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a b s t r a c t

In this paper, the notion of complete Lyapunov function of control systems is introduced. The purpose
is to determine a continuous real-valued function that describes the global structure of the system.
The existence of complete Lyapunov functions is proved for certain classes of affine control systems on
compact manifolds.
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1. Introduction

The global analysis of dynamical systems describes the possible
limit behavior of the trajectories of the system and how the limit
sets are related. It is well-known that Lyapunov functions are
important tools for studying the dynamical behavior of a flow
or autonomous differential equation. The Lyapunov theorems for
an autonomous system can be used to prove the stability of the
equilibrium of an autonomous dynamical system (as reference
source we mention Colonius–Kliemann [1], Conley [2], Khalil [3]
and Robinson [4]). Certain notion of (smooth) control Lyapunov
functions are very useful in control theory supplying sufficient
criteria for feedback stabilization, control, and tracking for
various classes of nonlinear systems (e.g., Freeman–Kokotović [5]).
The structure of perturbed and controlled systems can also
be characterized by using semicontinuous control Lyapunov
functions (see [6]).

In Conley’s theory the global structure of a dynamical systemon
compact metric space can be described via generalized Lyapunov
functions. The Morse components of a Morse decomposition are
connected by orbits which go through decreasing levels of some
Lyapunov function. A complete Lyapunov function for a Morse
decomposition M = {C1, . . . , Cn} of a flow σ on a compact metric
space X is a continuous real valued function LM : X → R which
is strictly decreasing on orbits outside

n
i=1 Ci and such that, for

each critical value c , the set L−1
M (c) is a Morse component. For

each Morse decomposition M there exists a complete Lyapunov
function LM (see [7, Section 4]). More restrictively, a complete
Lyapunov function for the flow σ on X is a continuous real
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valued function L : X → R, which is strictly decreasing on
orbits outside the chain recurrence set R of σ and such that the
set L (R) of critical values of L is nowhere dense in R and, for
each critical value c , the set L−1 (c) is a maximal chain transitive
set (chain transitive component). The existence of a complete
Lyapunov function for a flow on a compact metric space is ensured
(e.g. Conley [2, Chapter II, Section 6.4]). For an elaboration of this
point of view, see also [4]. The Conley theorems for flows which
are directly related to Lyapunov functions have been extended by
Rybakowski [8] for semiflows on compact metric spaces, and by
Patrão [7] and Patrão and SanMartin [9] for semiflows on compact
Hausdorff spaces.

In the present paper, we extend the notion of complete
Lyapunov function to control systems. As in Conley theory of flows,
this type of Lyapunov function associates to the concepts of Morse
decomposition and chain recurrence of control systems. We prove
the existence of complete Lyapunov functions for certain classes of
affine control systems on compact manifolds.

2. Limit behavior and chain transitivity

In this section, some basic properties and results of control
systems are described. We recall the global analysis of control
systems in terms of semigroup actions.

Consider the following class of control systems

ẋ (t) = X (x (t) , u (t))
u ∈ Upc = {u : R → U : u piecewise constant}

on a connected d-dimensional C∞-manifold M , where U ⊂ Rn.
Assume that, for each u ∈ Upc and x ∈ M , the preceding equation
has a unique solution ϕ (t, x, u), t ∈ R, with ϕ (0, x, u) = x, and
the vector fields X (·, u), u ∈ U , are complete.

http://dx.doi.org/10.1016/j.sysconle.2011.11.013
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Set F = {X (·, u) : u ∈ U}. The system group G and the system
semigroup S are defined, respectively, as

G =

etnYnetn−1Yn−1 · · · et0Y0 : Yj ∈ F , tj ∈ R, n ∈ N


,

S =

etnYnetn−1Yn−1 · · · et0Y0 : Yj ∈ F , tj ≥ 0, n ∈ N


.

For t > 0 we define the sets

S≤t =


etnYnetn−1Yn−1 · · · et0Y0 : Yj ∈ F , tj ≥ 0,

n
j=0

tj ≤ t, n ∈ N


,

S≥t =


etnYnetn−1Yn−1 · · · et0Y0 : Yj ∈ F , tj ≥ 0,

n
j=0

tj ≥ t, n ∈ N


.

Note that S = S≤t∪S≥t .We setF =

S≥t : t > 0


. This family is a

directed set when ordered by reverse inclusion. In other words, F
is a time-dependent filter basis on the subsets of S (that is, ∅ ∉ F ,
and given t, s > 0, S≥t+s ⊂ S≥t ∩ S≥s). The concept of chain
recurrence for the control system coincides with the concept ofF -
chain recurrence (see [10] for details).

Definition 2.1. The ω-limit set of X ⊂ M is defined as

ω (X) =


t>0

cls

S≥tX


,

and the ω∗-limit set of X as

ω∗ (X) =


t>0

cls

S−1

≥t X

.

It is easily seen that ω (X) =


n∈N cls

S≥nX


and ω∗ (X) =

n∈N cls

S−1

≥nX

. Limit sets for control systems on compact

manifolds are nonempty and compact, because F is a filter basis
on the subsets of S. In general, nonempty ω-limit sets are forward
invariant and nonempty ω∗-limit sets are backward invariant
(see [10, Propositions 2.10 and 2.13]).

Example 2.1. Consider in M = R2 the control system

x′ (t) =


−u (t) 1
−1 0


x (t) , u ∈ Ucp, U = [0, 1] .

For u ≡ 0 the systemmoves on circles centered at 0; for u > 0 the
system moves on spirals centered at 0. If ∥x∥ ≠ 0, it follows that
ω (x) = {y ∈ M : ∥y∥ ≤ ∥x∥} and ω∗ (x) = ∅. Note that the limit
set ω (x) is forward invariant but not backward invariant.

The following definitions reproduce basic concepts fromConley
theory of dynamical systems.

Definition 2.2. An attractor for the control systemon themanifold
M is a set A ⊂ M which admits a neighborhood N such that
ω (N) = A. A repeller is a set R ⊂ M which has a neighborhood V
with ω∗ (V ) = R. The neighborhoods N and V are called attractor
neighborhood ofA and repeller neighborhood ofR, respectively.We
consider both the empty set andM as attractors and repellers.

The following result is proved in [10, Proposition 3.1] and
adapted for control systems.

Proposition 2.1. Assume that the manifold M is compact.
1. For each attractor A with attractor neighborhood N there is t > 0

such that cls

S≥tN


⊂ int (N).

2. For each repeller R with repeller neighborhood V there is t > 0
such that cls


S−1

≥t V


⊂ int (V ).

Let A be an attractor for the control system. The set

A∗
= M \ {x ∈ M : ω (x) ⊂ A}

is called complementary repeller of A.
Definition 2.3. Assume that the manifold M is compact. Let ∅ =

A0 ⊂ A1 ⊂ · · · ⊂ An = M be an increasing sequence of
attractors of the control system on M , and let Ci = Ai ∩ A∗

i−1,
i = 1, . . . , n. The ordered collection M = {C1, . . . , Cn} is called a
Morse decomposition of the control system. Each component Ci is
called a Morse set. A Morse decomposition M = {C1, . . . , Cn} is
said to be finer than a Morse decomposition M′

= {C ′

1, . . . , C ′
m} if

for each Morse set C ′

j there is a Morse set Ci with Ci ⊂ C ′

j . A Morse
decomposition is called the finest Morse decomposition if it is finer
than all Morse decompositions.

The notion of Morse decomposition on noncompact manifolds
will appear later [11].

We may assume the following hypothesis.

Definition 2.4. The familyF satisfies the translation hypothesis if:

1. for all g ∈ S and t > 0, there is s > 0 such that S≥s ⊂ S≥tg .
2. for all g ∈ S and t > 0, there is s > 0 such that S≥s ⊂ gS≥t .

The item 1. of the translation hypothesis implies the Hypothesis
H3 defined in [10, Section 2]: for all s ∈ S and A ∈ F there
exists B ∈ F such that B ⊂ As. This hypothesis allows to extend
Conley’s results from the setting of dynamical systems on compact
metric spaces to the setting of semigroup actions on compact
spaces. If the manifold M is compact, the complementary repeller
A∗ of an attractor A is really a repeller of the control system
and coincides with the set {x ∈ M : ω (x) ∩ A = ∅}. Moreover, for
x ∈ M \ (A ∪ A∗), one has ω∗ (x) ⊂ A∗ and ω (x) ⊂ A
(see [10, Section 3] for details). This fact reproduces the notion
of attractor–repeller pair of the Conley theory. The item 2. of
translation hypothesis means that the family F ∗

=

S−1

≥t : t > 0


also satisfies Hypothesis H3. It assures that limit sets are invariant
by the system, which implies attractors and repellers are invariant
sets. As a consequence, a Morse decomposition of the control
system is a collection of compact invariant sets.

Another relevance of the translation hypothesis is the corre-
spondence between the chain control sets as defined in [1] and
the maximal chain transitive sets as defined in [10]. We recall
that an (ε, T )-chain from x to y consists of a sequence of points
x0 = x, . . . , xn = y ∈ M , times t0, . . . , tn−1 > T and control func-
tions u0, . . . , un−1 such that

d(ϕ(t, xi, ui), xi+1) < ε

for all i = 0, . . . , n − 1. For x ∈ M , we set

Ω (x) = {y ∈ M : there is an (ε, T ) -chain from x to y,
for all ε, T > 0} ,

Ω∗ (x) = {y ∈ M : there is an (ε, T ) -chain from y to x,
for all ε, T > 0} .

A point x ∈ M is chain recurrent if x ∈ Ω (x). The set of all
chain recurrent points for the control system is called the chain
recurrence set, and is denoted by R.

A chain control set for the control system is a set E ⊂ M which
satisfies

a. For all x, y ∈ E, x ∈ Ω (y) and y ∈ Ω (x).
b. For all x ∈ E there is a control function u such thatϕ (t, x, u) ∈ E

for all t ∈ R;
c. E is maximal with these two properties.

A maximal chain transitive set for the control system is a set
C ⊂ M which satisfies

i. For all x, y ∈ C , x ∈ Ω (y) and y ∈ Ω (x).
ii. C is maximal with this property.

In other words, C = Ω (x) ∩ Ω∗ (x) for all x ∈ C .
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The following theorem on chain recurrence is proved in
[10, Proposition 4.10 and Theorem 4.1] and [12, Proposition 4.2
and Theorem 5.2], which extends the results from Conley theory
of dynamical systems to control systems.

Theorem 2.2. Assume that the manifoldM is compact and the family
F satisfies the translation hypothesis.

1. For x ∈ M, Ω (x) is the intersection of all attractors containing
ω (x), andΩ∗ (x) is the intersection of all complementary repellers
A∗, where A is an attractor such that x ∉ A.

2. The maximal chain transitive sets of the control system are
compact invariant sets.

3. The chain recurrence set R of the control system coincides with the
intersection 

A ∪ A∗
: A is an attractor


.

4. There exists the finest Morse decomposition for the control system
if and only if the chain recurrence set is a union of a finite number
of maximal chain transitive sets.

It is readily seen that a chain control set E is contained in a
maximal chain transitive set C . If M is compact and the family
F satisfies the translation hypothesis, we have E = C , since
C is invariant from Theorem 2.2. Therefore, under translation
hypothesis, the concepts of chain control set and maximal chain
transitive set are equivalent.

A theoretical condition that yields translation hypothesis occur
is S being total in G, that is, G = S ∪S−1. Indeed, let G+ denote the
semigroup

G+
=


etnYnetn−1Yn−1 · · · et0Y0 : Yj ∈ F , tj ∈ R,

n
j=0

tj ≥ 0, n ∈ N


.

Assume that the system semigroup S coincides with G+. Then S is
total in G. For etY ∈ S and T > 0, take s > 0 such that s ≥ T + t .
We have

S≥s = S≥se−tYetY ⊂ S≥TetY and

S≥s = etYe−tYS≥s ⊂ etYS≥T .

Therefore, the family F satisfies the translation hypothesis. We
refer to [13] for discussions on total semigroups in Lie groups.
However, there are larger classes of interesting control systems
whose family F satisfies the translation hypothesis, although the
system semigroup is not total. Let us see an example.

Example 2.3. Let M = G be a Lie group and g the Lie algebra of
G. Let a ⊂ z (g) be a vector subspace in the center z (g) of g. Fix
a nonzero vector field X ∈ g. Consider the control system on G
determined by the vector fields in F = {X + Y : Y ∈ a}. We have
the system semigroup

S =

exp tn (X + Yn) · · · exp t0 (X + Y0) : tj ≥ 0, Yj ∈ a


where exp is the exponentialmap of g intoG. The familyF satisfies
the translation hypothesis. In fact, for T > 0 and exp t (X + Y ) ∈ S,
we take s > 0 such that s ≥ T + t . For exp τ (X + Z) ∈ S≥s, we
have

exp τ (X + Z) = exp τ (X + Z) exp−t (X + Y ) exp t (X + Y )

= exp ((τ − t) X + τZ − tY ) exp t (X + Y )

= exp (τ − t)

X +

τ

τ − t
Z −

t
τ − t

Y


× exp t (X + Y ) ∈ S≥T exp t (X + Y ) .
Hence,S≥s ⊂ S≥T exp t (X + Y ). Analogously,S≥s ⊂ exp t (X + Y )

S≥T . Nevertheless, S is no total inG. Indeed, the group system is the
subgroup of G

G =

exp tn (X + Yn) · · · exp t0 (X + Y0) : Yj ∈ a, tj ∈ R, n ∈ N


.

Then exp (a) ⊂ G, but exp (a) does not lie in S ∪ S−1.

Translation hypothesis also occurs in bilinear control systems
with commuting matrices, as follows.

Example 2.4. Let M = Rd, U = {u ∈ Rn
: a ≤ ∥u∥ ≤ b} with

a > 0, and A1, . . . , An ∈ Rd×d which are pairwise commutative.
Consider the bilinear control system

ẋ (t) = X (x (t) , u (t)) =

n
i=1

ui (t) Ai (x (t))

on Rd. For u = (u1, . . . , un) ∈ U and t ≥ 0, we have etXu =

et(u1A1+···+unAn). The family F satisfies the translation hypothesis.
In fact, for t > 0 and esXv ∈ S, v = (v1, . . . , vn), it is enough to
find T > 0 such that S≥T ⊂ S≥tesXv , since S is abelian. Take T > 0
such that a

bT − s > t . For erXu ∈ S≥T , u = (u1, . . . , un), we have

erXue−sXv = e(ru1−sv1)A1+···+(run−svn)An

= e
∥ru−sv∥

b
b(ru1−sv1)

∥ru−sv∥
A1+···+

b(run−svn)
∥ru−sv∥

An

= e
∥ru−sv∥

b Xw

where w =


b(ru1−sv1)
∥ru−sv∥

, . . . , b(run−svn)
∥ru−sv∥


∈ U and ∥ru−sv∥

b ≥
|ra−sb|

b

≥
a
bT − s > t . Hence, erXue−sXv ∈ S≥t . It implies the inclusion

S≥Te−sXv ⊂ S≥t , hence S≥T ⊂ S≥tesXv .

3. Lyapunov functions

In this section we introduce the notion of complete Lyapunov
function for control systems. As in dynamical systems, the global
structure of a control system can be described via Lyapunov
functions.

Consider the following class of affine control systems

ẋ (t) = X (x (t) , u (t)) = X0 (x (t)) +

n
i=1

ui (t) Xi (x (t)) ,

u ∈ Upc = {u : R → U : u piecewise constant}

on a compact connected d-dimensional C∞-manifold M , where
U ⊂ Rn is compact and convex, and X0, . . . , Xn are C∞-vector
fields on M . Assume that, for each u ∈ Upc and x ∈ M , the
preceding equation has a unique solution ϕ (t, x, u), t ∈ R, with
ϕ (0, x, u) = x, and the vector fields X (·, u), u ∈ U , are complete.
Let U be the closure of Upc with respect to the weak* topology of
L∞ (R, Rn). Then U is compact and the following function

ϕ : R × M × U → M, (t, u, x) → ϕ (t, x, u)

is continuous. The control range U is identified with the set of the
constant control functions in U. Since U is weak* closed, it is a
compact subset of U.

Remark 1. Let A be an attractor for the control system and N be
an open neighborhood of A with cls (N) ∩ A∗

= ∅. We choose an
open repeller neighborhood V of A∗ such that N ∩ V = ∅. From
Proposition 2.1 there is t ′ > 0 such that cls


S−1

≥t ′V


⊂ V . Then

N ′
= M \ cls


S−1

≥t ′V


is an attractor neighborhood of A. Since

N ⊂ M \V ⊂ N ′, it follows thatN is also an attractor neighborhood
of A. In particular, there is t > 0 such that cls


S≥tN


⊂ N .
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In order to introduce the notion of complete Lyapunov function
for control systems, we need the following preorder in the system
semigroup.

Definition 3.1. For g1, g2 ∈ S, let g1 ≥ g2 iff g1 = g2 or g1 ∈ Sg2;
g1 > g2 iff there is t > 0 such that g1 ∈ S≥tg2.

The relation≤ in Definition 3.1 is the reverse of thewell-known
Green’s L-preorder of semigroup theory: g1 ≤L g2 iff g1 = g2 or
g1 ∈ Sg2 ([14]).

Definition 3.2. A Lyapunov function associated to an attrac-
tor–repeller pair (A, A∗) is a real valued function LA : M → [0, 1]
such that L−1

A (0) = A, L−1
A (1) = A∗ and LA is strictly decreasing

on orbits in C (A, A∗) = M \ (A ∪ A∗), that is, if g1 > g2 and
x ∈ C (A, A∗), then LA (g1x) < LA (g2x).

The set C (A, A∗) in Definition 3.2 is called the set of connecting
orbits of the attractor–repeller pair (A, A∗). The following theorem
on the existence of Lyapunov functions for attractor–repeller pairs
generalizes the Conley theorem for dynamical systems on compact
metric spaces (see [2, Chapter II, Section 5]).

Theorem 3.1. Let A be an attractor of the control system on the
compact manifold M and assume that its complementary repeller A∗

is closed. There is a Lyapunov function LA for (A, A∗).

Proof. Since A and A∗ are disjoint closed sets andM is a perfectly
normal space, there is a continuous function f : M → [0, 1] such
that f −1 (0) = A and f −1 (1) = A∗. We define h : M → [0, 1]
by h (x) = sup {f (gx) : g ∈ S}. If g1 ≥ g2, then g1 = kg2 for some
k ∈ S. Then, we have

h (g2x) = sup {f (gg2x) : g ∈ S}

≥ sup {f (gkg2x) : g ∈ S}

= sup {f (gg1x) : g ∈ S}

= h (g1x) .

Hence, h is nonincreasing on orbits. Let us verify h is continuous. It
is enough to show that h−1 ([0, ε)) and h−1 ((ε, 1]) are open sets
in M for every 0 < ε < 1, since h−1 ((a, b)) = h−1 ([0, b)) ∩

h−1 ((a, 1]), for any basic open set (a, b) ⊂ [0, 1]. For 0 < ε < 1,
let x ∈ h−1 ((ε, 1]). Then, there is g ∈ S such that f (gx) > ε.
Hence, g−1


f −1 ((ε, 1])


⊂ h−1 ((ε, 1]) is an open neighborhood

of x. Thus, h−1 ((ε, 1]) is an open set inM . Now, let x ∈ h−1 ([0, ε)).
Then, h (x) < ε and Sx ⊂ f −1 ([0, h (x))). By taking δ > 0 with
h (x) < δ < ε, we have f −1 ([0, δ)) is an open neighborhood of A
and f −1 ([0, δ))∩A∗

= ∅. From Remark 1, there is t > 0 such that

S≥t f −1 ([0, δ)) ⊂ f −1 ([0, δ)) .

If y ∈ S≥t f −1 ([0, δ)) and g ∈ S, then

gy ∈ gS≥t f −1 ([0, δ)) ⊂ S≥t f −1 ([0, δ)) ⊂ f −1 ([0, δ)) .

Hence,

h (y) = sup {f (gy) : g ∈ S} ≤ δ < ε,

that is, y ∈ h−1 ([0, ε)). Thus, S≥t f −1 ([0, δ)) ⊂ h−1 ([0, ε)).
Now, since h (x) < δ, we have S≤tx ⊂ f −1 ([0, δ)), and hence
[0, t]×{x}×Upc ⊂ ϕ−1


f −1 ([0, δ))


. AsUpc is dense inU, we can

obtain an open neighborhood V of x such that V ⊂ f −1 ([0, δ)) and
[0, t]×V ×Upc ⊂ ϕ−1


f −1


0, ε′


for some ε′, with δ ≤ ε′ < ε.

Hence, S≤tV ⊂ f −1

0, ε′


. Then, we have

SV =

S≤t ∪ S≥t


V ⊂ f −1 

0, ε′


,

and thus V ⊂ h−1 ([0, ε)). Therefore, h−1 ([0, ε)) is an open set in
M , and hence h is continuous. Because f −1 (0) = A, it is easily seen
that h−1 (0) = A. If x ∈ A∗
= f −1 (1), then f (gx) = 1 for all g ∈ S,

hence A∗
⊂ h−1 (1). On the other hand, if h (y) = 1 and y ∉ A∗,

then ω (y) ⊂ A, hence there is a subnet (giy) of the net (gy)g∈S

converging to some point z ∈ A. Since h is continuous, it follows
that h (giy) → h (z) = 0, but as h is nonincreasing on orbits, we
have h (giy) ≥ h (y) = 1, for all i, which is a contradiction. Hence,
y ∈ A∗, and therefore h−1 (1) = A∗. Now we define the function
l : M × U → [0, 1] by

l (x, u) =


+∞

0
e−th (ϕ (t, x, u)) dt .

Since h and ϕ are continuous, it follows that l is continuous. As
h−1 (0) = A and h−1 (1) = A∗, we have l−1 (0) = A × U and
l−1 (1) = A∗

× U. Because h is nonincreasing on orbits, we have

l (ϕ (s, x, u) , u · s) =


+∞

0
e−th (ϕ (t, ϕ (s, x, u) , u · s)) dt

=


+∞

0
e−th (ϕ (s, ϕ (t, x, u) , u · t)) dt

≤


+∞

0
e−th (ϕ (t, x, u)) dt

= l (x, u)

for all s > 0 and x ∈ M . If x ∈ C (A, A∗), there is ε > 0
such that h (x) ≥ ε. Since ω (x) ⊂ A, there is T > 0 such that
S≥T x ⊂ h−1 ([0, ε)). For u ∈ U, it follows that

t ′ = sup {t > 0 : h (ϕ (t, x, u)) ≥ ε}

is finite and h

ϕ


t ′, x, u


≥ ε. If s > 0, the function t ∈

(0, +∞) → h (ϕ (t + s, x, u)) − h (ϕ (t, x, u)) is not identically
zero, because h


ϕ


t ′ + s, x, u


− h


ϕ


t ′, x, u


< 0. Hence

l (ϕ (s, x, u) , u · s) − l (x, u) =


+∞

0
e−t (h (ϕ (t + s, x, u))

− h (ϕ (t, x, u))) dt

is strictly negative, that is, l (ϕ (s, x, u) , u · s) < l (x, u). Finally, the
Lyapunov function LA : M → [0, 1] for (A, A∗) is defined as

LA (x) = sup
u∈U

l (x, u) .

Indeed, since l−1 (0) = A × U and l−1 (1) = A∗
× U, we have

L−1
A (0) = A and L−1

A (1) = A∗. Let us verify LA is continuous. We
choose ε such that 0 < ε < 1. If x ∈ L−1

A ([0, ε)), we can take
ε′ such that LA (x) < ε′ < ε. Then l (x, u) < ε′ for all u ∈ U.
Since l is continuous, there is a neighborhood V of x in M such
that V × U ⊂ l−1


0, ε′


. If y ∈ V , then l (y, u) < ε′ for all

u ∈ U, hence LA (y) ≤ ε′ < ε. It follows that V ⊂ L−1
A ([0, ε)),

and therefore L−1
A ([0, ε)) is open. If x ∈ L−1

A ((ε, 1]), there is some
u such that l (x, u) > ε. Then there is a neighborhood V of x
with V × {u} ⊂ l−1 ((ε, 1]). If y ∈ V , we have l (y, u) > ε,
hence LA (y) > ε. It follows that V ⊂ L−1

A ((ε, 1]), and therefore
L−1
A ((ε, 1]) is open. Thus, LA is continuous. It remains to show that
LA is strictly decreasing on orbits in C (A, A∗). Let s > 0, esXv ∈ S,
and x ∈ C (A, A∗). Since LA


esXv x


= l (ϕ (s, x, v) , u0) for some

u0 ∈ U, and ϕ (t, ϕ (s, x, v) , u0) = ϕ (t + s, x, w), where w ∈ U
is the s-concatenation of v and u0, we have

LA


esXv x


= l (ϕ (s, x, v) , u0)

=


+∞

0
e−th (ϕ (t, ϕ (s, x, v) , u0)) dt

=


+∞

0
e−th (ϕ (t + s, x, w)) dt
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=


+∞

0
e−th (ϕ (t, ϕ (s, x, w) , w · s)) dt

= l (ϕ (s, x, w) , w · s)
< l (x, w)

≤ LA (x) .

Therefore, LA is a Lyapunov function for (A, A∗).
Now we go into the investigation of the existence of a

complete Lyapunov function for the control system. First, we
define complete Lyapunov function for a Morse decomposition.

�

Definition 3.3. A complete Lyapunov function for a Morse decom-
position M = {C1, . . . , Cn} of the control system is a continuous
real valued function LM : M → R, which is strictly decreasing on
orbits outside

n
i=1 Ci and such that, for each Morse set Ci, there

is ci ∈ R such that L−1
M (ci) = Ci. The set LM

n
i=1 Mi


is called the

critical value set of LM .

From the existence of Lyapunov function for attractor–repeller
pairs we can prove the existence of complete Lyapunov function
for Morse decompositions, as follows.

Theorem 3.2. Let M = {C1, . . . , Cn} be a Morse decomposition of
the control system on the compact manifold M and let ∅ = A0 ⊂

A1 ⊂ · · · ⊂ An = M be the increasing sequence of attractors such
that Ci = Ai ∩ A∗

i−1, i = 1, . . . , n. Assume that A∗

i is closed for all i.
There is a complete Lyapunov function for M.

Proof. Define LM = Σn
i=13

−iLAi , where LAi is the Lyapunov
function for


Ai, A∗

i


given by Theorem 3.1. The function LM is a

complete Lyapunov function for M. In fact, it is easily seen that LM

is continuous. If x ∈ M\
n

i=1 Ci, we take j = min {i : x ∈ Ai}. Since
x ∉ Aj∩A∗

j−1, we have x ∉ A∗

i−1. Hence, x ∉ Aj−1∪A∗

j−1. It follows
that, for any s > 0, LM


esXux


< LM (x), since LAj−1


esXux


<

LAj−1 (x). Thus LM is strictly decreasing on orbits outside
n

i=1 Ci.
Given a critical value c ∈ LM

n
i=1 Ci


, we take y ∈ L−1

M (c). Then,
LM (y) = LM


Cj


for someMj, that is, LM (y) = Σ

j−1
i=13

−i. It follows
that LAj (y) = 0 and LAj−1 (y) = 1, and hence y ∈ Aj ∩ A∗

j−1 = Cj.
Therefore, L−1

M (c) = Cj, and the proof is completed. �

Finally, we define complete Lyapunov function for the control
system.

Definition 3.4. A complete Lyapunov function for the control
system is a continuous real valued function L : M → R, which
is strictly decreasing on orbits outside the chain recurrence set R

and such that the set L (R) of critical values of L is nowhere dense
in R and, for each critical value c , the set L−1 (c) is a maximal chain
transitive set.

From now on, we assume that the family F =

S≥t : t > 0


satisfies the translation hypothesis. By Theorem 2.2, if the finest
Morse decomposition exists, a complete Lyapunov function for
the control system is the complete Lyapunov function for the
finest Morse decomposition given by Theorem 3.2. Otherwise,
since the manifold M is compact, there are at most countably
many attractor–repeller pairs for the control system in M , and the
existence of a complete Lyapunov function for the control system
is guaranteed. The proof is similar to Conley’s proof for flow on
compact metric space (see [2, Chapter II, Section 6.4]). We define
L = Σ∞

n=13
−nLAn where LA1 , LA2 , . . . are the Lyapunov functions

for the attractor–repeller pairs of the control system. Then, L is
a continuous function on M . From Theorem 2.2, if x ∉ R, then
x ∉ An ∪ A∗

n for some attractor An. It follows that L is strictly
decreasing on orbits outside the chain recurrence setR. Since each
LAn is either 0 or 1 at a point of R, each critical value in L (R) lies
in the ‘‘middle third’’ Cantor set, hence L (R) is nowhere dense in
R. Now, if E is a maximal chain transitive set and x, y ∈ E, then
x ∈ Ω (y) and y ∈ Ω (x). By Theorem 2.2, it follows that each
attractor containing x also contains y. Hence, L (E) = c for some
critical value c. On the other hand, if z ∈ L−1 (c), then L (z) = L (x).
If An is an attractor containing x, then LAn (x) = 0, and hence
LAn (z) = 0. If Am is an attractor such that x ∈ A∗

m, then LAm (z) =

LAm (x) = 1. Hence, z lies in each attractor containing x and in
each complementary repeller containing x. By Theorem 2.2 again,
it follows that z ∈ Ω (x) ∩ Ω∗ (x) = E. Therefore, L−1 (c) = E.
These statements demonstrate the following theorem.

Theorem 3.3. Assume that the translation hypothesis is satisfied.
There is a complete Lyapunov function for the control system on the
compact manifold M.

References

[1] F. Colonius, W. Kliemann, The Dynamics of Control, Birkhäuser, Boston, 2000.
[2] C. Conley, Isolated Invariant Sets and theMorse Index, in: CBMS Regional Conf.

Ser. in Math., vol. 38, American Mathematical Society, 1978.
[3] H.K. Khalil, Nonlinear Systems, Prentice Hall Upper Saddle River, New Jersey,

1996.
[4] C. Robinson, Dynamical Systems: Stability, Symbolic Dynamics and Chaos, CRC

Press, Florida, 1999.
[5] R.A. Freeman, P.V. Kokotović, Robust Control of Nonlinear Systems, Birkhäuser,

1996.
[6] C.M. Ou, Global aspects of control systems: perspectives from control

Lyapunov functions, Department ofMathematics, Iowa StateUniversity, Ames,
Iowa, Thesis, 1996.

[7] M. Patrão, Morse decomposition of semiflows on topological spaces, J. Dyn.
Diff. Eq. 19 (2007) 181–198.

[8] K.P. Rybakowski, The Homotopy Index and Partial Differential Equations,
Springer-Verlag, Berlin, 1987, Universitext.

[9] M. Patrão, L.A.B. San Martin, Semiflows on topological spaces: chain
transitivity and semigroups, J. Dyn. Diff. Eq. 19 (2007) 155–180.

[10] C.J. Braga Barros, J.A. Souza, Attractors and chain recurrence for semigroup
actions, J. Dyn. Diff. Eq. 22 (2010) 723–740.

[11] J.A. Souza, On limit behavior of semigroup actions on noncompact spaces, Proc.
Amer. Math. Soc. (in press).

[12] C.J. Braga Barros, J.A. Souza, Finest Morse decompositions for semigroup
actions on fiber bundles, J. Dyn. Diff. Eq. 22 (2010) 741–760.

[13] J.D. Lawson, Maximal subsemigroups of Lie groups that are total, Edinb. Math.
Soc. 30 (1987) 479–501.

[14] A.H. Clifford, G.B. Preston, The Algebraic Theory of Semigroups I, American
Mathematical Society, Providence, 1967.


	Complete Lyapunov functions of control systems
	Introduction
	Limit behavior and chain transitivity
	Lyapunov functions
	References


