Attitude / Momentum Control for the Space Station

Introduction:

The desire to expand human presence beyond the planet has necessitated the design and development of more and more complex spacecraft.  An example of one such spacecraft is the International Space Station.  Such a spacecraft is, in reality, a flexible multi-body system subject to various external disturbances that may not be known accurately.  During assembly, it will undergo increasingly complex modifications as a result of the attached solar panels, thermal radiators, payloads, etc. (see figure below)  It will also undergo several configuration changes during its lifetime, both due to initial assembly and routine operations such as docking and berthing of vehicles.  These changes will affect the attitude controller, which must maintain stable operation under these conditions.  
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A number of studies in the literature have presented the tradeoffs in selecting the various attitude control and momentum management techniques appropriate for orbiting.  Researchers have investigated controllers based on H(, linear quadratic regulator and other robust methodologies.  Some have adaptive nonlinear approach to the problem. This paper was done with an interest to apply what was learnt in class, simulate the spacecraft dynamics, and explore methods of controlling the dynamics of the spacecraft.  Specifically, I will derive the linearized equations of motion of the Space Station, use them to model the system in Laplace domain as well as state space, design PD and Optimal controllers, and implement Parameter identification/estimation and Adaptive Control.

Space Station Dynamics:

Assuming single rigid-body, the nonlinear equations of motion for the spacecraft with body-fixed control axes can be expressed by Euler’s equations of motion, given by:
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 is given in the intertial axes, 
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 directions respectively.  The net torque on the spacecraft due to the gravity gradient can be written as:
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where rc is a vector from the center of the earth to the center of mass of the Space Station.  Thus, the net torque about the space craft center of mass can be decomposed into gravity gradient, disturbance and control torques:  Ttotal = Tgg+w(t)-u(t), where u(t) is the control torque and w(t) is the net disturbance torque.  Rewriting the Euler equation:
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This can be written as:
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where


c1 = -sin(2 cos(3

c2 = cos(1 sin(2 sin(3 + sin(1 cos(2

c3 = - sin(1 sin(2 sin(3  + cos(1 cos(2
Attitude kinematics for the 2-3-1 bocy-axis sequence gives:
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Using the small angle approximation, the equations of motion can be reduced to:
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The disturbance modeled is a bias plus a cyclic component at the orbital rate caused by the Earth’s diurnal bulge:
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Control:  

The linearized equations of motion above can be written as follows using laplace variables:  
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The system can be written in 6-dimensional state space as: 
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The numbers in the above matrices were calculated using the following values for the Space Station inertias (slug-ft2):  

Ioo=50.28*106
​I22=10.80*106
I33=58.57*106
Iij,(i(j)=0

The aerodynamic torque (ft-lb) is given by

w1 = 1+sin(nt) 

w2 = 4+2sin(nt)

w3 = 1+sin(nt)

and n is the orbital rate of 0.0011 rad/s.  These were the values used in references 1, 2, and 4.  It can be seen that (i = 0 is the unstable equilibrium of the system.  Any disturbance or non-zero initial condition causes it to be unstable.  Another system characteristic is that the pitch axis is decoupled from the roll and yaw axes.  Therefore, it is common practice to model the pitch axis dynamics separately.  However, I have not done that.
PD control:

As a fist step in attitude control, a PD controller {u = kd(de/dt)+kpe} was implemented for each of the 3 rotations.  This reduced the error in (i significantly (see pages 1-2 in Appendix).  

State Feedback:

State feedback, u = -kx, was done to minimize the cost function 
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.  Here Q and R were identity matrices to give equal weight to response and control effort.  Results are shown on pages 3-4 of Appendix

For the same disturbance, a comparison of the states shows that the PD controller has reduced the error in (i better than the Optimal Controller.  The control effort, on the other hand, is slightly less in the case of the optimal controller.  By varying the Q and R matrices in the cost function or the gains in the PD controller, one can change the outputs or inputs as desired.  I don’t see an advantage of one controller over another for fixed and known plant parameters.

Adaptive Control:

As was stated in the introductory part of the paper, the International Space Station undergoes substantial mass and configuration changes during its operational lifetime.  Therefore, its inertias change considerably during the assembly sequence and during nominal operations such as a Space Shuttle docking and the movement of large payloads on the mobile transporter.  The simple controllers presented above cannot stabilize the Space Station for large variations in the inertias.  One of the alternatives for the control system is Adaptive control.  Parameter identification/estimation will be an important task to track the changes in the open-loop dynamics of the system.  Next, I have tried to use a Model Reference Adaptive Controller and a Self Tuning Regulator to regulate the plant. 

Parameter Identification:

Given the general system equations 
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 and A, B are unknown matrices, one can reparameterize as follows:  
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 are estimates of A and B.  The estimator error e = x - 
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.  Using the Candidate Lyapunov function 
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 and analyzing its derivative, one can show that the 
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 ensure a stable response:  
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.  This guarantees that the error goes to zero as time goes to infinity.  Furthermore, given enough persistent excitation, the estimations 
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 converge to A, B.  Results are shown on pages 5-6 of the appendix.

One of the initial assumptions in the above analysis is that the plant is stable.  However, that is not the case here.  Therefore, parameter estimation/identification is not applicable to this system without normalizing the signals.  

One way to verify the parameter estimation algorithm is to apply it to a known stable system.  Therefore, my next step was to run the algorithm on the plant with optimal feedback.  This ensured bounded states, and results are shown on pages 7-9 of the appendix. In this case, I have initiated the system with non-zero initial conditions and given disturbance with 3 different frequencies.  As can be seen from the x and 
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 matrices as well.  However, at this point it does not reflect the real plant parameters because the loop was closed in order to ensure stability.  

Another approach to the problem is to normalize the error signal by enormalized = 
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.   Results using this technique are presented on pages 10-12 of the appendix.  As can be seen from the figure, the normalized error does converge to zero, and some of the parameters (especially in the A-matrix) converge to constant values.  However, the number of unknowns here is much greater than the number of PE signals provided – therefore, not all the values in A and B have converged to the A, B matrices.  The error does not grow unbounded, however, I am limited in the amount of time to run the simulations because of computational difficulties.  Therefore, one can notice the convergence of some of the elements in the A and B matrices.   

MRAC:

The goal of Model Reference Adaptive Control is to control the plant such that its response is similar to a stable reference model.  So once again, given the system, 
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, one assumes that the control, u = -k*x+l*r will do the job.  Then one goes through similar steps as earlier to obtain the update laws: 
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 are estimates of k* and l*.  I tried implementing the MRAC controller, but found out that the system is not minimum phase – one of the requirements for MRAC.  Therefore the plant did not follow the provided reference signal.  The results show the plants states growing unbounded while the reference state follows a constant.  See pages 13-14 of Appendix.

Self Tuning Regulator:

I have also attempted a self tuning regulator on the system, using the parameter identification scheme, and an optimal control:  U = B’Px.  See attachment 15.  However, it was unable to stabilize the system, and I didn’t have enough time to debug and continue with this controller.

Conclusions:

In my simulations, the PD controller was more effective than the optimal controller in reducing the deviations in the states due to the disturbances.  This might not be the case if I had given more weight to the states than the control effort in the cost function.  Thus, one can conclude that, for a known system, a PD controller of State feedback will be sufficient to stabilize the system and reduce (i to stay within an acceptable range.

The Parameter Identification scheme showed me the effects of not normalizing the signals.  It was successful in estimating some of the elements in the A and B matrices of the system.  However, this system does not have enough persistent excitation externally to identify all 72 elements in the A and B matrices.  One way to over come this problem is to rewrite the plant equations in such a way that the three moments of inertias (the only unknowns) will appear explicitly in the estimator. I’ve learned how to design a Model Reference Adaptive Control, and also that it is not applicable to this system since it is not minim phased.  I tried to implement a self tuning regulator to the system, but did not have enough time to debug the controller.  This project has helped me see and understand spacecraft dynamics better and know some of the problems associated with control of spacecraft.  It has also given me a chance to try my hand at several of the control algorithms discussed in class and given me a feel for the responses to different controls, and the importance of the assumptions in the derivations of the different control laws.
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