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a b s t r a c t

The (bi)simulation relation has recently been attracting growing interest in the study of nonlinear control
systems, in the hope that through such a relation, the behaviors and properties of a nonlinear system
can be inferred from those of another system which is easier to handle. In this paper, we consider the
propagation of the property of nonlinear norm-observability through a simulation relation. Given two
control systems that are related by a graph simulation relation, we derive conditions under which the
norm-observability of the simulating system implies the norm-observability of the simulated system.
The obtained results are given in terms of set-valued functions. Several examples are included to illustrate
various applications of our results.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In many cases, high fidelity models to accurately represent a
dynamical system may be too intricate for use in system analysis
and control design. It is therefore desirable to have a methodology
that relates ‘‘complex’’ models (for example, models with high
nonlinearity) to ‘‘simple’’ ones (for example, systems being linear
ormildly nonlinear),while preserving certain properties of interest
relevant for analysis or synthesis. In the past decades, approaches
based on (bi)simulation relations have been introduced in the
study of controlled dynamical systems, exploring the possibility of
connecting a systemwith another systemwhose behaviors and/or
properties are easier to understand (see, e.g., [1–4]). (Bi)simulation
relations are natural and important objects in control systems
theory. Loosely speaking, a simulation between two dynamical
systems defines a relation with the property that every trajectory
of the first system can be associated with a trajectory of the
second system. If the association is bidirectional, then one obtains
a bisimulation relation between the two dynamical systems. The
notions of simulation and bisimulation relations provide a poten-
tially useful tool for classifying linear and nonlinear systems [2,4].
They also have interesting connections with other fundamental
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concepts in nonlinear systems theory such as controlled invariance
[1,3,5] and feedback transformations [6]. As already stated, an im-
portant motivation for studying (bi)simulation relations is to hope
to reason about certain properties across related systems. Some
pertinent work includes studies on reasoning about controllability
of (C-related) linear systems [7], reasoning about stability proper-
ties of hybrid systems [8], and the propagation of controllability
properties through a simulation relation for nonlinear systems [9].

Observability is certainly one of the key concepts in control
theory. In the context of nonlinear systems, various observability
definitions have been proposed in the literature in order to capture
the relationship between the state, the output, and the input of
a system (see, e.g., [10]). The notion of norm-observability was
introduced in [11] and [12]. Rather than inferring the precise value
of the state, the norm-observability properties describe the ability
to determine an upper bound on the norm of the state using the
output and the input. As pointed out in [12], such observability
properties have close ties to the important concept of input–
output-to-state stability in nonlinear systems analysis [13]. The
problem of determining whether a system is norm-observable,
besides being interesting in itself, is particularly relevant in the
context of switched nonlinear systems, as it is strongly related
to the stability and supervisory control of the systems (see,
e.g., [12,14,15]).

In this paper, we focus on the notion of norm-observability and
examine the extent to which the norm-observability properties
of nonlinear systems are preserved by simulation relations. More
specifically, given two control systems that are connected by a
simulation relation, our main objective is to determine conditions
that allow us to propagate the norm-observability properties from
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0167-6911/© 2017 Elsevier B.V. All rights reserved.
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the simulating system to the simulated system, suggesting that an
observability analysis of the simulating system can shed light on
the norm-observability properties of the simulated system. Cur-
rently, the main tool used to test norm-observability for nonlinear
systems in the literature, to our knowledge, is the Lyapunov-like
method [12]. We demonstrate by example that our results offer
a new possibility for the norm-observability analysis of nonlin-
ear systems. The notion of simulation relation embraces many
different types, such as exact simulation relations, approximate
simulation relations [16–19], alternating simulation relations [20,
Chapters 4.3 and 9.2], contractive simulation relations [21], and
graph simulation relations [6,9]. Depending on the context, some
relations may be more appropriate to use than others. The sim-
ulation relations considered in the paper are the so-called graph
simulation relations. As will be seen, such relations are the right
tool to use to reason about nonlinear norm-observability.

Organization: The notions of norm-observability and graph sim-
ulation are presented in Section 2. Main results, establishing the
conditions that propagate norm-observability, are proposed in Sec-
tion 3. Then, several illustrative examples are given in Section 4,
and a brief conclusion is drawn in the final section.

Notation and terminology:We use |·| to denote the standard Eu-
clidean norm, and ∥z∥I the essential supremum norm of a function
z(t) on an interval I . We write Bn(r) for the closed ball in Rn with
center 0 and radius r > 0. For a function g : A → B, the graph of g ,
denoted by Graph(g), is defined as Graph(g) = {(a, g(a)) : a ∈ A}.
Let X and Y be finite-dimensional Euclidean spaces. A set-valued
function F from X to Y is a function that associates with any x ∈ X a
subset F (x) of Y . If K ⊆ X and if F is a set-valued function from X to
Y , the image of the setK under F is given by F (K ) = ∪x∈K F (x). A set-
valued function F is said to be bounded if the image of any bounded
set under F is bounded. We say that F is upper semicontinuous at
x ∈ X if for any openN containing F (x) there exists a neighborhood
M of x such that F (M) ⊆ N .

2. Preliminaries

2.1. Norm-observability notions

To make the paper reasonably self-contained, we briefly recall
the definitions of norm-observability introduced in [12]. Consider
the following system

Σ : ẋ = f (x, u), y = h(x). (1)

We assume that (see, e.g., [10]) the function f : Rn
× Rm

→ Rn is
so that f (·, u) is of class C1 for each fixed u ∈ Rm, f and ∂ f /∂x are
continuous on Rn

× Rm, and f (0, 0) = 0, and that h : Rn
→ Rp is

continuous with h(0) = 0. By an input or control for (1), we mean
ameasurable function u(·) : R → Rm which is essentially compact
valued on compact intervals, i.e., for every compact interval I ⊆ R
there exists a compact subset K ⊆ Rm such that u(t) ∈ K for
almost all t ∈ I [6,9]. We denote by Um

cpt the set of all inputs. For
any u(·) ∈ Um

cpt and any x0 ∈ Rn, there exists a unique maximally
extended solution of the initial value problem

ẋ = f (x, u(t)), x(0) = x0.

Such a solution is defined on some open interval (tmin
x0,u, t

max
x0,u ) con-

taining 0. We assume that the system Σ has the unboundedness
observability property [22],whichmeans that for every initial state
x0 and input u such that tmax

x0,u < ∞, the corresponding output
becomes unbounded as t → tmax

x0,u . We recall that a function α :

[0,∞) → [0,∞) is said to be of classK∞ if it is continuous, strictly
increasing, unbounded, and α(0) = 0.

Definition 1 ([12]).

(a) We say that the systemΣ is small-time norm-observable if for
every τ > 0, there exist K∞ functions γ and χ such that for
every x0 ∈ Rn and for every u ∈ Um

cpt, it holds that

|x0| ≤ γ (∥y∥[0,τ ]) + χ (∥u∥[0,τ ]). (2)

(b) We say that Σ is large-time norm-observable if there exist
τ > 0 and two class K∞ functions γ and χ such that (2)
holds for any x0 ∈ Rn and any input u ∈ Um

cpt.

Remark1. Roughly speaking, norm-observability imposes a bound
on the norm of the initial state in terms of the norms of the
output and the input. The principal difference between small-time
norm-observability and large-time norm-observability is that the
former requires the inequality (2) to hold for arbitrary τ , while the
latter requires (2) to hold for at least one τ > 0. It is clear from
the definition that small-time norm-observability implies large-
time norm-observability. Note that the converse is, in general, not
true. However, for linear systems these two notions are known
to be equivalent and are both equivalent to the usual concept of
observability [12].

Remark 2. Other equivalent definitions of small-time and large-
time norm-observability can be achieved under the assumption of
the unboundedness observability property for the system Σ and
its reversed-time system; see [12] for more information.

2.2. Graph simulation relations

Consider the systemΣ together with another system

Σ̃ : ż = f̃ (z, v), w = h̃(z). (3)

Here, the function f̃ : Rñ
× Rm̃

→ Rñ is such that f̃ (·, v) is a C1

function for each fixed v ∈ Rm̃, f̃ and ∂ f̃ /∂z are continuous on
Rñ

× Rm̃, and f̃ (0, 0) = 0; and h̃ : Rñ
→ Rp̃ is continuous and

vanishes at 0. The following definition is patterned after that given
in [6] and [9].

Definition 2. Given Σ and Σ̃ , a pair of relations (S,R), where
S ⊆ Rn

×Rñ andR ⊆ Rp
×Rp̃, is called a compact graph simulation

relation ofΣ by Σ̃ if the following conditions are satisfied:

(a) The relationS is the graph of a C2 functionΦ : Rn
→ Rñ with

the following property: given any x ∈ Rn and any u ∈ Rm,
there exist open neighborhoods X ⊆ Rn of x and U ⊆ Rm of
u, and a compact set V ⊆ Rm̃ such that for every x′

∈ X and
u′

∈ U there is some v′
∈ V such that

∂Φ

∂x
(x)

⏐⏐⏐
x=x′

f (x′, u′) = f̃ (Φ(x′), v′).

(b) For every x ∈ Rn we have (h(x), h̃(Φ(x))) ∈ R.

We call Σ̃ the simulating system andΣ the simulated system.

Note that this definition is slightly different from the one of [6]
and [9] in that in condition (b)we only require the outputs h(x) and
h̃(Φ(x)) to be related by a relation R, rather than identical.

Remark 3. Intuitively, a simulation should specify that every
trajectory of the simulated (or original) systemcanbematched by a
trajectory of the simulating (or abstract) system. Certainly, one can
define the concept of simulation relation by directly using this idea.
But, in practice, such a definition may be inconvenient to check,
especially for nonlinear systems, since it requires knowledge of the
system trajectories. On the other hand, conditions (a) and (b) of
Definition 2 are relatively easy to verify and suffice to guarantee
that the simulating system has the capability of mimicking the
behavior of the simulated system [6].
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The assumptions that Σ̃ simulates Σ and that Σ̃ is norm-
observable are not by themselves sufficient to imply the norm-
observability of Σ . As a simple counter-example, consider the
linear systems

Σ :

ẋ1 = x1 + u,
ẋ2 = −x2,
y = x1,

and Σ̃ :
ż = z + v,

w = z.

Let Φ : R2
→ R be the mapping defined by Φ(x1, x2) = x1, and

let R = {(y, w) : y = w}. Then (Graph(Φ),R) is a compact graph
simulation relation ofΣ by Σ̃ , and Σ̃ is observable, but, obviously,
Σ is not observable. Additional conditions must be introduced in
order to propagate the property of norm-observability from the
simulating system to the simulated system.

3. Main results

3.1. Small-time and large-time norm-observability

In this section, we first derive a small-time norm-observability
result for graph simulation relations. The result makes use of
the following lemma, which describes the small-time norm-
observability property without using class K∞ functions.

Lemma 1. The system Σ is small-time norm-observable if and only
if the following conditions are satisfied:

(a) For every τ > 0 and every ε > 0, there exists a δ > 0 such that
∥y∥[0,τ ] ≤ δ, ∥u∥[0,τ ] ≤ δ, u ∈ Um

cpt implies |x(0)| ≤ ε.
(b) For every τ > 0 and every r ≥ 0, there exists an M ≥ 0 such

that ∥y∥[0,τ ] ≤ r, ∥u∥[0,τ ] ≤ r, u ∈ Um
cpt implies |x(0)| ≤ M.

Proof. (Sufficiency). Suppose that conditions (a) and (b) are satis-
fied. Fix τ > 0, and define

A(r) = {ξ ∈ Rn
: there exists u ∈ Um

cpt, with ∥u∥[0,τ ] ≤ r,
such that ∥yξ,u∥[0,τ ] ≤ r}

for r ≥ 0, where yξ,u is the output of Σ corresponding to u with
x(0) = ξ . Clearly, A(r) is nonempty for each r ≥ 0. Let

α1(r) = sup {|ξ | : ξ ∈ A(r)}.

Then 0 ≤ α1(r) < ∞ for each r ≥ 0 because of condition (b). It
is easy to see that α1 is nondecreasing on [0,∞). Also, it can be
shown that α1(r) → 0 as r → 0. In fact, let ε > 0 be given. Then
by condition (a) there exists some δ > 0 such that ∥u∥[0,τ ] ≤ δ,
u ∈ Um

cpt, ∥yξ,u∥[0,τ ] ≤ δ implies |ξ | ≤ ε. For any ξ ∈ A(δ), since
there exists u ∈ Um

cpt with ∥u∥[0,τ ] ≤ δ so that ∥yξ,u∥[0,τ ] ≤ δ, it
follows that |ξ | ≤ ε. Hence α1(δ) ≤ ε, and therefore α1(r) ≤ ε if
0 < r < δ. This shows that α1(r) tends to 0 as r → 0.

Define

α2(r) =

⎧⎨⎩
1
r

∫ 2r

r
α1(s)ds (if r > 0),

0 (if r = 0).

Then α2 is continuous on [0,∞) and satisfies α2(r) ≥ α1(r) for all
r ≥ 0. Put

α(r) = r + max{α2(s) : 0 ≤ s ≤ r}

for r ≥ 0. Then α is of class K∞. Let ξ ∈ Rn and let u ∈ Um
cpt. If

∥yξ,u∥[0,τ ] = ∞, it is clear that |ξ | ≤ α(∥u∥[0,τ ]) + α(∥yξ,u∥[0,τ ]). If
∥yξ,u∥[0,τ ] < ∞, putµ = max{∥u∥[0,τ ], ∥yξ,u∥[0,τ ]}. Then ξ ∈ A(µ).
Hence

|ξ | ≤ α1(µ) ≤ α(µ) ≤ α(∥u∥[0,τ ]) + α(∥yξ,u∥[0,τ ]).

ThenΣ is small-time norm-observable.
The necessity follows directly from the properties of class K∞

functions. □

Consider systems Σ and Σ̃ . Let Φ : Rn
→ Rñ be a C2 function

and suppose that (Graph(Φ),R) is a compact graph simulation
relation of Σ by Σ̃ . Let F be the set-valued function from Rp+m to
Rm̃ defined by

F (y, u) = {v ∈ Rm̃
: there exists x ∈ Rn such that

h(x) = y and (∂Φ/∂x)f (x, u) = f̃ (Φ(x), v)},

and let G be the set-valued function from Rp to Rp̃ defined by

G(y) = {w ∈ Rp̃
: (y, w) ∈ R}.

We are now in a position to show one of the main results of this
section.

Theorem 1. Consider systemsΣ and Σ̃ . Suppose (Graph(Φ),R) is a
compact graph simulation relation of Σ by Σ̃ , and

(a) F (0, 0) = {0}, G(0) = {0},Φ−1(0) = {0},
(b) F , G, andΦ−1 are upper semicontinuous at the origins in Rp+m,

Rp, and Rñ, respectively,
(c) F , G, andΦ−1 are bounded.

If Σ̃ is small-time norm-observable, then Σ is small-time norm-
observable.

Proof. We will show that Σ satisfies conditions (a) and (b) of
Lemma 1.

Fix τ > 0, and fix ε > 0. Since Φ−1 is upper semicontinuous at
0 andΦ−1(0) = {0}, we can choose ε′ > 0 such thatΦ−1(Bñ(ε′)) ⊆

Bn(ε). Since Σ̃ is assumed to be small-time norm-observable, there
exists a δ′ > 0 such that ∥w∥[0,τ ] ≤ δ′, ∥v∥[0,τ ] ≤ δ′, v ∈ U m̃

cpt
implies |z(0)| ≤ ε′. Analogously, we can choose δ > 0 such that

F (Bp+m(2δ)) ⊆ Bm̃(δ′) and (4)

G(Bp(δ)) ⊆ Bp̃(δ′). (5)

Let x ∈ Rn, u ∈ Um
cpt, and suppose that

∥u∥[0,τ ] ≤ δ and ∥h ◦ ψ∥[0,τ ] ≤ δ, (6)

where ψ is the trajectory of the system Σ corresponding to the
initial condition x and the input u. We will show that |x| ≤ ε.
Note thatψ(t) is well defined on [0, τ ] since the systemΣ has the
unboundedness observability property. Define ψ̃ = Φ ◦ ψ . Since
(Graph(Φ),R) is a compact graph simulation relation of Σ by Σ̃ ,
there exists v ∈ U m̃

cpt such that

˙̃
ψ(t) = f̃ (ψ̃(t), v(t))

for almost all t ∈ [0, τ ] (see [6]). In other words, ψ̃ is the trajectory
of the system Σ̃ corresponding to the initial conditionΦ(x) and the
control v. It is easily seen from the definition of F that for almost
all t ∈ [0, τ ], we have v(t) ∈ F (h(ψ(t)), u(t)). This combined with
(4) and (6) shows that ∥v∥[0,τ ] ≤ δ′. Similarly, for every t ∈ [0, τ ]
we have h̃(ψ̃(t)) ∈ G(h(ψ(t))). Hence ∥h̃ ◦ ψ̃∥[0,τ ] ≤ δ′. It follows
that |Φ(x)| ≤ ε′, so that

x ∈ Φ−1(Bñ(ε′)) ⊆ Bn(ε),

or equivalently |x| ≤ ε, and we conclude that the system Σ

satisfies condition (a) of Lemma 1.
Next, fix r ≥ 0. It follows from (c) that there exists an r ′

≥ 0
such that

F (Bp+m(2r)) ⊆ Bm̃(r ′) and G(Bp(r)) ⊆ Bp̃(r ′).

ChooseM ′
≥ 0 so that ∥w∥[0,τ ] ≤ r ′, ∥v∥[0,τ ] ≤ r ′, v ∈ U m̃

cpt implies
|z(0)| ≤ M ′, and then choose M ≥ 0 such that Φ−1(Bñ(M ′)) ⊆

Bn(M). Let x ∈ Rn, and let u ∈ Um
cpt. A similar argument shows that

whenever ∥u∥[0,τ ] ≤ r and ∥h ◦ψ∥[0,τ ] ≤ r , then |x| ≤ M . (Here ψ



R. Li et al. / Systems & Control Letters 105 (2017) 14–19 17

denotes the trajectory of Σ corresponding to the initial condition
x and the control u.) Hence, the systemΣ satisfies condition (b) of
Lemma 1, and the theorem is proved. □

Next, we give a large-time norm-observability result for graph
simulation relations. The discussion parallels that of small-time
norm-observability. In a manner analogous to the small-time
norm-observability property, the large-time norm-observability
property can also be described without using class K∞ functions,
as the following lemma shows.

Lemma 2. The systemΣ is large-time norm-observable if and only if
there is a τ > 0 with the following two properties:

(a) For every ε > 0, there is δ > 0 such that ∥y∥[0,τ ] ≤ δ,
∥u∥[0,τ ] ≤ δ, u ∈ Um

cpt implies |x(0)| ≤ ε.
(b) For every r ≥ 0, there is M ≥ 0 such that ∥y∥[0,τ ] ≤ r,

∥u∥[0,τ ] ≤ r, u ∈ Um
cpt implies |x(0)| ≤ M.

Proof. The proof is similar to that of Lemma 1. □

Using Lemma 2, the following result is established by the same
arguments as Theorem 1.

Theorem2. Consider systemsΣ and Σ̃ . Suppose that (Graph(Φ),R)
is a compact graph simulation relation of Σ by Σ̃ , and conditions (a)–
(c) of Theorem 1 are satisfied. If Σ̃ is large-time norm-observable,
thenΣ is large-time norm-observable. □

Theorems 1 and 2 tell us that under mild assumptions, the
small-time and large-time norm-observability properties of a sys-
tem can be inferred by analyzing its simulating system.We remark
that the underlying idea of conditions (a)–(c) in Theorem 1 is quite
natural. Clearly, the set-valued function F relates the input and the
output of the simulated system to the input of the simulating sys-
tem, the set-valued function G relates the output of the simulated
system to that of the simulating system, and the functionΦ relates
the states of the simulated system and its simulating system. The
idea of conditions (a) and (b) in Theorem 1 is, roughly, to guarantee
the propagation of the property that the initial state should be
small provided the inputs and outputs are small, and the idea of
condition (c) is to ensure the propagation of the property that the
initial state should be bounded provided the inputs and outputs are
bounded.

3.2. Systems with no inputs

For the system with no inputs

ẋ = f (x), y = h(x),

one can define corresponding observability notions by omitting
the term χ (∥u∥[0,τ ]) from the right side of the inequality (2);
see [11] and [12]. We will also use the terminologies small-time
norm-observability and large-time norm-observability for the corre-
sponding variants of the observability notions. As a special case,
our observability results for graph simulation relations are easily
adapted to the situation of systemswithout inputs. More precisely,
consider two autonomous systems

Σi : ẋi = fi(xi), yi = hi(xi), xi ∈ Rni ,

yi ∈ Rpi , i = 1, 2. (7)

We assume that fi(0) = 0 and hi(0) = 0 for i = 1, 2. We say that a
pair of relations (S,R), with S ⊆ Rn1 × Rn2 and R ⊆ Rp1 × Rp2 ,
is a graph simulation relation of Σ1 by Σ2 if the following two
conditions are satisfied:

(a) The relation S is the graph of a C2 function Φ : Rn1 → Rn2

with the property that (∂Φ/∂x)f1(x) = f2(Φ(x)) for all x ∈

Rn1 .
(b) The relation R is such that (h1(x), h2(Φ(x))) ∈ R for all

x ∈ Rn1 .

Let G be the set-valued function from Rp1 to Rp2 given by

G(y1) = {y2 ∈ Rp2 : (y1, y2) ∈ R}.

The following corollary is a straightforward adaptation of Theo-
rems 1 and 2.

Corollary 1. Consider systems Σ1 and Σ2 as given in (7). Suppose
that (Graph(Φ),R) is a graph simulation relation of Σ1 byΣ2, and

(a) G(0) = {0},Φ−1(0) = {0},
(b) G and Φ−1 are upper semicontinuous at the origins in Rp1 and

Rn2 , respectively,
(c) G andΦ−1 are bounded.

If Σ2 is small-time (resp., large-time) norm-observable, then Σ1 is
small-time (resp., large-time) norm-observable. □

Remark 4. The conditions proposed in Theorem 1 and Corollary 1
for reasoning about norm-observability do not imply any assump-
tions about the state–space dimensions of the related systems.
In other words, our results are valid regardless of whether the
simulating system has a smaller state–space dimension than the
simulated system. Of course, in practice, the simulating system is
often chosen to be of a reduced dimension. Notwithstanding, the
proposed observability results may also provide valuable insight
when the state–space dimension of the simulating system is not
strictly less than that of the simulated system (see Examples 2 and
3 in the next section for illustrations).

4. Examples

This section contains four examples to illustrate various appli-
cations of the ideas discussed so far.

Example 1. In this example, we specialize our results for the case
of linear time-invariant systems. Consider the linear system

ẋ = Ax, y = Cx, (8)

with x ∈ Rn, y ∈ Rp, A ∈ Rn×n, and C ∈ Rp×n. Let V : Rn
→ Rñ

be a linear injection, and let T : Rp
→ Rp̃ be a linear mapping. We

identify V and T withmatrices of sizes ñ×n and p̃×p, respectively.
Suppose that there exist an ñ× ñmatrix Ã and a p̃× ñmatrix C̃ such
that ÃV = VA and C̃V = TC . Put R = {(y, Ty) : y ∈ Rp

}. Then it
is straightforward to see that (Graph(V ),R) is a graph simulation
relation of the system (8) by the system

ż = Ãz, w = C̃z, (9)

with z ∈ Rñ andw ∈ Rp̃. We would like to point out that although
the size of the system (9) is, in fact, not smaller than that of the
system (8) (since V is injective), the system (9) may in fact have a
clear structurewhose observability is easier to detect (for example,
of the phase-variable canonical form). It is easily seen that G(y) =

{Ty} for every y ∈ Rp, and that for z ∈ Rñ the inverse image
of z under the mapping V is {V+z} if z ∈ Im V , and the empty
set otherwise. (Here V+

= (V TV )−1V T is the Moore–Penrose
pseudoinverse of V .) Clearly, conditions (a)–(c) of Corollary 1 are
satisfied. Thus, observability of the system (9) implies observability
of the system (8).

We remark that the propagation of observability can be
achieved in the opposite direction (namely, from the system (8) to
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the system (9)), with the additional assumptions that T is injective,
and that
ñ⋂

i=1

Ker (̃CÃi−1) ⊆ Im V . (10)

In fact, if (10) holds, then to each a ∈ ∩
ñ
i=1Ker (̃CÃ

i−1) there is
associated a b ∈ Rn such that Vb = a. From this and induction
we have

TCAi−1b = C̃ Ãi−1Vb = 0 for i = 1, 2, 3, . . . ,

so that b ∈ ∩
n
i=1Ker (CA

i−1) (since T is injective). Hence
n⋂

i=1

Ker (CAi−1) = 0 ⇒

ñ⋂
i=1

Ker (̃CÃi−1) = 0.

That is, observability of (8) implies observability of (9). Further-
more,when the system (9) is observable, (10) is obviously satisfied.
We then summarize that, under the assumption that T is injective,
the system (9) is observable if and only if the system (8) is observ-
able and the condition (10) is satisfied. A similar result appeared
in the previous literature [23], where the result was obtained in
the context of the inclusion principle. Here, we come to the result
in a different setting and provide more detailed and complete
information on observability propagation. (For example, we show
that the observability propagation from (9) to (8) can be achieved
directly without preassuming that T is injective; see [23] for more
details.) □

Example 2. It is apparent that our results may provide a new
strategy for the norm-observability analysis of nonlinear systems.
As an example, consider the dynamical model of the single-link
manipulator with flexible joint and negligible damping [24]

ẋ1 = x2,
ẋ2 = −a sin x1 − b(x1 − x3),
ẋ3 = x4,
ẋ4 = c(x1 − x3) + du,
y1 = x1, y2 = x2, y3 = x3, (11)

where x1 is the link angle and x2 the corresponding angle velocity,
x3 is the motor angle and x4 the corresponding velocity, u is the
input torque, and a, b, c , and d are positive constants. We assume
x1, x2, and x3 as measurable variables. The state equation of (11)
can be transformed into the form

żi = zi+1, i = 1, 2, 3,

ż4 = −(b + c)z3 + a(z22 − c) sin z1 − az3 cos z1 + bdu

through the global diffeomorphism

z = Φ(x) =

⎡⎢⎣ x1
x2

−a sin x1 − b(x1 − x3)
−ax2 cos x1 − b(x2 − x4)

⎤⎥⎦
(see, e.g., [25]). Define a new input v such that

v = a(z22 − c) sin z1 − az3 cos z1 + bdu,

and let

R =
{
(y, w) ∈ R3

× R3
: w1 = y1, w2 = y2,

w3 = −a sin y1 − b(y1 − y3)
}
.

It can be easily checked that (Graph(Φ),R) is a compact graph
simulation relation of the system (11) by the system

ż1 = z2, ż2 = z3, ż3 = z4,
ż4 = −(b + c)z3 + v,

w1 = z1, w2 = z2, w3 = z3,

which is observable. In order to use Theorems 1 and 2, we compute

F (y, u) =
{
a(y22 + a cos y1 − c) sin y1 + ab(y1 − y3) cos y1 + bdu

}
,

and

G(y) =
{
(y1, y2,−a sin y1 − b(y1 − y3))

}
.

We see that conditions (a)–(c) of Theorem 1 are satisfied. As
a result, the system (11) is (small-time and large-time) norm-
observable. □

Example 3. In this example, we show how it is possible to use
the results to detect the non-observability property of a nonlinear
system. Consider the system

ẋ1 = x2 + u1,

ẋ2 = (sin x3)u1,

ẋ3 = x21 cos x4 + u2,

ẋ4 = x1 + u1 + x2x3u2,

y1 = x1, y2 = x2. (12)

We define new inputs v1 and v2 such that

v1 = x2 + u1 and v2 = x21 cos x4 + u2,

respectively, so that the system (12) is in the form

ẋ1 = v1,

ẋ2 = −x2 sin x3 + (sin x3)v1,
ẋ3 = v2,

ẋ4 = x1 − x2 − x21x2x3 cos x4 + v1 + x2x3v2,
y1 = x1, y2 = x2. (13)

If I is the identity mapping on R4 and ifR = {(y, y) : y ∈ R2
}, then

it is easy to see that (Graph(I),R) is a compact simulation relation
of the system (13) by the system (12). The set-valued functions F
and G can be computed as

F (y, v) =
{
(v1 − y2, v2 − y21 cos t) : t ∈ R

}
and

G(y) =
{
y
}
,

which satisfy conditions (a)–(c) of Theorem 1.We observe that the
system (13) is not (small-time and large-time) norm-observable,
because it is not possible to collect information on x4 bymeasuring
y1, y2, v1, and v2. Then the contrapositives of Theorems 1 and
2 imply that the system (12) is not (small-time and large-time)
norm-observable. □

Example 4. Let us give a very simple example of deducing the
norm-observability of the simulated system from the simulating
system, whose state–space dimension is smaller than that of the
simulated system. Consider the following two systemsΣ and Σ̃:

ẋ1 = x1 − 2x2 + 2x1x2,

Σ : ẋ2 = x1 + x2 − x21,
y = h(x),

Σ̃ : ż = 2z, w = h̃(z),

where h : R2
→ R2 is continuous and satisfies

h(x) = x if |x| < 1 or |x| > 2, and h(x) ̸= 0 if 1 ≤ |x| ≤ 2,

and h̃ : R → R is a continuous function satisfying

h̃(z) = z if |z| < 1 or |z| > 2.

LetΦ : R2
→ R be the mappingΦ(x) = x21/2 + x22, and let

R =
{
(x, x21/2 + x22) : |x| < 1 or |x| > 2

}
∪

{
(h(x), h̃(x21/2 + x22)) : 1 ≤ |x| ≤ 2

}
.
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It is a matter of simple calculation to see that (Graph(Φ),R) is
a graph simulation relation of Σ by Σ̃ . Clearly, Φ−1 is bounded,
upper semicontinuous at the origin, and equal to {0} at the origin.
The function G in this case is

G(y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{
y21/2 + y22

}
∪

{
h̃(x21/2 + x22) : h(x) = y and 1 ≤ |x| ≤ 2

}
(if |y| < 1 or |y| > 2),{
h̃(x21/2 + x22) : h(x) = y and 1 ≤ |x| ≤ 2

}
(if 1 ≤ |y| ≤ 2).

Since h(x) ̸= 0 whenever 1 ≤ |x| ≤ 2, we have G(0) = {0}. Since h̃
is continuous, h̃(x21/2+ x22) is bounded when 1 ≤ |x| ≤ 2, so that G
is bounded. It remains to show that G is upper semicontinuous at
0. This follows by showing that G(y) = {y21/2 + y22} for sufficiently
small |y|. Let δ = inf{|h(x)| : 1 ≤ |x| ≤ 2}. Then δ > 0 (since
h is continuous and h(x) ̸= 0 for 1 ≤ |x| ≤ 2), and thus G(y) =

{y21/2+y22} if |y| < min{1, δ}, as required. So Corollary 1 tells us that
the norm-observability ofΣ can be inferred by analyzing Σ̃ . Note
that it suffices to consider the system Σ̃ with the output function
h̃(z) = z, which is clearly observable. This allows us to conclude
that the systemΣ is norm-observable. □

5. Conclusions

We have examined to what extent nonlinear systems that
are connected by a graph simulation relation share the norm-
observability properties. Several results have been derived, which
fit into the paradigm that the simulated system is norm-observable
if there is a graph simulation relation relating the two systems and
if the simulating system is norm-observable. The proposed results
guarantee the possibility that checking norm-observability of the
simulating system is sufficient for checking that of the simulated
system, and therefore,may offer newavenues to explore the norm-
observability properties of nonlinear control systems.
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