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Abstract. The convergence properties of adaptive systems in terms of excitation conditions
on the regressor vector are well known. With persistent excitation of the regressor vector in model
reference adaptive control the state error and the adaptation error are globally exponentially stable
or, equivalently, exponentially stable in the large. When the excitation condition, however, is imposed
on the reference input or the reference model state, it is often incorrectly concluded that the persistent
excitation in those signals also implies exponential stability in the large. The definition of persistent
excitation is revisited so as to address some possible confusion in the adaptive control literature. It is
then shown that persistent excitation of the reference model only implies local persistent excitation
(weak persistent excitation). Weak persistent excitation of the regressor is still sufficient for uniform
asymptotic stability in the large, but not exponential stability in the large. We show that there
exists an infinite region in the state-space of adaptive systems where the state rate is bounded. This
infinite region with finite rate of convergence is shown to exist not only in classic open-loop reference
model adaptive systems but also in a new class of closed-loop reference model adaptive systems.
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1. Introduction. It is well known that stability of the origin and asymptotic
convergence of the tracking error to zero can be guaranteed in adaptive systems with
no restrictions on the external reference input. Asymptotic stability, i.e., convergence
of both the tracking error and parameter error to zero, can occur only when further
conditions of persistent excitation are satisfied. The first known work on asymptotic
stability of adaptive systems can be found in [27]. In that work asymptotic stability of
adaptive schemes was proven for a class of periodic inputs using results from [26]. The
results hinged on a sufficient condition related to the richness of frequency content
in the regressor vector of the adaptive system. In the late 70s and early 80s several
attempts were made to extend the results of [27] to uniform asymptotic stability. Mor-
gan and Narendra proved necessary and sufficient conditions for uniform asymptotic
stability for classes of linear time-varying systems in [31, 32] that are consistent with
the structure of adaptive systems. Anderson leveraged techniques developed in [3]
to prove the exponential stability of adaptive systems in [1] with Kreisselmeier using
similar techniques in [24]. Following these results the persistent excitation conditions
for asymptotic stability were moved from the regressor vector to richness conditions
on the actual reference model input in references [40, 2, 5, 6, 34]. This was a key step
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2464 JENKINS, ANNASWAMY, LAVRETSKY, AND GIBSON

for practical reasons as the control engineer has direct control over the reference input
rather than the regressor.

A key distinction exists, however, between the stability properties of the linear
time-varying systems studied in [1] and those of the adaptive systems in [32], and
forms the starting point for the discussions in this paper. The linear time-varying
system in [1] can be shown to be exponentially stable under persistent excitation
conditions on the underlying regressor. However, once the excitation condition is
moved to the reference input, the adaptive systems in [32] can only be shown to be
uniformly asymptotically stable (UAS). This distinction arises from the endogenous
nature of the underlying regressor and is explicitly pointed out in this paper. The
degree of persistent excitation of the regressor is dependent on the adaptive system
initial conditions. This dependency prevents a uniform correlation between degree of
persistent excitation (i.e., rate of exponential convergence) of the adaptive system’s
internal regressor and the richness of the reference input. The practical implication
of this is that the adaptive systems of [32] are not exponentially stable in the large.
This distinction between local and global exponential stability is an essential detail
when the exponential stability of a system is used to claim robustness properties.
Moreover, an infinite region will be shown to exist in the velocity field where the
norm of the error velocity is finite. As a result, a subset of the state-space will be
shown to exist where the error signals move arbitrarily slowly. Unlike exponentially
stable systems, the system’s convergence speed decreases as the distance from the
equilibrium increases.

The implications of the above property on adaptive systems lie in their robust-
ness. If an unperturbed system is UAS in the large, one cannot guarantee global
boundedness of the perturbed system [7, 33]. In contrast, if an unperturbed system is
exponentially stable, it is easy to show that the perturbed system will exponentially
converge to a compact set whose size is proportional to the size of the perturbation.
That is, even with an external input that is sufficiently rich, as the adaptive system
only exhibits uniform asymptotic stability in the large, its boundedness in the pres-
ence of external disturbances cannot be guaranteed [33], i.e., its robustness is not easy
to obtain.

Recently, a new class of adaptive systems has been under discussion (see [14, 13,
11, 12, 8, 9]) which employ a closed-loop in the underlying reference model. These
adaptive systems have desirable transient response characteristics such as an improved
tracking error whose L-infinty and L-2 norms are small compared to their open-loop
counterparts. In addition, the rates of closed-loop signals such as the control input
and control parameter have small magnitudes when compared to open-loop reference
model (ORM) adaptive systems. In [19, 36], it was shown that the region of slow
convergence that is present in the standard adaptive system with ORM [20] is present
in this new class of closed-loop reference model (CRM) based adaptive systems as
well.

This article is intended to be a cautionary piece and complements the works of
[37] and [28] in carefully defining persistent excitation and a weaker condition that is
not uniform in initial conditions. Whereas [37] and [28] focus on the various stability
results when two different kinds of persistent excitation are studied, we illustrate why,
in general, adaptive systems cannot satisfy the original definition of persistent excita-
tion. We pick up where [34] left off and in so doing hope to clarify the true stability
properties of adaptive systems. We connect the stability results of general adaptive
systems to the region of slow convergence in low dimensional adaptive systems that
occur with ORM and CRM. The paper is organized as follows: section 2 reviews the
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CONVERGENCE PROPERTIES OF ADAPTIVE SYSTEMS 2465

Fig. 1. Visual aids for stability discussion.

definitions for various kinds of stability, section 3 discusses the relationship between
persistent excitation and asymptotic stability of adaptive systems, section 4 constructs
examples and proves the lack of exponential stability in the large even for low order
adaptive systems, section 5 contains simulation results which depict the nature of this
slow convergence, and section 6 summarizes our findings.

2. Stability definitions. Consider a dynamical system defined by the following
relations:

x(t0) = x0,

ẋ(t) = f(x(t), t),

where t ∈ [t0,∞) is time and x ∈ Rn denotes the state vector. We are interested
in systems with equilibrium at x = 0, so that f(0, t) = 0 for all t. The solution to
the differential equation above for t ≥ t0 is a transition function s(t;x0, t0) such that
ṡ(t;x0, t0) = f(s(t;x0, t0), t) and s(t0;x0, t0) = x0. Various definitions of stability
now follow [30, 22, 17]. Figure 1 can be used as an aid.

Definition 1 (stability and asymptotic stability). Letting t0 ≥ 0, the equilib-
rium is

(i) stable if for all ε > 0 there exists a δ(ε, t0) > 0 such that ‖x0‖ ≤ δ implies
‖s(t;x0, t0)‖ ≤ ε for all t ≥ t0;

(ii) attracting if there exists a ρ(t0) > 0 such that for all η > 0 there exists an
attraction time T (η, x0, t0) such that ‖x0‖ ≤ ρ implies ‖s(t;x0, t0)‖ ≤ η for
all t ≥ t0 + T ;

(iii) asymptotically stable if it is stable and attracting;
(iv) uniformly stable if the δ in (i) is uniform in t0 and x0, thus taking the form

δ(ε);
(v) uniformly attracting if it is attracting where the ρ and T do not depend on t0

or x0 and thus the attracting time takes the form T (η, ρ);
(vi) uniformly asymptotically stable UAS if it is uniformly stable and uniformly

attracting;
(vii) uniformly bounded if for all r > 0 there exists a B(r) such that ‖x0‖ ≤ r

implies that ‖s(t;x0, t0)‖ ≤ B for all t ≥ t0;
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2466 JENKINS, ANNASWAMY, LAVRETSKY, AND GIBSON

(viii) uniformly attracting in the large if for all ρ > 0 and η > 0 there exists a
T (η, ρ) such that ‖x0‖ ≤ ρ implies ‖s(t;x0, t0)‖ ≤ η for all t ≥ t0 + T ;

(ix) uniformly asymptotically stable in the large (UASL) if it is uniformly stable,
uniformly bounded, and uniformly attracting in the large.

The definitions of exponential stability are not as prevalent as those above and
are assembled below [30, 29].

Definition 2 (exponential stability). Letting t0 ≥ 0, the equilibrium is
(i) exponentially stable if for every ρ > 0 there exists ν(ρ) > 0 and κ(ρ) > 0 such

that ‖x0‖ ≤ ρ implies ‖s(t;x0, t0)‖ ≤ κ‖x0‖e−ν(t−t0);
(ii) exponentially stable in the large (ESL) if there exists ν > 0 and κ > 0 such

that ‖s(t;x0, t0)‖ ≤ κ‖x0‖e−ν(t−t0) for all x0.

Remark 1. ESL implies UASL by choosing T (ρ, η) = 1
ν log

(
κρ
η

)
. It is clear that

for UASL, T is a function of both ρ and η. But for ESL, T depends only on η/ρ. In
other words, if in a system it can be shown that T is a general function of η and ρ and
varies even when η/ρ is a constant, then it follows that the associated equilibrium is
only UASL and not ESL.

For linear systems, i.e., ẋ = A(t)x, UAS implies ESL [22, Theorem 3, (C), (D)].
Thus, for linear systems all of the definitions are equivalent. The relationship between
these definitions of stability are illustrated in the following implication diagram:

ESL ES

UASL UAS
+ Linear

3. Asymptotic and exponential stability of adaptive systems. We now
present two adaptive systems which arise in the context of identification and control.
The following definition of persistent excitation is relevant for exponential stability of
adaptive systems.

Definition 3 (persistent excitation). Let ω ∈ [t0,∞) → Rp be a time-varying
parameter with initial condition defined as ω0 = ω(t0); then the parameterized function
of time y(t, ω) : [t0,∞)× Rp → Rm is

(i) persistent excitation (PE) if there exists T > 0 and α > 0 such that∫ t+T

t

y(τ, ω)yT(τ, ω)dτ � αI

for all t ≥ t0 and ω0 ∈ Rp, and we denote this as y(t, ω) ∈ PE;
(ii) weak persistent excitation (PE∗(ω,Ω)) if there exists a compact set Ω ⊂ Rp,

T (Ω) > 0, α(Ω) such that∫ t+T

t

y(τ, ω)yT(τ, ω)dτ � αI

for all ω0 ∈ Ω and t ≥ t0, and we denote this as y(t, ω) ∈ PE∗(ω,Ω).

The PE definition is well known in the literature [35, 18, 34], while the weak
PE, denoted as PE∗, is introduced in this paper and will be used to characterize
convergence in adaptive systems.
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CONVERGENCE PROPERTIES OF ADAPTIVE SYSTEMS 2467

3.1. Identification in simple algebraic systems [35]. Let u : [t0,∞)→ Rn
be the input and y : [t0,∞) → R be the output of the following algebraic system of
equations:

y(t) = uT(t)θ,

where θ ∈ Rn is an unknown parameter. If we assume that u is known and y is
measurable, then an estimate of the unknown parameter θ̂ : [t0,∞) → Rn can be
used in constructing an adaptive observer

ŷ(t) = uT(t)θ̂(t),

where the update for the estimate of the uncertain parameter is defined as

˙̂
θ(t) = −u(t) (ŷ(t)− y(t)) .

Denoting the parameter error as φ(t) = θ̂(t)− θ the parameter error evolves as

(1) φ̇(t) = −u(t)uT(t)φ(t).

Theorem 1. If u(t) is PE, piecewise continuous, and either (a) there exists β > 0
such that ∫ t+T

t

u(τ)uT(τ)dτ � βI

or (b) there exists a umax > 0 such that ‖u(t)‖ ≤ umax, then for the dynamics in (1)
the equilibrium φ = 0 is ESL.

The proof is given in two flavors: the first follows that of [1] and the second follows
that of [35], and then the two methods are compared.

Proof of the theorem following Anderson [1, proof of Theorem 1]. The existence

of T , α, and β such that αI �
∫ t+T
t

u(τ)uT(τ)dτ � βI is equivalent to the follow-

ing system being uniformly completely observable: Σ1 : ẋ1 = 0n×nx1, y1 = uT(t)x1

[21, Definition (5.23), dual of (5.13)]. This in turn implies that Σ2 : ẋ2 = −u(t)uT(t)x2,
y2 = uT(t)x2 is uniformly completely observable as well [3, dual of Theorem 4]. There-
fore, there exists α2 and β2 such that

(2) α2I �
∫ t+T

t

ΦT
2 (τ, t)u(τ)uT(τ)Φ2(τ, t)dτ � β2I,

where Φ2(t, t0) is the state transition matrix for Σ2. Note that the upper bound β is
needed to ensure that Φ2(τ, t) is not singular,

det Φ2(t, t0) = exp

[
−
∫ T

t0

trace(u(τ)uT(τ)) dτ

]
.

Let V (φ, t) = 1
2φ

T(t)φ(t) and note that Σ2 and (1) have the same state transition
matrix. Thus φ(t; t0) = Φ2(t, t0)φ(t0). Differentiating V along the system trajecto-
ries in (1) we have V̇ (φ, t; t0) = −φT(t0)ΦT

2 (t, t0)u(t)uT(t)Φ2(t, t0)φ(t0). Using the

bound in (2) and integrating as
∫ t+T
t

V̇ (φ, τ ; t)dτ , it follows that V (t+ T )− V (t) ≤
−2α2V (t). Thus V (t + T ) ≤ (1 − 2α2)V (t) and therefore the system is UASL and
due to linearity it follows that the systems is ESL.
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2468 JENKINS, ANNASWAMY, LAVRETSKY, AND GIBSON

Proof of the theorem following Narendra and Annaswamy [35, proof of Theorem
2.16]. First we note that u(t) being PE is equivalent to∫ t+T

t

|uT(τ)w|2dτ ≥ α

holding for any fixed unitary vector w. Let ũ(t) , u(t)
umax

; then it follows that∫ t+T

t

|uT(τ)w|2dτ = u2
max

∫ t+T

t

|ũT(τ)w|2dτ

≤ u2
max

∫ t+T

t

|ũT(τ)w|dτ,

where the second line of the above inequality follows due to the fact that ‖ũ‖ ≤ 1 and
thus |ũT(τ)w|2 ≤ |ũT(τ)w|. Therefore, u being PE and bounded implies that

(3)
α

umax
≤
∫ t+T

t

|uT(τ)w|dτ.

The above bound will be called upon shortly. Moving forward with the proof, consider
the Lyapunov candidate V (φ, t) = 1

2φ
T(t)φ(t). Then differentiating along the system

directions it follows that V̇ (φ, t) = −φT(t)u(t)uT(t)φ(t). Integrating V̇ and using the
Cauchy–Schwarz inequality it follows that

−
∫ t+T

t

V̇ (φ, τ)dτ =

∫ t+T

t

|uT(τ)φ(τ)|2dτ

≥ 1

T

(∫ t+T

t

|uT(τ)φ(τ)|dτ

)2

.

The above inequality can equivalently be written as

(4)
√
T (V (t)− V (t+ T )) ≥

∫ t+T

t

|uT(τ)φ(τ)|dτ.

Using the reverse triangle inequality, the right-hand side of the inequality in (4) can
be bounded as

(5)

∫ t+T

t

|uT(τ)φ(τ)|dτ ≥
∫ t+T

t

|uT(τ)φ(t)|dτ −
∫ t+T

t

|uT(τ)[φ(t)− φ(τ)]|dτ.

Using the bound in (3) the first integral on the right-hand side of the above inequality
can be bounded as

(6)

∫ t+T

t

|uT(τ)φ(t)|dτ ≥ ‖φ(t)‖ α

umax
.

The second integral on the right-hand side of (5) can be bounded as∫ t+T

t

|uT(τ)[φ(t)− φ(τ)]|dτ ≤ umaxT sup
τ∈[t,t+T ]

‖φ(t)− φ(τ)‖

≤ umaxT

∫ t+T

t

‖φ̇(τ)‖dτ

≤ u2
maxT

∫ t+T

t

‖uT(τ)φ(τ)‖dτ.

(7)
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The second line in the above inequality follows by the fact that the arc-length between
two points in space is always greater than or equal to a straight line between them.
The third line in the above inequality follows by substition of the dynamics in (1).
Substituting the inequalities in (5)–(7) into (4), it follows that∫ t+T

t

|uT(τ)φ(τ)|dτ ≥
‖φ(t)‖ α

umax

1 + u2
maxT

.

Substituting the above bound into (4) and squaring both sides, it follows that

V (t+ T ) ≤
(

1− 2α2/u2
max

T (1 + u2
maxT )2

)
V (t).

Therefore the dynamics in (1) are UASL and by linearity this implies ESL as well. �
While the first proof is more generic, the method deployed in the second proof

gives direct insight into how the degree of PE, α, and the upper bound, umax, affect
the rate of convergence,

(8) rcon , 1− 2α2/u2
max

T (1 + u2
maxT )2

.

In the method by Anderson the rate of convergence is an existence one given by
(1 − 2α2). No closed form expression is given relating α2 to the original measures
of PE, α and β.1 It is clear, however, that for fixed T an increase in umax con-
servatively implies an increase in β. It is also clear from (8) that an increase in
umax decreases the convergence rate rcon. We show below that an increase in β im-
plies a decrease in rcon. Recall the Abel–Jacobi–Liouville identity, det Φ2(t, t0) =

exp
[
−
∫ T

t0
trace(u(τ)uT(τ)) dτ

]
, and thus as β increases, det Φ2(t, t0) decreases. Now

using this fact and the bound in (2) it follows that as β increases α2 decreases.
Often, adaptive systems generate a dynamic system of the form (1) where u(·) is

a function of the parameter estimate itself. For this purpose, a nonlinear system of
the form

(9) φ̇(t) = −u(t, φ)uT(t, φ)φ(t)

with φ0 = φ(t0) needs to be analyzed. This is addressed in the following theorem,
where it should be noted that UASL does not imply ESL.

Theorem 2. Let Ω(r) = {φ : ‖φ‖ ≤ r}. If u(t, φ) ∈ PE∗(φ,Ω(r)) for all r, u(t)
is piecewise continuous, and there exists umax(r) > 0 such that ‖u(t, φ)‖ ≤ umax for
all φ0 ∈ Ω(r), then φ in (9) is UASL.

Proof. Given that u(t, φ) ∈ PE∗(φ,Ω(r)), it follows that there exists T (r) and

α(r) such that
∫ t+T
t
|uT(τ, φ)w|2dτ � α(r) for all φ0 ∈ Ω(r). Choosing a Lyapunov

candidate as V (φ, t) = 1
2φ

T(t)φ(t) and following the same steps as in the proof of
Theorem 1 it follows that V (t+ T (r)) ≤ rcon(r)V (t) for all φ0 ∈ Ω(r), where

rcon(r) =

(
1− 2α2(r)/u2

max(r)

T (r)(1 + u2
max(r)T (r))2

)
.

1If one carefully follows the steps outlined in [1] it may be possible to come up with a closed
form relation, but it appears to be nontrivial.
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Given that the convergence rate is upper bounded for all ‖φ0‖ ≤ r and r can be
arbitrarily large, the dynamics in (9) are UASL. In order for one to conclude that the
dynamics are ESL there would need to exist a constant 0 < δ < 1 such that rcon ≤ δ
for all r. That is, the convergence rate of the Lyapunov function would need to be
bounded away from 1 uniformly in initial conditions. This global uniformity is not
guaranteed from this analysis and thus it is not possible to conclude ESL.

Remark 2. With Theorem 2, ESL of the general nonlinear system (9) was not
explicitly disproven; rather, the functional dependencies between the coefficients imply
that one is not able to conclude ESL with the information at hand. The specific
dynamics of u(t, φ) which arise within reference model adaptive control are the subject
of the following section and are one such example of u(t, φ) for which global uniformity
of rcon is not achieved and therefore ESL is explicitly disproven. In such systems, with
umax(r) and α(r) constant it is shown that T (r) increases in an unbounded fashion as
r tends to infinity (or one can fix T (r) but then α(r) decreases as r tends to infinity).
The limiting result (in either case) is thus limr→∞rcon(r) = 1.

3.2. Model reference adaptive control. Let u : [t0,∞) → R be the input
and x : [t0,∞)→ Rn the state of a dynamical system

(10) ẋ(t) = Ax(t)−BθTx(t) +Bu(t),

where A ∈ Rn×n is known and Hurwtiz and B ∈ Rn is known as well, with the
parameter θ ∈ Rn unknown. The goal is to design the input so that x follows a
reference model state xm : [t0,∞)→ Rn defined by the linear system of equations

ẋm(t) = Axm(t) +Br(t),

where r : [t0,∞) → R is the reference command. Defining the model following error

as e = x − xm the control input u(t) = θ̂T(t)x(t) + r(t) achieves this goal when the

adaptive parameter θ̂ : [t0,∞)→ Rn is updated as follows:

˙̂
θ(t) = −xeTPB,

where P = PT ∈ Rn×n is the positive definite solution to the Lyapunov equation
ATP + PA = −Q for any real n× n dimensional Q = QT � 0. So as to simplify the
notation we let C , PB and the adaptive system can be compactly represented as

(11)

[
ė(t)

φ̇(t)

]
=

[
A BxT(t)

−x(t)CT 0

] [
e(t)
φ(t)

]
,

where the initial conditions of the model following error and parameter error are
denoted as e0 = e(t0) and φ0 = φ(t0). For the dynamics of interest it follows that

(12) V (e, φ) = eTPe+ φTφ

is a Lyapunov candidate with time derivative along the state trajectories satisfying
the inequality, V̇ ≤ −eTQe. This implies that e(t) and φ(t) are bounded for all time
with

(13) ‖e‖ ≤
√

V (e0,φ0)
Pmin

and ‖φ‖ ≤
√
V (e0, φ0),

where Pmin is the minimum eigenvalue of P . The reference command is bounded by
design and thus xm is bounded and along with the bounds above implies that x is
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bounded. The boundedness of x and φ in turn implies that ė is bounded for all time.
Integration of V̇ shows that e ∈ L2 with

(14) ‖e‖L2 ≤
√

V (e0,φ0)
Qmin

,

where Qmin is the minimum eigenvalue of Q. From the fact that e ∈ L2 ∩ L∞ and
ė ∈ L∞ it follows that e → 0 as t → ∞ [35, Lemma 2.12]. Before discussing the
asymptotic stability of the dynamics in (11) the following lemma is critical in relating
PE between the reference model state and the plant state. Let z = [eT, φT]T; then
the dynamics in (11) can be compactly expressed as

(15) ż(t) =

[
A BxT(t, z; t0)

−x(t, z; t0)CT 0

]
z(t),

where we have explicitly denoted x as a function of the state variable z.

Lemma 3. For the dynamics in (15) if xm(t) is PE with an α and T such that∫ t+T
t

xm(τ)xTm(τ)dτ � αI, and there exists a β such that ‖xm(t)‖ ≤ β, then x(t, z)
is PE∗(z, Z(ζ)) with Z(ζ) = {z : V (z) ≤ ζ} for all ζ > 0 with the following bounds
holding:

(16)

∫ t+pT

t

x(τ)xT(τ)dτ � α′I

with p > pmin where

(17)
√
pmin ,

(√
ζ

Pmin
+ 2β

)√
T ζ
Qmin

α

and

(18) α′ , pα−
(√

ζ
Pmin

+ 2β

)√
pT ζ

Qmin
.

Before going to the proof of this lemma a few comments are in order. First, note
that the state variable z contains both the model following error e and the parameter
error φ. Therefore, what is being said is that there is PE* of x for all initial conditions
e0 and φ0 in the compact regions defined by the level sets of the Lyapunov function
V (z) = eTPe+ φTφ. Furthermore, because these conditions hold for arbitrarily large
level sets, i.e., ζ can be arbitrarily large, PE* of x is achieved for any initial condition
z0 ∈ R2n. However, because the parameters in the PE bound in (16), namely, p, are
not uniform in z0 it cannot be concluded that x is PE.

Proof. This proof follows closely that of [5, Theorem 3.1]. For any fixed unitary
vector w, consider the following equality: (xTmw)2 − (xTw)2 = −(xTw− xTmw)(xTw+
xTmw). Using the definition of e, the bound in (13) for e, and the bound β in the
statement of the lemma, it follows that

(xTmw)2 − (xTw)2 ≤ ‖e‖
(√

V (z0)
Pmin

+ 2β

)
.

Moving (xTmw)2 to the right-hand side, multiplying by −1, and integrating from t to
t+ pT where p is defined just above (17)
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t

(xT(τ)w)2dτ ≥
∫ t+pT

t

(xTm(τ)w)2dτ −
(√

V (z0)
Pmin

+ 2β

)∫ t+pT

t

‖e(τ)‖dτ.

Applying Cauchy–Schwarz to the integral on the right-hand side and using the fact

that
∫ t+T
t

(xTm(τ)w)2dτ ≥ α we have that

∫ t+pT

t

(xT(τ)w)2dτ ≥ pα−
(√

V (z0)
Pmin

+ 2β

)√
pT

∫ t+pT

t

‖e(τ)‖2dτ.

Applying the bound in (14) for the L2 norm of e, it follows that∫ t+pT

t

(xT(τ)w)2dτ ≥ pα−
(√

V (z0)
Pmin

+ 2β

)√
pT V (z0)

Qmin
.

For all z0 ∈ Z(ζ) it follows that V (z0) ≤ ζ and therefore

pα−
(√

V (z0)
Pmin

+ 2β

)√
pT V (z0)

Qmin
≥ α′.

It follows directly that
∫ t+pT
t

(xT(τ)w)2dτ ≥ α′ for all t ≥ t0 and z0 ∈ Z(ζ).

Remark 3. The main takeaway from this lemma is that for a given α and T such

that
∫ t+T
t

xm(τ)xTm(τ)dτ � αI and for a fixed α′ such that
∫ t+pT
t

x(τ)xT(τ)dτ � α′I,
as the size of the level set V (z) = ζ is increased, p must also increase. This can be seen
directly through (17) where pmin increases with increasing ζ. Thus, as p increases,
the time window pT over which the excitation is measured increases as well.

Remark 4. We note that there is nothing in the above lemma that requires time
to be continuous and thus the aforementioned relationship between PE and PE∗ via
an L2 condition also holds for discrete time systems via an equivalent `2 relationship.

Theorem 4. If r(t) is piecewise continuous and bounded, and xm(t) is PE and
uniformly bounded, then the equilibrium of the dynamics in (15) is UASL.

Proof. Given that xm ∈ PE it follows from Lemma 3 that x(t, z) ∈ PE∗(z, Z(ζ))
for any ζ where Z(ζ) = {z : V (z) ≤ ζ} and the Lyapunov function V is defined in (12).
From (13) it follows that all signals are bounded. Furthermore given that r is piecewise
continuous and bounded it follows from (10) that ẋ is piecewise continuous. Therefore
x ∈ P[t0,∞); see the definition of piecewise smooth in Definition 4 the appendix. With
x(t, z) ∈ PE∗(z, Z(ζ))∩P[t0,∞) for any fixed ζ applying [31, Theorem 5] it follows that
the dynamics of interest are UAS. Given that the above results hold for any ζ > 0,
the dynamics of interest are therefore UASL. Due to the fact that PE bounds for x
do not hold globally uniformly in the initial condition z0 one is not able to conclude
ESL from this analysis.

We can in fact state something even stronger and will give a proof by example in
the following section (following Theorem 7).

Theorem 5. The reference command r(t) being piecewise continuous and bounded,
and the reference model state xm(t) being uniformly bounded and PE, are not sufficient
for the equilibrium of the dynamics in (15) to be ESL.

Remark 5. Stated more informally, if the input to the reference model is suffi-
ciently rich, then the output of the reference model will be persistently exciting, but
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then the plant state will only be weakly persistently exciting. Note then that the
main Theorem of [6] should be slightly weakened in its claim.2

4. Lack of exponential stability in the large for adaptive systems. In this
section two examples are presented to illustrate rigorously by example the implication
made in Theorem 4, i.e., PE of the reference model does not imply exponential stability
in the large of the adaptive system and thus proves Theorem 5. This is performed by
constructing an invariant unbounded region in the state space of the direct adaptive
system where the rate of change per unit time of the system state is finite. It is this
feature which implies a lack of exponential stability in the large.

The first example is identical to the dynamics in (3.2), but with a learning gain
added to the update law. The second example is a modified version of classic direct
adaptive control with an error feedback term in the reference model [14, 9]. To distin-
guish the two systems we characterize them by their reference models and refer to the
first system as ORM adaptive control and the second as CRM adaptive control. The
CRM adaptive system has been added due to recent interest in transient properties
of adaptive systems, with the class of CRM systems portraying smoother trajectories
as compared to their ORM counterpart [14, 9].

4.1. Scalar ORM adaptive control with PE reference state. The following
scalar dynamics are nearly identical to those in section 3.2; however, we repeat them
herein with A = a < 0 and B = b > 0 to emphasize that they are scalars. Let
u : [t0,∞) → R be the input, x : [t0,∞) → R the plant state, xm : [t0,∞) → R
the reference state, and r : [t0,∞) → R the reference input to the following set of
differential equations:

ẋ(t) = ax(t)− bθx(t) + bu(t),(19)

ẋm(t) = axm(t) + br(t),(20)

with the parameter θ ∈ R unknown. For ease of exposition, in both this section and
the next, we will assume that r(t) is a nonzero constant, i.e., r(t) ≡ r, r 6= 0. The

control input is defined as u(t) = θ̂(t)x(t) + r(t) with θ̂ : [t0,∞) → R updated as
follows:

(21)
˙̂
θ(t) = −γxe,

where e = x− xm and γ > 0 is a tuning gain.
As before, the error dynamics can be compactly expressed in vector form as

z(t) = [e(t), φ(t)]T. A sufficient condition for the uniform asymptotic stability of the
above system is that the reference input remain a nonzero constant for all time. This
can be proved using Theorem 4. Given that for a constant reference command the
above dynamics are also autonomous we give the same result using the well-known
invariance principle from Lasalle and Krasovskii [23, 25, 4].

Theorem 6. For the system defined in (19)–(21) and r(t) ≡ r, r 6= 0, z = 0 is
UASL.

2Sufficient richness of the reference input does not imply persistence of excitation of the regressor
vector. The authors of [5, 6] are careful in proving that richness of the reference input only implies
exponential convergence. The careful wording of convergence, however, was changed to exponential
stability countless times elsewhere in the literature. It was then inappropriately concluded that
uniform asymptotic stability in the large is equivalent to exponential stability in the large for adaptive
systems.
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2474 JENKINS, ANNASWAMY, LAVRETSKY, AND GIBSON

Proof. Define the Lyapunov function

(22) V (e, φ) = e2 +
1

γ
φ2,

then V̇ (e, φ) = 2ae2. Since V > 0 for all z 6= 0, V̇ ≤ 0 for all z ∈ R2, and V → ∞
as z → ∞ the equilibrium at the origin is uniformly stable and uniformly bounded.
Given that the system is autonomous, it follows from the invariance principle that
the origin is UASL.

We are now going to construct an unbounded invariant region as discussed at
the beginning of this section. The reference model state initial condition is chosen as
xm(t0) = x̄, where

(23) x̄ ,
−br̄
a

> 0

so that xm(t) = x̄ for all time. Then the error dynamics are completely described by
the second order dynamics

(24) ż(t;x0, a, b, γ, x̄) =

[
ė(t)

φ̇(t)

]
=

[
ae(t) + bφ(t)(e(t) + x̄)
−γe(t)(e(t) + x̄)

]
with s(t; t0, z(t0)) the transition function for the dynamics above.

The invariant set is constructed by first defining three one-dimensional manifolds
S1,S2,S3 and three preliminary subsets of R2 which we will denote P1,P2,P3, and
finally three regions M1,M2,M3 are defined whose union is our invariant set of interest.
Use Figure 2 to help visualize these regions. We begin by defining the surface

(25) S1 ,
{

[e, φ]T | e = −x̄
}
.

The region P1 ⊂ R2 and the second surface S2 are defined as

P1 ,
{

[e, φ]T
∣∣∣ φ < a

b

}
,

S2 ,

{
[e, φ]T

∣∣∣∣ e =
(a− bφ)x̄

a+ bφ
, [e, φ]T ∈ P1

}
.(26)

Similarly a second subset of the error-space P2 ⊂ R2 and a third surface S3 are
defined as

P2 ,
{

[e, φ]T
∣∣∣ a
b
≤ φ < 0

}
,

S3 ,
{

[e, φ]T
∣∣ e = 0, [e, φ]T ∈ P2

}
.

We now define regions M1 and M2 as

M1 ,

{
[e, φ]T

∣∣∣∣ −x̄ < e <
(a− bφ)x̄

a+ bφ
, [e, φ]T ∈ P1

}
,(27)

M2 ,
{

[e, φ]T
∣∣ −x̄ < e < 0, [e, φ]T ∈ P2

}
.(28)

From these definitions, we note that the surfaces S1 and S2 form the two sides of the
region M1. Similarly, S1 and S3 form the sides of the region M2. In order to complete
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Fig. 2. The three regions M1 (horizontal lines), M2 (crosshatch), and M3 (solid) whose union
results in the invariant set M0.

the invariant set a third region is defined using the Lyapunov function in (22) which
gives us the convex bounded region

(29) M3 ,

{
[e, φ]T

∣∣∣∣ e2 +
1

γ
φ2 < x̄2

}
.

The union of the three regions is defined as

(30) M0 , M1 ∪M2 ∪M3.

The following theorem will show three facts. First, the error velocities within M0

are finite and bounded even though M0 is unbounded. Second, M0 is an invariant
set. Last, a lower limit on the time of convergence is given as a function of the initial

condition z(t0) and the ratio ‖s(t1;t0,z(t0))‖
‖s(t0;t0,z(t0))‖ for some t1 ≥ t0. The conclusion to be

arrived at is that the system is UASL and not ESL.

Theorem 7. For the error dynamics z(t) with r(t) = r̄ and xm(t0) = x̄ with M0

defined in (30) and s(t; t0, z(t0)) the transition function of the differential equation
(24), the following hold:

(i) ‖ż‖ ≤ dz for all z ∈ M0, where

dz ,
√

(|ax̄|+ 2|b√γx̄2|)2 + (2γx̄2)2.

(ii) M0 is an invariant set.
(iii) A trajectory beginning at z(t0) ∈ M0 will converge to a fraction of its original

magnitude at time t1, with

(31) T ≥ ‖z(t0)‖(1− c)
dz

,
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where c = ‖s(t1;t0,z(t0))‖
‖s(t0;t0,z(t0))‖ and T = t1 − t0.

Proof of (i). From the definition of M1 in (27) and M2 in (28), and the definition

of φ̇ in (24), it follows that |φ̇(z)| ≤ γ x̄
2

4 for all z ∈ M1 ∪M2. Similarly, from the

definition of M3 in (29) it follows that |φ̇(z)| ≤ 2γx̄2 for all z ∈ M3. Therefore

(32) |φ̇(z)| ≤ 2γx̄2

for all z ∈ M0, where M0 is defined in (30).
From the definition of ė in (24) and the definitions of M1, M2, and M3 it follows

that |φ̇(z)| ≤ |ax̄| for all z ∈ M1 ∪ M2 and |φ̇(z)| ≤ |ax̄| + 2b
√
γx̄2 for all z ∈ M3.

Therefore

|ė(z)| ≤ |ax̄|+ 2b
√
γx̄2(33)

for all z ∈ M0. From the bounds in (32) and (33) for φ̇ and ė, respectively, Theorem
7(i) follows.

Proof of (ii). In order to evaluate the behavior of the trajectories on the surfaces
S1, S2, and S3, normal vectors are defined along the surfaces that point toward M0.
The normal vectors are

n̂1 = [1, 0]T, n̂2(z) =

[
−∂e
∂φ

, 1

]T
z∈S2

, and n̂3 = [−1, 0]T,

where ∂e
∂φ = −2bx̄a

(a+bφ)2 . We then find that n̂Ti (z)ż(z) ≥ 0 for z ∈ Si and i = 1, 2, 3.

From the general stability proof of the adaptive system with Lyapunov function V =
e2 + 1

γφ
2 once within M3 a trajectory cannot leave it.

Proof of (iii). For a trajectory to traverse from z(t0) to a magnitude less than
c‖z(t0)‖ (such that ‖s(t1)‖ ≤ c‖s(t0)‖) it must travel at least a distance ‖z(t0)‖(1−c)
over which it has a maximum rate of dz; therefore

T ≥ ‖z(t0)‖(1− c)
dz

.

Proof of Theorem 5. The results from Theorem 7 illustrate that for an input
which provides PE of the reference model, there exists an unbounded region where
the adaptive system is UASL and not ESL. For the system to possess ESL, the lower
bound in (31) needs to be dependent only on c and independent of z(t0); see Remark 1
with c analogous to η/ρ. The lower bound on T is therefore sufficient to prove that
ESL is not possible.

It can also be shown that the learning rate, φ̇, of the adaptive parameter tends
to zero as the initial adaptive parameter error φ(t0) tends to negative infinity inside
M1. In the previous theorem we only showed that φ̇ is uniformly bounded for all
initial conditions inside the larger set M0. Thus, not only is ESL impossible, there
is an unbounded region in the base of M1 where adaptation occurs at a slower and
slower rate the deeper the initial condition starts in the trough of M1. This effect is
visualized through simulation examples in a later section.

Corollary 8. For the error dynamics z(t) defined by the differential equation
in (24) with r(t) = r̄ and xm(t0) = x̄ it follows that φ̇(e, φ) → 0 as φ → −∞ with
[e, φ]T ∈ M1.
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Proof. For fixed φ and an e such that [e, φ]T ∈ M1, which we will assume from
this point forward in the proof, it follows that −x̄ ≤ e ≤ a−bφ

a+bφ x̄ per the definition of

M1 in (27). Written another way,

(34) e = −x̄+ ∆,

where ∆ ∈ [0, 2a
a+bφ x̄]. Substitution of (34) into the definition of φ̇ from (24) it follows

that
φ̇ = −γ(x̄+ ∆)2 + γx̄(x̄−∆).

After expanding and canceling terms the above equation reduces to

(35) φ̇ = −γ
(
3x̄∆ + ∆2

)
.

From the fact that ∆ ≤ 2a
a+bφ x̄ it follows that limφ→−∞∆ = 0 (recall that a < 0).

Using this limiting value of ∆ and (35) it follows that limφ→−∞ φ̇ = 0 when [e, φ]T ∈
M1.

This corollary helps connect the results from this section back to our definitions of
PE and PE∗ and to Remark 3. While it is possible for xm ∈ PE our analysis technique
only allowed us to conclude that x ∈ PE∗. This was characterized by the fact that
in order for x to maintain the same level of excitation, which we referred to as α′

in (16), the time window over which the excitation was measured, pT in (16), would
have to increase as the norm of the initial conditions of the system increased. This is
precisely what is occurring in the bottom of M1. In the bottom of this region it follows
by definition that |x| ≤ ∆, which tends to zero as φ(t0) decreases to negative infinity,
and all the while the speed at which the state can leave this region is decreasing as
well.

4.2. Scalar CRM adaptive system. We now consider a modified adaptive
system in which the reference model contains a feedback loop with the state error.
The plant is the same as that in (19) with an identical control law and the same
update law as that in (21). The reference model, however, is now defined as

(36) ẋm(t) = axm(t) + br(t)− `e(t),

where ` < 0. In the CRM setting the reference model is now able to meet the plant
halfway. The burden of error minimization is not entirely put on the adaptive con-
troller and the reference model trajectory is softened while still asymptotically con-
verging to the ORM reference model. This results in smoother transients [14, 9].

Throughout this section it is assumed that r̄ > 0 is a constant; however, no longer
does xm(t) = x̄ for all time. Unlike in the ORM cases, the reference model dynamics
cannot be ignored. The resulting system can be represented as

ż(t;x0, a, b, γ, r̄, `) =

 ẋm(t)
ė(t)

φ̇(t)

 =

 axm(t) + br̄ − `e(t)
(a+ `)e(t) + bφ(t)x(t)
−γe(t)x(t)

 .(37)

We will show that this modified adaptive system cannot be ESL and for the specific
r(t) chosen is UASL.

Theorem 9. For the system defined in (37) with r(t) ≡ r, r 6= 0 the equilibrium
of z is UASL.
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Proof. Consider the Lyapunov candidate in (22) and differentiating along the
dynamics in (37) it follows that V̇ (e, φ) = 2(a+ `)e2. Since V > 0 for all z 6= 0, V̇ ≤ 0
for all [e φ]T ∈ R2, and V → ∞ as z → ∞, it follows that z = [x̄, 0, 0]T is uniformly
stable in the large. Since the system is autonomous it follows from the invariance
principle that z = [x̄, 0, 0]T is UASL as well.

Now a number of regions in the state-space (R3) are defined which allow the
construction and proof of this subsection’s main result which mirrors the results of
Theorem 7. In particular, three regions will be defined. It will then be shown that
a specific region M0, the union of these three regions, will remain invariant. As this
region M0 is infinite and the vector field defined by (37) has a finite maximum velocity,
we can conclude that CRM adaptive systems do not posses exponential stability in
the large but are at best UASL.

Define a subset of the state-space, P1 ⊂ R3,

P1 ,

{
[xm, e, φ]T

∣∣∣∣φ < a+ `

b
,
br̄

a+ `
≤ xm ≤ x̄, [xm, e, φ]T ∈ R3

}
,

and within the subset P1 a region

M1 ,

{
[xm, e, φ]T

∣∣∣∣−xm ≤ e ≤ xm(a+ `+ bφ)

a+ `− bφ
, [xm, e, φ]T ∈ P1

}
.

Define a second subset of the state-space, P2 ⊂ R3,

P2 ,

{
[xm, e, φ]T

∣∣∣∣a+ `

b
≤ φ < 0,

br̄

a+ `
≤ xm ≤ x̄, [xm, e, φ]T ∈ R3

}
,

and within this subset a region

M2 ,
{

[xm, e, φ]T
∣∣−xm ≤ e ≤ 0, [xm, e, φ]T ∈ P2

}
.

A third region is defined as

M3 ,

{
[xm, e, φ]T

∣∣∣∣e2 +
1

γ
φ2 ≤ x̄2, 0 ≤ xm ≤ 2x̄, [xm, e, φ]T ∈ R3

}
.

The union of these three M regions is then the invariant set M0, defined as

(38) M0 , M1 ∪M2 ∪M3.

The three regions are shown in Figure 3. Four surfaces of this region will be used in
the proof of the following theorem:

S1 ,

{
[xm, e, φ]T

∣∣∣∣e =
xm(a+ `+ bφ)

a+ `− bφ
, [xm, e, φ]T ∈ P1

}
,(39)

S2 ,
{

[xm, e, φ]T
∣∣e = −xm, [xm, e, φ]T ∈ P1 ∪ P2

}
,(40)

S3 ,
{

[xm, e, φ]T
∣∣e = 0, [xm, e, φ]T ∈ P2

}
,

S4 ,

{
[xm, e, φ]T

∣∣∣∣e2 +
1

γ
φ2 = x̄2, [xm, e, φ]T ∈ M0

}
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Fig. 3. The three regions M1 (checker), M2 (crosshatch), and M3 (solid) whose union results
in the invariant set M0.

Theorem 10. For the error dynamics z(t) with r(t) = r̄, M0 as defined in (38),
and s(t; t0, z(t0)) the transition function of the differential equation (37), the following
hold:

(i) ‖ż‖ ≤ dz for all z ∈ M0, where

dz ,
√

(|(a+ `)x̄|+ 2b
√
γx̄2)2 + (2γx̄2)2 + (|(a+ `)x̄|+ r̄)2.

(ii) M0 is an invariant set.
(iii) A trajectory beginning at z(t0) ∈ M0 will converge to a fraction of its original

magnitude at time t1, with

(41) T ≥ ‖z(t0)‖(1− c)
dz

,

where c = ‖s(t1;t0,z(t0))‖
‖s(t0;t0,z(t0))‖ and T = t1 − t0.

Proof of (i). Each component of the vector field is bounded:

|φ̇(z)| ≤ 2γx2
0,

|ė(z)| ≤ |(a+ `)x̄|+ 2b
√
γx̄2,

|ẋm(z)| ≤ |(a+ `)x̄|+ r̄

when z ∈ M0, and thus ‖ż‖ ≤ dz.
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Proof of (ii). In order to evaluate the behavior of the trajectories on the surfaces
of M1 and M2, normal vectors are defined along the surfaces. The normal vectors n̂2

and n̂3 have trivial definitions easily determined by inspection. The normal vector n̂1

is constructed using the cross product of two tangential vectors n̂1 = t̂1 ⊗ t̂2, where

t̂1 =

[
1 0

∂e

∂xm

]T
z∈S1

and t̂2 =

[
1

∂e

∂xm
0

]T
z∈S1

.

It follows directly that n̂Ti (z)ż(z) ≥ 0 for z ∈ Si and i = 1, 2, 3. From the stability
analysis in the proof of Theorem 9 we know that S4 is simply a level set of the
Lyapunov function and thus M4 is invariant. Therefore no trajectory can exit M0,
making it an invariant set.

Proof of (iii). This proof is identical to the proof of item (iii) in Theorem 7.

Just as with an ORM, with a CRM the dynamics are at best UASL. The region
of slow convergence is present in CRM adaptive control as well and a similar corollary
holds.

Corollary 11. For the error dynamics z(t) defined by the differential equation
in (37) with r(t) = r̄ it follows that φ̇(xm, e, φ)→ 0 as φ→ −∞ with [xm, e, φ]T ∈ M1.

5. Simulation examples. Simulations are now presented for the ORM adaptive
system and the CRM adaptive system. The main purpose of these simulations is to
illustrate the invariance of their respective M0, and the slow convergence, especially
the sluggish phenomenon that is treated in Corollaries 8 and 11. Before continuing to
the results we need to distinguish between the surfaces in the ORM and CRM cases
and define two new surfaces. First, let the following two surfaces in the ORM case be
redefined as SO1 = S1 and SO2 = S2, where S1 and S2 are defined in (25) and (26).
Similarly for the CRM, SC1 = S1 and SC2 = S2, where S1 and S2 are defined in (39)
and (40). The two new surfaces to be defined pertain to the condition ė = 0. For
ORMs this surface is defined as

SO5 ,

{
[e, φ]T

∣∣∣∣ e =
−x̄bφ
a+ bφ

}
and for the CRMs a similar curve is defined as

SC5 ,

{
[e, φ]T

∣∣∣∣ e =
−xmbφ
a+ bφ

, xm =
`e− br̄
a

}
,

where the second equation in the definition of SC5 is derived from (36) by setting ẋm =
0. Nine initial states are chosen specifically for each system, defined in Tables 1 and
2. Rather than defining numerical values for each initial condition, we choose them
as points of intersection between two unique surfaces. The values of the parameters
for the simulations are as follows:

(42) a = −1, ` = −1, γ = 1, b = 1, r = 3.

Figure 4(a) contains the two-dimensional phase portrait for trajectories of the
ORM adaptive system resulting from each of the initial conditions of Table 1. Figure
4(b) contains the two-dimensional projection of the three-dimensional phase space
trajectories of the CRM adaptive system resulting from each of the initial conditions
of Table 2. Before we proceed, we observe that in both Figures 4(a) and 4(b), there is
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Table 1
Initial conditions zi, i = 1, 2, . . . , 9, for the ORM example system. Each initial condition, zi,

is the point of intersection of the two indicated surfaces in the corresponding row and column.

SO1 SO5 SO2

φ = −2 z1 z4 z7
φ = −4 z2 z5 z8
φ = −8 z3 z6 z9

Table 2
Initial conditions zi, i = 1, 2, . . . , 9, for the CRM example system. Each initial condition, zi, is

the point of intersection of the two indicated surfaces in the corresponding row and column.

SC1 SC5 SC2

φ = −2 z1 z4 z7
φ = −4 z2 z5 z8
φ = −8 z3 z6 z9

Fig. 4. Phase portraits of the ORM and CRM adaptive systems.

an attractor that all initial conditions converge to. This attractor partially coincides
with SO5 and SC5. We focus on those initial conditions that are closest to these
attractors that are common to both ORM and CRM adaptive systems, which are
given by initial conditions z4, z5, and z6. With these initial conditions we next
discuss the region of slow convergence in both adaptive systems.

We present time responses of e, φ, x, and xm for the ORM system in Figure 5(a)
and the CRM adaptive system in Figure 5(b), respectively, for the initial conditions
z4, z5, and z6. Defining Ts as the settling time beyond which ‖z(t0)− z(∞)‖ reduces
to 5% of its initial value, we have that Ts ∈ {5.37, 5.62, 8.19} for these three initial
conditions for the ORM system and Ts ∈ {3.69, 5.85, 12.74} for the CRM system.

Notice that although z(t0)
z(t0+Ts) is identical for all three trajectories, Ts increases as

‖z(t0)‖ increases, implying that the system is not exponentially stable in the large.
Trajectories initialized at both z5 and z6 demonstrate the slow convergence de-

scribed in this paper, which is characterized by the nearly flat portion of the response
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Fig. 5. Time series trajectories of the ORM and CRM adaptive systems for intial conditions
z4 (solid), z5 (dot), and z6 (dash-dot) as defined in Tables 1 and 2.

of e and x prior to convergence. From the third initial condition, z6, the exacerbated
sluggish effect in the CRM adaptive system can clearly be seen. The error convergence
for large initial conditions is even slower compared to that of the ORM system. It was
observed that this convergence became slower as |`| was increased further. It should
be noted that these convergence properties coexist with the absence of the oscillatory
behavior in the CRM in comparison to the ORM. That is, the introduction of the
feedback gain ` helps in producing a smooth adaptation but not a fast adaptation.
Increasing γ along with ` can keep convergence times similar to those of the ORM
while maintaining reduced oscillations.

6. Conclusions. In this paper, precise definitions of asymptotic and exponential
stability are reviewed and a definition of weak persistent excitation is introduced,
which is initial condition dependent. With these definitions it has been shown that
when PE conditions are imposed on the reference model, it results in weak persistent
excitation of the adaptive system. The implication of this weak PE is that the speed
of convergence is initial condition dependent, resulting in UASL of the origin in the
underlying error system. Exponential stability in the large cannot be proven and
claims of robustness should be based on the UASL property.

While some of the preliminary results outlined in this work apply to both continu-
ous and discrete time dynamics, the question of whether weak persistence of excitation
in the underlying plant state excludes ESL in discrete time adaptive control is still
an open one. The methods proposed in this work are not directly applicable to the
analysis of discrete time adaptive systems due to the fact that the space of stabilizing
gains in discrete time is compact as compared to the unbounded region, which exists
in continuous time systems.

This work does, however, directly relate to many active areas of research in adap-
tive control and the results of this work should be heeded as we move forward. Tran-
sient performance is one such area. In order for adaptive control to be deployed in a
real system, its transient behavior needs to be fully characterized. Through this and
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other studies on CRM adaptive control, it is clear that there is a fundamental trade-off
in adaptive control when it comes to smooth transients and adaptive parameter con-
vergence. One cannot simply have both smooth and fast adaptation in these control
systems.

These results also have implications in the machine learning community, espe-
cially when large datasets are analyzed and the learning is performed with sequential
examples (because the dataset is too large to analyze in a single shot) [15]. In those
paradigms the learning is inherently dynamical. Dynamics also appear explicitly in
other areas of machine learning such as adversarial training [16], bayesian optimiza-
tion [38], and reinforcement learning [39]. In all three of the above examples the way
in which the “state space” is explored is initial condition dependent, and that is what
connects those learning paradigms to ours.

Appendix A. Definitions.

Definition 4 (piecewise smooth function [40]). Let Cδ be a set of points in [t0,∞)
for which there exists a δ > 0 such that for all t1, t2 ∈ Cδ, t1 6= t2 implies |t1− t2| ≥ δ.
Then P[t0,∞) is defined as the class of real valued functions on [t0,∞) such that for
every u ∈ P[t0,∞), there corresponds some δ and Cδ such that

(i) u(t) and u̇(t) are continuous and bounded on [t0,∞) \ Cδ and
(ii) for all t1 ∈ Cδ, u(t) and u̇(t) have finite limits as t→ t+1 and t→ t−1
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