)) = (1, —1).
e(k +1) = e(k) + p (k) + Ag = e(k). If we next compute:
Thenp(e(k+1)) = p(e(k)) = 0, and by [10h) the system elk+2) =e(k+1)+p(ak+1) + Ad
evolves according td |8): =e(k+1) -1+ Aq,
e(k +1) = e(k) + p (@k)) + Ag sincee(k+1) = e(k)+Aq4, and in this casé/2 < e(k)+A4 <
{ﬂ(kﬂ)— (@(k)) + p (e(k) - b ) 1
{i(k—i—l):e(k) . — g <elh+1) -1+ As <,
u(k+1)=0 we then have
The first equation satisfied _(10a), and the second equa- ple(k+2)) =0.

tion satisfies both[{10b) and (10c), so that the correspond- . . .

ing system keeps evolving according {0](12). In additiol,ne dynamics therefore evolves accordinglfo (8), i.e.,

(p(e(k+1)),p(u(k+1))) is equal to(0,0), and the system _ _

will keep staying in(0, 0) for all time k + h, with A > 0. This {i(k +2) = e(k_+ D+ p(k + 1)+ Ad

concludes the proof for the case whan = 0. u(k+2) = p Uk +1)) + p(e(k + 1))
We now consider the case whenr< A; < 1/2. Derivations e(k+2)=e(k+1) -1+ Aq

for the case—1/2 < A,; < 0 are analogous, and hence Uk +2) = —141=0

omitted. Given[(I0c), we have:

(16)

_ so that(p (e(k +2)), p (u(k +2))) = (0,0). In 2 steps the
e(k+1) = e(k) + p (u(k)) + Aa = e(k) + Aq. quantized state is brought to zero. The first equatiori_ih (16)



satisfies hypothesid_(7I0a), the second satisfies 1 1

and [10t), hence we are back [a](13). 0.5 |-

All the above shows that starting frorh_{10), the systel 0l
ends up evolving in the invariant s€t0,0),(1,-1)} for = _y5|
(p(e),p(u)). Now we need to prove that this is the smalles 1L

invariant set.

Note that we have just shown that froin (10) the syste
either enters the invariant set {0,0) or in (1,—1), and in
this latter case it evolves t(,0) in one time step. Also, in
both cases the system is back to $efl (10), witk= 0 (see
equations [(14) and [{16)). We then need to show that t
quantized state cannot keep being(ih0) indefinitely, but
it will eventually switch to(1, —1). This is indeed the case
because according to equatidn](14), the system keeps be
in (TO) with w = 0 and keeps integrating the rounding erro
until e (necessarily) exceetl/2. Then, we are in case 2 since
p(e) =1, and the quantized state switches(to—1). O

15|

Proposition 111.2. Letl < a < % and consider the switched
control system described Ifg) and (). If, at some timé:, the
state satisfie€1Q), then, for all the time steps + h, h > 1:

e(k+h)=ek+h—-1)+p@k+h-1)+A; (17)
u(k+h)=—ap(e(k+h)) (18)

Proof. Equation[(IV) follows immediately from the system dy
namics in [B){(P). Based on the proof of Theolem 11[1] (38) iFigure 4: Example of a trajectory entering the invariant set
trivially satisfied whem\; = 0 since in this case (e(k)) = 0, characterized in Theorem1Il.1. The top graph shows theghas
and the system evolves according [0](12). et # 0. If plot in the state variables and @. The lower plots show

p(e(k+1)) = 0, thenu(k + 1) = 0 (see equation[{14)). the time evolution of the state variables and their quadtize

If instead, p(e(k+1)) = sign(Ay4), then uw(k + 1) = versions.
u(k) — asign (Ag), and in one time step(k + 2) = 0 (see
equations[(T5) and (16)).
After time k + 2, 7 keeps its value t0, whenp (e) = 0. It the system[(8) and]9) is initialized a{0) = —0.2, and

become—assign (A4) as soon a (e) = sign (Ag4), and then 7(0) = 0.6. The red area indicated in the figure is the Bet (10).
gets back taz = 0 in one time step. As a consequence, it idpparently, in this case, the invariant set is:
possible to express(k + k), with h > 1, as:

(p(e),p @) €{(0,1),(1,0)},

u(k+h)=—ap(e(k+h)),
] With a quantized state excursion of amplitutle
There is, however, also another invariant set where the

An example of possible evolution of the system is shown igcursion in amplitude of the quantized error is equal to
FigureB, fora = 1.1, Ad = 0.4, when the switched control 2. Figure B(b), shows the results obtained for = 1.1,
system[(B) and {9) is initialized af0) = 0.2, andu(0) = 0.6. A, = —0.5, when the system(}8) and](9) is initialized at
The green square in the figure indicates the initial connijtioe(()) = —0.5, andz(0) = 1.5. In this case:
while the red area indicates the regiénl(10). The top graph in
Figure[4 shows the phase plot of the system. After the state (p(e),p@) € {(~1,2),(1,-1)}. (19)
enters the red area, it ends up in the invariant set charzader
in TheoreniI.1. The central and bottom graphs represent tBimilarly, for A; = 0.5 we get:
time evolution of the state variablesindw and their quantized
version. (ple),p@) € {(-1,1),(1,-2)}. (20)

Theorem[dIl.1 provides conditions under which the sys-
tem ends up in an invariant set where the quantized statéApparently we get this kind of invariant set with an am-
variablesp (e(k)) and p (u(k)) range between the valugs plitude 2 for the quantized error excursion whefiy| = 0.5,
andsign (Ag4), and0 and — sign (A,), respectively, with an while for |Ag4| # 0.5 only invariant sets where the excursion
excursion of amplitude equal to. However, depending on amplitude isl appear. The switched controller then performs
the value ofa and of A; the system may end up on abetter than the linear PI for almost all; values.
different invariant set. Figufd 5(a) shows an example oftsro ~ Notice also that whenA,;| = 0.5 the invariant set[(19)
invariant set, obtained fonn = 1.1, A; = —0.3, when or (20) is reached only from a subset of initial conditions.

thus concluding the proof.
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Figure 5: Example of invariant sets that can be obtained thighproposed switched scheme. The left column shows the case
where the trajectory ends up in an invariant set with exoarsif amplitudel for the quantized state andu. Both the phase

plot (top graph) and the time evolution of the state variabl@andw with their quantized versions (lower plots) are reported.
The right column shows the case where the trajectory ends wmiinvariant set with excursion of amplitude Both the
phase plot (top graph) and the time evolution of the stat@bkase andz with their quantizations (lower plots) are reported.

A. Reachability analysis

In order to better characterize when the system reaches 041" |

the invariant set identified in Theorem 1ll.1, we performed
a numerical analysis to study from which initial conditions
region [10) is reachable. Providing an analytical readgbi
analysis for the considered system is quite involved and
far from being trivial, due to the quantization effect. In _
addition, most of the available tools for performing such ard
analysis (e.g., SpaceEx [24], Flowf [25], KeYmaeial[26],
or Ariadne [27]) are meant for continuous time dynamical
systems[[28].

Figure[6 shows the area identified performing such an analy-
sis as a function ofv € [1.001, 1.499] (see TheoreinII1) and
Ay € [-0.5,0.5] taking 500 and 1000 equally spaced values,
respectively. Systen](8}4(9) was initialized for the asay
with (e(0),u(0)) € [-10,10] taking 1000 equally spaced
values per coordinate. Note thpt10,10]? can be taken as @
representative of the whole state space because for largrjure 6: The inner part of the closed curve represent the
values of (e,u) the quantization errors become negligibleset of values fore: and A, for which the invariant set of
Outside that set one can therefore assume the system toebeM@eorent Il is a global attractor as a functioncofind A.
linearly, causing any trajectory to end up in the set itself.

In the inner part of the closed curve in Figulrk 6, for all
the considered initial conditions the trajectory ends uphie set in Theorerd IITJ1 is globally attractive.
invariant set identified in TheoremTI1.1.

0.2 N

1.3 1.4 1.5

As mentioned before, fofA4| = 0.5, the system may end
Statement 1.1f 5/4 < o < 3/2 and|A4| < 0.5, the invariant up in an invariant set where the amplitude of the excursion



for the quantized state . a 1-periodic limit cycle of periodk + 1, because one single
switch is needed within the invariant set to reset the sthte o
IV. LIMIT CYCLES ANALYSIS the process to its original value, and this requikegd 1 steps.

. . . oI 2T £ 2O we can further iterate the same reasoning
In this section, we analyze the evolution of the switched SO . I . .
. . . . y considering: > 1 switches within the invariant set and
control system within the invariant set in Theorem 1Il.1dan N . .
. . o . L : computingzt*, ¢ > 1. If there exists some integey > 1
determine possible periodic solutions foandw jointly with

. : - ) o +(N+h) — p+(h) >
their periodp. We start by defining the notion of-periodic such that ¥ ' for_ someh > 0 ther_l, t_he state
L ; of the process evolves according to &nperiodic limit cycle.
limit cycle of periodp.

More specifically, we need to compute
Def_init_ion_ 6 (n-periodic !imit cycle of perio_dp). An n- FNHR) — ()

periodic limit cycle of periodp, with n,p € N, is a solution
of the switched control syste(@)-(9) such that

N-1
+ Z /\(Ad, .’L‘+(i+h))Ad + N(Ad — sign (Ad)),
=0

e(k+p) =e(k) kST
a(k+p) =auk) ’ B and setzT(N+h) — 4+ which reduces to solving
for somek > 0, and the quantized state (e) , p (7)) switches i lien
n times per period. > Az £ N | Ay = N.
=0

Theorem IV.1. A necessary and sufficient condition for the-, this equation to admit a solution we must have
switched control system to evolve according ta-@eriodic

limit cycle of periodm within the invariant set in Theorem11l.1 |A4] = E7

is that the disturbance rounding error is rational and séitis L

where we setl, = (Zf.vz’ol MAg, zt0F)) + N'). Note that
sincel is an integer larger thaw, for a periodic trajectory of
Proof. Note that when the system is within the invariant séhe state processto exist, the absolute value of disturbance
of Theorent1IL1, the algebraic relation {18) holds. Theref quantization error[A4;| must be a rational number of the
we just need to show that the state variablevolves on the form I with n < m. Irrational values for|A,4| are then

1Ag =L, with1<n<m, andn,m € N.
m

n-periodic limit cycle of periodn. incompatible with periodic solutions.
We start by showing that a necessary condition for this to We now show that the conditiod\;| = > being a rational
hold is that|A,| is rational. number is sufficient to haveaperiodic limit cycle of period

Suppose that at a certain time stethe system is within the m.
(minimal) invariant set of Theorem IIl.1. Assume also, it Observe that by definition of as the minimum number of
loss of generality, thaip (e(h)),p (@(h))) = (0,0). This steps needed fgr(e(h + k)) # 0 starting frome(h) = 2,
entails thate(h)| < 0.5 and that the inpup (u(h)) +d to the we have that

process is equal td\, sincep (u(h)) = —p (d) from equa- 40 +(0)

tion (@). Indeed, the input to the process keeps constant and e(h+k) =z +MAa, 27 Ad

equal toA, for k time steps, untile(h + k)| exceeds or gets [0.5,0.54+ Ay) Ag >0
equal to0.5 if Ay >0, —0.5if Ay < 0. At time h + k, then, < (=0.5+ Ag,—0.5] Ag<0’

p(e(h+k)) # 0 and the pair(p(e(h+k)),p (u(h+k))) _ _ _ o
switches to(sign (A4) , —sign (A4)) in the invariant set. The This entails that:*(!) in (22) satisfies

number of step% is given by the following formula ) 205+ Ay, —0.5 4 2A0) Ay >0
k= Ay 2O {0.5 sign (Ag) — x+(0)" 21) (0.5 4+ 2A4,0.5 + Ay Ay <0
) M Ad )

. .. irespectively oft (), And this hold true for every (@ value

where we sete(h) = z*(?). Observe that\(A4,z ("))  of ¢ afteri-th switches within the invariant set, with> 1.
approaches infinity ag\; tends to zero, in accordance with | et |A;| = 2 wheren andm are coprime integersp >
TheorenilL.1 where the invariant set is composed only of the> 1 we next show that, after at least one switch has occurred
value 0 if Aq = ? _ within the invariant set, then, the switched control sysstants

The valuez™(!) taken bye(h + k + 1) can be obtained as evolving according to a-periodic limit cycle of periodn. We

2t — 4+ 0) | /\(Ad,x+(0))Ad + Ay —sign (Ag), (22) :gfzr ti tOhe case wher; > 0. The same reasoning applies

d .

since the process integrates an input that is constant arad eq If there were no further switches after timtie+ k£ when
to Ag for k = A(Aq,27(?) steps, and then receives as input(h + k) = z+(1), then,e(h + k + m) would take values in
puh+k)+d=p@h+k)—p(d)+d=—sign(Ag)+ [ztW, 27D 4+ mAy] = [z+D), 271 4 1] since the system
Ag at timeh + k. would integrate a constant input equal £9; for m steps.

If 271 is equal tar (9, then the evolution of stateof the However, as soon as becomes larger than or equal to the
system is periodic with periodl(A,4, z(®)) +1, and we have threshold0.5, then, its value is decreased byso that if there
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Figure 7: Evolution of the switched control system whepn=  Figure 8: Evolution of the switched control system when=

V2/3. 1/5.

were exactlyn switches in the time framg +k, h+k+m], within [-0.5+ Ay, 0.5+ A,) if Az > 0, and within(—0.5 +
then,e(h+k-+m) = 271 = e(h+k) and a periodic solution Ay, 0.5+ A,4] if Aq < 0 with a corresponding quantized
would be in place. Now, in order to show that there are exactigrsion excursion of.

n switches in the time framgh + k, h+ k + m], one should
simply check thafz+(®), z+(1) 4+ n] contains{0.5 + i,i =
0,1,...,n— 1} and does not contaid.5 + n.

Clearly, 0.5 + 7 is contained injzt(™, 2+ 4 pn] for i =0
andi = n—1, sincez™ ™ > —0.5. Now we need to show that
2t 41 < 0.5+ n to conclude thafz+(, z+(1) 4] does
not contain0.5 + n. Indeed, sincert™ < —0.5 + 2A,, we
have that:*() +n < n4+2A,—0.5, which entailset () 4+n <

n + 0.5 given thatA, < 0.5. e(k+h)=elk+h—1)+Aq (23)
This concludes the proof. O

Proof. We only need to show that is kept within [-0.5 +
Ag, 0.5+ A,) if Ag >0, and within(—0.5+ A4, 0.5+ Ay]
if Ay < 0. Suppose thatA; > 0. By Theorem[Il.1 and
Proposition[1l[.2, we have that at some tinke > 1 after
entering the invariant sep (e(k)) = p(u(k)) = 0, and

u(k) = 0. Then, the error evolves starting froja(k)| < 1/2,
according to[(T]7) which becomes:

_ _ (since p(e) = p(m@ = 0), until 1/2 < e(k + h) <
FigurelT plots the evolution of the state of the control 3yste1/2 + Ay, whenp(e(k+h)) = 1 and henceu(k + h) =
for Aa = \/5,/3' a = 11, ,6(0) = 0.2, and u(0) =06. _np(e(k+h) =—a. Attime k + h+ 1, the error is reset

Notice that sinceA, is irrational, the obtained trajectory is;, e(k+h+1)=e(k+h)+ Ay —1, so that—1/2 + Ay <
not periodic. o e(k+h+1) < —1/2+2A, and we are back to the integral
Figure[8 shows an example of arperiodic limit cycle of dynamics [[(2B) because(e) = p (@) = 0. From this analysis

period5 obtained forA; = 0.2 = 1, starting from the initial it follows that —1/2 + Ay < e < 1/2 + A4. Analogous

con_diti_on.e(Q) = —0.4, E(O) = 0.2. Figure[® SQOWS "’2 derivations can be carried out for the casg < 0. O
periodic limit cycle of periods for Ay = —0.4 = £ starting

from the same initial conditior(0) = —0.4, w(0) = 0.2. Remark 1. The reachability numerical analysis in Sec-
The following corollary directly follows from TheoremTill. tion [I[-Al shows that the limit cycle in Corollary 1.2 is

and Theoreni IVIl, and summarizes the results of the lingtobally attractive.

cycle analysis.

Corollary IV.2. If 1 < a < 2 and|Ay| = £, wheren,m € V. SIMULATION RESULTS

N, 1 <n < m,and|Ay4] < % then the switched control  We first present some simulation results comparing the three

system(8)-(@) admits a limit cycle where the errar is kept cases when no quantization is present in the control scheme,
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Figure 10: Behavior of quantized (red line with squares) and
non quantized (blue line with circles) error in a simulatian:

(a) without quantizers, (b) with the standard PI with quzers,
and (c) with the switched PI with quantizers.

Figure 9: Evolution of the switched control system whep=
2/5.
Note that the abrupt change of sign df; when the

disturbance crosses the threshdld at timek = 150 causes a

and when quantization is present and either the PI or {Fansient which can be seen from the error behavior, and it is

switched extension is implemented. Notice that in the a‘mc“sefr}eﬂected in the quantized version only later, at titne- 175,

of quantization the PI controller and its switched eXtenS'QNhen the quantized error starts oscillating betwéen, 1]
coincide. F'gl.”ﬂo rgports thg S|mulgt|on runs for the E!hreand correspondingly the quantized control input oscilate
cases for.a finite h.OI’IZOIjI a0 time units. In a!l three plots between—4, —1]. Such oscillations then stop when the (new)
EP; errc|>r 'S no(rjn}allzgd,lll.eé, a Lgngtar{r(\e/%olutllon 'rsl_lasﬁf'm invariant set described in Theordm1ll.1 is reached acogrdi
e;va u? ;Js.e . (.)t[.)‘ II'S d/ ,Oarl 0 d _d 0_7 ’OW "€ € to Statemerifl1. The quantized error then exceeds the minimum
system state is initialized a{(0) = 0, andu(0) = 0. resolution only temporarily during the (delayed) transien

While in the absence of quantization the error CONVETr9E&3use by the threshold crossing. In the case of the standard P

to 0 V\./ith the designed controller, when qua_ntization s i%ontroller, the quantized error and the quantized contmoli
place it is not possible anymore to guaranteelng_ conve_&gerlk%ep oscillating betweef-1, 1] and [—4, —1], respectively,
to zero. In the case of Pl control, the error oscillates in tr}Sr the whole time horizon, irrespectively of the fact thaet

areal—1, 1], while in the case of its switched extension, it endaisturbance crosses the threshold (see Figue 12)
up oscillating in the regiof), 1] according to Statemeht 1 and If we change the valud, and set it equal td — 2.501, the

Theoreni II.1. It is worth noticing that for the chosen vahfe
d [yeshold2.5 is not crossed by the disturbance and the system

Ag4 the evolution of the control system state cannot be perioc{( ing in th ; . Fi 13
by Theoren{ VL. This is reflected in the evolution othat <€€PS €VOIVING I the same invariant set (see Figufe 13).

oscillates in the gray area, but always assumes differdnesa  The results presented next refer to a simulation campaign

in the set. aimed at investigating the effect of the disturbance magieit
We now consider a time-varying disturbance, which ign the control performance, with and without the proposed

initially constant and takes the value= d; = 2.6 (A, = Switched extension.

—0.4 < 0), then, starts decreasing linearly at tirhe= 50 till The campaign was carried out by choosing the values of

it hits the valued = dy = 2.4 at k = 250 (Ay = 0.4 > 0), reported in Tablé€ll. For each value df two models — one

and finally keeps constant. with bare PI control and the other with switched Pl — were

The results of the simulation with the switched controllenitialized to e(0) = 0 and «(0) = 0, and then subjected to
are shown in Figure~11, with the erreythe control signak, a constant disturbance of the selected amplitude. Data were
and the disturbancé on the left column, and their quantizedcollected from the two simulated experiments just desdribe
versions on the right column. The system is initialized witbver a finite horizon ofH = 1000 time units. We assess
e(0) =0, u(0) = 0, and we setx = 11/8. performance by computing the Root Mean Square (RMS)
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Figure 12: Simulation with the time-varying disturbanceFigure[I1 and the standard PI controller.

disturbance

value of the quantized error, that is defined as: ik [tMS performance index

d standard Pl  switched PI
+0.01 0.138 0.100
+0.02 0.197 0.141
RMS, ) = +0.04 0.281 0.200
+0.05 0.314 0.223
) ] _ +0.1 0.446 0.316
where H is the length of the simulation. +0.2 0.631 0.447
Table[l summarizes the results and shows that the proposed 0.4 0.893 0.632
+(vV2-1) 0.909 0.643

switched scheme decreases Mg/ S, by 30%.

Table I: RM S performance index of the simulation campaign.

VI. CONCLUSIONS AND FUTURE WORK

A switched control scheme was proposed for reducing the

degradation effect due to the quantization of both contnol aguidelines for control tuning. In particular, necessaryd an
controlled variables in a system described as an integragffficient conditions for the presencerofperiodic limit cycles
with unit delay. Set invariance and limit cycles analysigave Of periodp were discussed. Finally, simulation results back up
performed, jointly with a numerical reachability study, tdhe proposed solution.

assess the switched control scheme performance and provideuture work will concern the evaluation of the proposed
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Figure 13: Simulation with a time-varying disturbance thas constant quantized value, using the switched PI cdentrol

approach in specific types of applications, where the qugmni] F. Fagnani and S. Zampieri, “Stability analysis andtbgsis for scalar
tization effect is relevant. Results are confined to a specifi

class of systems. Further investigations are needed tcmdaxtﬁz]
the proposed approach to a larger class of problems.
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