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LINEAR OPENNESS AND FEEDBACK STABILIZATION

OF NONLINEAR CONTROL SYSTEMS

ROHIT GUPTA, FARHAD JAFARI, ROBERT J. KIPKA, AND BORIS S. MORDUKHOVICH

Abstract. It is well known from the seminal Brockett’s theorem that the openness property of the mapping
on the right-hand side of a given nonlinear ODE control system is a necessary condition for the existence
of locally asymptotically stabilizing continuous stationary feedback laws. However, this condition fails to
be sufficient for such a feedback stabilization. In this paper we develop an approach of variational analysis
to continuous feedback stabilization of nonlinear control systems with replacing openness by the linear

openness property, which has been well understood and characterized in variational theory. It allows us, in
particular, to obtain efficient conditions via the system data supporting the sufficiency in Brockett’s theorem
and ensuring local exponential stabilization by means of continuous stationary feedback laws. Furthermore,
we derive new necessary conditions for local exponential and asymptotic stabilization of continuous-time
control systems by using both continuous and smooth stationary feedback laws and establish also some
counterparts of the obtained sufficient conditions for local asymptotic stabilization by continuous stationary
feedback laws in the case of nonlinear discrete-time control systems.

1. Introduction

Consider the autonomous control system governed by nonlinear ordinary differential equations

ẋ = f(x, u), t ≥ 0, (1)

where the vector function f : U × V → Rn on the right-hand side of (1) is sufficiently smooth on some
open set U × V ⊂ Rn × Rm around the origin (0, 0) as a given equilibrium pair. The continuous feedback
stabilization property of our consideration is formulated as follows; see, e.g., [12, Definition 10.11].

Definition 1.1. We say that the control system (1) is locally asymptotically stabilizable by means
of continuous stationary feedback laws if there exists a continuous control u ∈ C(Rn,Rm) with
u(0) = 0 such that 0 ∈ Rn is a locally asymptotically stable equilibrium point for the closed-loop system

ẋ = f
(

x, u(x)
)

. (2)

The question of whether (1) can be locally asymptotically stabilized by means of continuous stationary
feedback laws has been intensively studied in the literature with deriving some necessary as well as sufficient
conditions for it; see, e.g., [5, 7, 8, 11, 12, 20, 28, 29, 30] and the references therein for a variety of results,
discussions, and applications. In particular, the fundamental theorem by Brockett [7] shows that the control
system (1) cannot be locally asymptotically stabilized by continuous stationary feedback laws if the openness
property of f is not satisfied at the equilibrium point (0, 0). In fact, Brockett’s original result of the topological
(mainly degree theoretic) nature [7, Theorem 1] establishes the necessity of the openness property for the
existence of a continuously differentiable (smooth) locally stabilizing feedback law. Its extension to merely
continuous stationary feedback laws is given by Zabczyk [31] by using a different device based on a deep
result by Krasnoselskii and Zabreiko [16] from geometric nonlinear analysis. On the other hand, Coron [11]
and Sontag [30] construct impressive examples demonstrating that the openness property is not sufficient
for the existence of such a locally asymptotically stabilizing continuous stationary feedback law.

In this paper we suggest to replace the openness property of f by its linear openness counterpart, which
is a basic property of single-valued and set-valued mappings that has been well understood and completely
characterized (contrary to the openness property) in general settings of variational analysis; see Section 2
for a brief overview and the books [6, 14, 25, 26, 27] with the extended bibliographies therein for numerous
applications to various issues in optimization, equilibria, control, and practical models.

We believe that the developed approach of variational analysis and generalized differentiation has the
strong potential for applications to a broader class of control systems, not just to smooth system (1), and
discuss these issues in the concluding section. However, for the better understanding we confine ourselves
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here to the frameworks of smooth ODE systems of type (1) and their discrete-time analogs. In the case of (1)
the developed variational approach allows us to verify that the linear openness of f around the equilibrium
point, being combined with a precise relationship between the exact bound of linear openness and unstable
eigenvalues of the partial Jacobian matrix of f in x, ensures the existence of a continuous stationary feedback
law, which locally exponentially (and hence locally asymptotically) stabilizes (1) via the closed-loop control
system (2). In this way we arrive at a partial converse to Brockett’s theorem. Moreover, we justify the
necessity of linear openness for local exponential stabilization of (1) by means of continuous stationary
feedback laws as well as the necessity of this property for local asymptotic stabilization of (1) by means of
smooth feedback laws under an additional assumption. Certain analogs of the obtained sufficient conditions
for local asymptotic stabilization by means of continuous stationary feedback laws are establish also for the
discrete-time nonlinear control counterpart of (1).

The rest of the paper is organized as follows. Section 2 presents a brief overview of basic tools and results of
variational analysis mainly concerning the linear openness property of single-valued and set-valued mappings
as well as closely related properties of metric regularity and Lipschitzian stability, from both qualitative and
quantitative viewpoints. The presented material justifies our variational approach to stabilizing nonlinear
control systems not only of the smooth type (1) and its discrete-time counterpart, but also for more general
classes to be considered in future developments.

Section 3 is devoted to the implementation of this variational approach to establish sufficient as well as nec-
essary conditions for stabilizing nonlinear continuous-time control systems (1) by means of both continuous
and smooth feedback laws. In Section 4 we deal with discrete-time control systems, Section 5 presents some
illustrative examples, and the final Section 6 summaries the main achievements of the paper and discusses
some perspectives of the variational approach for further research in this direction.

Throughout the paper we use standard notation of variational analysis and control theory; see, e.g.,
[12, 25, 27]. Recall that Br(z) stands for the closed ball centered at z with radius r > 0, while the symbol
B signifies the closed unit ball of the space in question.

2. Linear Openness and Related Properties of Nonlinear Mappings

We start with recalling some properties of mappings used in the sequel. Most of the definitions below are
valid or can be reformulated in general frameworks of normed and even metric spaces, but we need them in
finite dimensions and so proceed accordingly.

Definition 2.1. A single-valued mapping f : Rl → Rn is said to be open at z̄ ∈ Rl if the f -image of every
neighborhood of z̄ contains/covers a neighborhood of f(z̄). This amounts to saying that

f(z̄) ∈ int f(U) for any neighborhood U of z̄. (3)

The origin of this property goes back to the classical Banach-Schauder open mapping theorem saying that
a bounded linear operator between Banach spaces is open if and only if it is surjective. The openness property
(3) of nonlinear vector functions f was used by Brockett [7] as a necessary condition for the existence of
locally asymptotically stabilizing continuous stationary feedback laws in the sense of Definition 1.1 for the
continuous-time control systems (1). We now recall an appropriate strengthening of (3), which has been
recognized as a fundamental property in variational analysis for nonlinear (and even set-valued) mappings
while allowing us to get the sufficiency in Brockett’s theorem.

Definition 2.2. A mapping f : Rl → Rn is said to be linearly open (or having the covering property)
around z̄ with modulus κ > 0 if there exists neighborhood U of z̄ such that

Bκr

(

f(z)
)

⊂ f
(

Br(z)
)

for any z ∈ U and r > 0 with Br(z) ⊂ U. (4)

The supremum of all the moduli {κ} for which (4) holds with some neighborhood U is called the exact
covering/linear openness bound of f around z̄ and is denoted by cov f(z̄).

Property (4) first appeared in [13] under the name of “covering in a neighborhood” while it has been
introduced and popularized by Milyutin in his talks and personal communications a long time before the
publication of [13]. The interest to designating and calculating the (quantitative) exact bound cov f(z̄) arose
later on; see [23, 25, 27] and the references therein. The term “linear openness” for (4) was first used probably
in [27]; this property is also widespread in the literature under the name of “openness at linear rate.”
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It is clear that the linear openness property from Definition 2.2 yields its openness counterpart from
Definition 2.1. Simple examples demonstrate that the opposite implication fails.

Example 2.3. Consider the real-valued function f : R → R given by f(z) := z3. It is easy to check that
f possesses the openness property (3) at z̄ = 0. However, the linear openness property (4) obviously fails
for f around the same point. The reader can observe that the same phenomenon holds true for the power
functions f(z) := zs with any odd natural exponent s ≥ 3 with z̄ = 0.

It is important to emphasize the following two principal differences between the openness property (3)
and its linear counterpart (4) from Definition 2.2:

(i) Property (4) ensures the uniformity of covering around z̄.
(ii) Property (4) designates a linear rate of openness quantified by modulus κ.

These two issues are crucial to establish complete characterizations of linear openness/covering with a
precise calculation of the exact covering bound cov f(z̄). Before proceeding in this direction, let us recall
another fundamental property of variational analysis, which happens to be equivalent to linear openness
with the reciprocal relationship between the exact bounds of the corresponding moduli.

Definition 2.4. A mapping f : Rl → Rn is said to be metrically regular around z̄ with modulus µ > 0
if there exist neighborhoods U of z̄ and V of ȳ := f(z̄) such that the distance estimate

d
(

z, f−1(y)
)

≤ µ‖y − f(z)‖ for any z ∈ U and y ∈ V (5)

holds via the distance function d(z,Ω) := inf
u∈Ω

‖z − u‖ for a given set Ω. The infimum of all the moduli {µ}

for which (5) is satisfied along with some neighborhoods U and V is called the exact regularity bound
of f around z̄ and is denoted by reg f(z̄). Thus the absence of metric regularity is signaled by reg f(z̄) = ∞.

We refer the reader to the books [6, 14, 25, 27] and the bibliographies therein for the genesis of this
property, its characterizations, various relationships, and numerous applications. In particular, it has been
realized that metric regularity and covering properties are actually equivalent to each other and their exact
bounds are reciprocally related as

cov f(z̄) · reg f(z̄) = 1. (6)

They can also be equivalently described by Lipschitzian behavior of the (set-valued) inverse f−1 : Rn
→
→R

l

around (f(z̄), z̄). Such a property is defined for arbitrary set-valued mappings as follows.

Definition 2.5. A set-valued mapping F : Rl
→
→Rn is said to be Lipschitz-like with modulus ℓ ≥ 0 around

the pair (z̄, ȳ) belonging to the graph

gphF :=
{

(z, y) ∈ R
l × R

n
∣

∣ y ∈ F (z)
}

if there exist neighborhoods U of z̄ and V of ȳ such that

F (z) ∩ V ⊂ F (u) + ℓ‖z − u‖B for all z, u ∈ U. (7)

The infimum of all the moduli {ℓ} for which (7) holds with some neighborhoods U and V is called the exact
Lipschitzian bound of F around (z̄, ȳ) and is denoted by lipF (z̄, ȳ).

If F is single-valued, the Lipschitz-like property from Definition 2.5 goes back to the classical local Lip-
schitzian behavior, while in the compact-valued case with V = Rn in (7) it reduces to the Hausdorff local
Lipschitzian property of multifunctions. In the general case of V in (7) this condition is also known as the
pseudo-Lipschitz or Aubin property. It can viewed as a natural graphical localization of Lipschitzian behav-
ior for set-valued mappings. Note that in the case of single-valued mappings F = f the exact Lipschitzian
bound lip f(z̄) of f around z̄ can be easily represented in the following way:

lip f(z̄) = lim sup
z,u→z̄

‖f(z)− f(u)‖

‖z − u‖
.

It is known that the linear openness and metric regularity properties of f around z̄ from Definition 2.2
and Definition 2.4, respectively, are equivalent to the Lipschitz-like property of Definition 2.5 for the inverse
mapping F = f−1 around (f(z̄), z̄) with the exact bound relationship

lip f−1(ȳ, z̄) = reg f(z̄) where ȳ = f(z̄).
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Furthermore, the aforementioned equivalences and exact bound relationships hold true for general set-valued
mappings between Banach spaces with appropriately extended definitions of covering and metric regularity;
see [25, Subsections 1.2.2 and 1.2.3] and the commentaries therein for a complete account.

When f is of class C1 as in our primary setting here, it has been shown independently by Lyusternik
[22] and Graves [18] that the surjectively of the derivative operator ∇f(z̄), which amounts to the full rank
condition for the Jacobian matrix ∇f(z̄) in finite dimensions, is sufficient for the openness property (3) in
[18] and for a version of metric regularity (as a description of the tangent space to a smooth manifold) in
[22]. Note that neither Lyusternik nor Graves dealt with the linear openness and metric regularity properties
defined above but their (rather close to each other) proofs were instrumental to verify the sufficiency of the
surjectivity condition on ∇f(z̄) for the more delicate properties from Definitions 2.2 and 2.4 in the case of
smooth single-valued mappings between arbitrary Banach spaces. However, they did not consider either the
necessity of the surjectivity condition for the underlying properties, or the exact bound calculations.

It is implied by more general results of variational analysis (and has been first observed in its framework)
that we actually have complete qualitative and quantitative characterizations of the basic properties defined
above. The following theorem is taken from [25, Theorem 1.57], while being valid in general Banach spaces;
see also the commentaries to [25, Chapter 1] for further discussions. Recall that f : Rl → Rn is strictly
differentiable at z̄ with the strict derivative ∇f(z̄) : Rl → Rn (or the Jacobian matrix ∇f(z̄) in the finite-
dimensional setting under consideration) if

lim
z,u→z̄

f(z)− f(u)−∇f(z̄)(z − u)

‖z − u‖
= 0.

This property always holds if f is smooth (i.e., of class C1) around z̄ but may be stronger than the standard
Fréchet differentiability of f at this point.

Theorem 2.6. Let f : Rl → Rn with n ≤ l be strictly differentiable at z̄. Then f enjoys the equivalent linear
openness and metric regularity properties around z̄ if and only if the strict derivative ∇f(z̄) is surjective,
i.e., the Jacobian matrix has full rank. Furthermore, the exact bounds of the linear openness and metric
regularity of f at z̄ are precisely calculated, respectively, by

cov f(z̄) = min
{

‖∇f(z̄)∗v‖
∣

∣ ‖v‖ = 1
}

and reg f(z̄) =
∥

∥

(

∇f(z̄)∗
)−1∥

∥, (8)

where the symbol “∗” stands for the adjoint operator (matrix transposition), and where the last norm in
(8) is the standard norm for linear bounded operators applied to the inverse operator (∇f(z̄)∗)−1, which is
single-valued in the case of the surjectivity of the derivative operator ∇f(z̄).

Having in mind further possible extensions (see more in Section 6) of our approach and results to non-
smooth control systems (1) and their set-valued versions ẋ ∈ F (x) as well as to partial differential counter-
parts, we formulate now for the reader’s convenience generalized differential characterizations of the afore-
mentioned basic properties of variational analysis in the general framework of set-valued mappings F : Rl

→
→Rn

with closed graphs. This is done by using the coderivative D∗F (z̄, ȳ) : Rn
→
→Rl of F at (z̄, ȳ) ∈ gphF , which

we are not going to define here while recalling that

D∗f(z̄)(v) =
{

∇f(z̄)∗v} for all v ∈ R
n (9)

provided that the mapping F = f is single-valued and strictly differentiable at x̄; in particular, if it is of class
C1 as in the case studied in this paper. In general, the coderivative is a positively homogeneous mapping
that enjoys comprehensive calculus rules based on variational/extremal principles of variational analysis.
We refer the reader to the books [25, 26, 27] and the commentaries therein for exact results, discussions,
extended bibliographies, and various applications.

In particular, a complete characterization of the Lipschitzian property from Definition 2.5 for F around
(z̄, ȳ) with the precise calculation of the exact bound lipF (z̄, ȳ) obtained in [23, Theorem 5.7] reads as

D∗F (z̄, ȳ)(0) =
{

0
}

with lipF (z̄, ȳ) =
∥

∥D∗F (z̄, ȳ)
∥

∥, (10)

where ‖ · ‖ stands for the usual norm of a positively homogeneous mapping G : Rn
→
→Rl defined by

‖G‖ := sup
{

‖u‖
∣

∣ u ∈ G(v), ‖v‖ ≤ 1
}

.

Another proof of (10) is given in [27, Theorem 9.40] under the name of “Mordukhovich criterion.” The reader
can find an infinite-dimensional extension of (10) in [25, Theorem 4.10]. The corresponding counterparts of



5

(10) for the (inverse) equivalent properties of metric regularity and linear openness are

kerD∗F (z̄, ȳ) =
{

0
}

with regF (z̄, ȳ) = ‖D∗F (z̄, ȳ)−1‖ = ‖D∗F−1(ȳ, z̄)‖,

covF (z̄, ȳ) = inf
{

‖u‖
∣

∣ u ∈ D∗F (z̄, ȳ)(v), ‖v‖ = 1
}

,

(11)

where kerG := {v ∈ Rn| 0 ∈ G(v)}. Due to the coderivative representation (9) for strictly differentiable
single-valued mappings, the kernel coderivative criterion for metric regularity and linear openness in (11)
reduces to the surjectivity of ∇f(z̄) while the exact bound formulas in (11) get back to (8) for such mappings
as stated in Theorem 2.6 above.

After the given brief overview of available tools of variational analysis related to linear openness, we are
now ready to proceed with the implementation of the variational approach in the case of smooth continuous-
time control systems (1) as well for the corresponding ones with discrete time.

3. Exponential and Asymptotic Stabilization of Continuous-Time Control Systems

Consider first the continuous-time control system (1) and recall the notion of its local exponential sta-
bilization by using continuous stationary feedback laws. The main attention here is paid to the following
stabilization notion for the nonlinear control system (1).

Definition 3.1. The control system (1) is said to be locally exponentially stabilizable if there exist
a continuous stationary feedback law u(x) with u(0) = 0 and constants α > 0, M > 0, and δ > 0 such that
for any starting point x0 ∈ Rn with ‖x0‖ < δ there exists a unique solution x(t, x0) of the closed-loop control
system (2) satisfying x(0, x0) = x0 and the exponential decay condition

‖x(t, x0)‖ ≤ Me−at‖x0‖ whenever t ≥ 0.

To formulate the following main result of the paper, consider the partial Jacobian matrices

A := ∇xf(0, 0) and B := ∇uf(0, 0), (12)

for f ∈ C1, the (complex) spectrum Λ(A) of A, and the collection of eigenvalues with nonnegative real parts

Λ+(A) :=
{

λ ∈ Λ(A)
∣

∣ λ ∈ C with Re(λ) ≥ 0
}

(13)

of A in the case of the continuous-time control system (1).

Theorem 3.2. Let f : Rn ×Rm → Rn be of class C1 in a neighborhood of the equilibrium pair (0, 0), let the
matrices A and B be defined in (12), and let Λ+(A) ⊂ R. Assume in addition that:

(C) f is linearly open around (0, 0) with cov f(0, 0) > κ for some positive constant κ satisfying

κ > ηc := sup
λ∈Λ+(A)

λ, (14)

where sup ∅ := −∞. Then the control system (1) can be locally exponentially stabilized by means of contin-
uous stationary feedback laws. Furthermore, the linear openness of f around (0, 0) is necessary for such a
local exponential stabilization of (1) without any additional assumptions on the system data if continuously
differentiable stationary feedback laws are used instead of merely continuous ones.

Proof. The verifications of both sufficient and necessary parts of the theorem strongly involve the usage of
the complete linear openness characterization given in Theorem 2.6.

We start with proving the sufficiency statement of this theorem. Besides Theorem 2.6, it employs a
stability property for linear openness with respect to small Lipschitzian perturbations along with some
results well understood in controllability and stabilization theories for smooth control systems. To proceed
in this way, for any constant ν > 0 we consider the perturbed vector function

fν(x, u) := f(x, u) + gν(x, u) with gν(x, u) := −νx.

It is obvious that lip gν(0, 0) = ν. Taking into account the equivalence between the linear openness and
metric regularity properties discussed Section 2 with the exact bound relationship (6), we deduce from the
linear openness version of [25, Theorem 4.25] that

cov fν(0, 0) > κ− ν > 0 whenever ν ∈ [0, κ). (15)



6 ROHIT GUPTA, FARHAD JAFARI, ROBERT J. KIPKA, AND BORIS S. MORDUKHOVICH

Thus the derivative operator ∇fν |(0,0) : R
n × Rm → Rn is surjective for such ν due to the necessity of the

surjectivity (i.e., full rank of the Jacobian matrix ∇fν(0, 0)) condition for the linear openness property from
Theorem 2.6. Furthermore, condition (14) in assumption (C) implies that

cov fλ(0, 0) > κ− λ > 0 for all λ ∈ Λ+(A),

and hence the operator ∇fλ|(0,0) : R
n×Rm → Rn is surjective for all λ ∈ Λ+(A) by Theorem 2.6. The latter

condition can be equivalently written in the rank form

rank
[

A− λI | B
]

= n for all λ ∈ Λ+(A). (16)

Since (16) is the well-known Hautus test for asymptotic controllability of linear autonomous systems [19, 29],
we have that the linearized control system

ẋ = Ax+Bu, t ≥ 0, (17)

with A and B from (12), is asymptotically controllable. Employing now [19, Theorem 4] and its proof for the
case of continuous-time control systems allows us to conclude that the linearized system (17) is exponentially
stabilizable, which in turn yields as in [21, Chapter 6; see, e.g., Exercise 6 on p. 392] the local exponential
stabilization of the original nonlinear system (1) and hence verifies the sufficiency part of the theorem.

To justify next the remaining necessity statement of this theorem, we assume that the nonlinear control
system (1) is exponentially stabilizable by means of smooth stationary feedback laws. It is equivalent to
the exponential stabilization of the linearized system (17) (see, e.g., [31, Propositions 1 and 2]) with the
possibility to use even linear feedback laws therein. The latter implies, by the equivalence between (i) and
(iii) in [19, Theorem 4] for continuous-time control systems, that the linearized system (17) is asymptotically
controllable. Thus the Hautus test for asymptotic controllability of linear autonomous continuous-time
control systems tells us, due to the equivalence between (i) and (ii) in [19, Theorem 4], that

rank
[

A− λI | B
]

= n for all complex numbers λ with Re(λ) ≥ 0; (18)

see, e.g., [29, Exercise 5.5.7]. Plugging now λ = 0 into (18) gives us the simple rank condition

rank
[

A | B
]

= n, (19)

which ensures, by the sufficiency part of the linear openness characterization in Theorem 2.6, that f is
linearly open around (0, 0). This completes the proof of the theorem. �

Remark 3.3. We get from the characterization of linear openness presented in Theorem 2.6 that the vector
function f from Theorem 3.2 enjoys this property if and only if the rank condition (19) holds, which is surely
different from the classical Kalman rank condition for controllability of linear autonomous continuous-time
control systems; see, e.g., [21]. As follows from the above proof of Theorem 3.2, the additional assumptions
in (C) allow us to justify the validity of the Hautus test for asymptotic controllability (16) of the linearized
system (17). It is clear that the opposite implication does not hold, i.e., (19) does not imply (16). Indeed,
there are simple examples of linear control systems, which are not controllable while satisfying the underlying
rank condition (19); see, e.g., ẋ1 = x1, ẋ2 = u.

The following two consequences of Theorem 3.2 provide some specifications of this result for particular
subclasses of continuous-time control (1). They are similar to those observed by Brockett [7] in the case of
local asymptotic stabilization of (1).

Corollary 3.4. Suppose that in the framework of Theorem 3.2 we have

f(x, u) := g0(x) +

m
∑

i=1

gi(x)ui, (20)

where span{g0(·), . . . , gm(·)} = Rd. If d < n, then the control system (1) cannot be locally exponentially
stabilized by means of continuously differentiable stationary feedback laws.

Proof. Assume that (1) is locally exponentially stabilizable by a smooth stationary feedback law. Then
the necessity part of Theorem 3.2 yields the validity of the rank condition (19), i.e., the linear openness of
f around (0, 0) by Theorem 2.6. The conclusion of this corollary can be deduced similarly to Brockett’s
observation made in [7, the first Remark on p. 187]. �
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Corollary 3.5. Suppose that in the framework of Theorem 3.2 we have

f(x, u) :=
m
∑

i=1

gi(x)ui,

where the vectors {gi(0)}mi=1 are linearly independent. Then the control system (1) can be locally exponentially
stabilized by means of continuously differentiable stationary feedback laws if and only if m = n.

Proof. This follows from combining Theorem 3.2 and Corollary 3.4. �

Remark 3.6. It is crucial to assume in Corollary 3.5 that the vectors {gi(0)}mi=1 are linearly independent;
cf. [7] and [30] for the case of local asymptotic stabilization.

Let us now present several consequences of the sufficiency in Theorem 3.2.

Corollary 3.7. Suppose that in the setting of Theorem 3.2 we have Λ(A) ⊂ R and that the number ηc in
assumption (C) is replaced by the quantity

η̃c := max
i∈{1,...,n}

{

|λi|
∣

∣ λi ∈ Λ(A)
}

calculated along the entire spectrum Λ(A) of the matrix A instead of just its nonnegative real part (13). Then
the control system (1) can be locally exponentially stabilized by means of continuous stationary feedback laws.

Proof. This follows directly from Theorem 3.2 and the parameter choice in assumption (C) of the theorem
and its counterpart imposed in this corollary. On the other hand, the conclusion of this corollary while
regarding the (generally weaker) local asymptotic stabilization of (1) in the sense of Definition 1.1 can be
derived from [12, Theorem 10.14] married to the linear openness arguments employed above and using the
fact that the modified rank condition

rank
[

A− λI | B
]

= n for all λ ∈ Λ(A) (21)

ensures the controllability of the linearized system ẋ = Ax +Bu by the Hautus test for controllability from
[19, Theorem 1] applied to the linearized continuous-time control system (17). �

Remark 3.8. Note that control systems in which A is a symmetric matrix automatically satisfy the as-
sumption that Λ(A) ⊂ R. This surely implies that Λ+(A) ⊂ R in the assumptions of Theorem 3.2 and that
Λ1(A) ⊂ R in the corresponding result of Theorem 4.1 for the discrete-time control systems (26).

It is easy to see that condition (16) in Theorem 3.2 may be significantly better than the corresponding
one (21) in the proof of Corollary 3.7. Note also that in the case where Λ+(A) = ∅, assumption (C)
of Theorem 3.2 reduces simply to the requirement that the mapping f in (1) is linearly open around the
equilibrium point (0, 0), i.e., in this case necessary and sufficient conditions of Theorem 3.2 merge.

Remark 3.9. It is worth mentioning that the exact covering bound cov f(0, 0) used in Theorem 3.2 and
Corollary 3.7 is precisely calculated by formula (8) with z̄ = (0, 0) ∈ Rn × Rm therein. Thus all the
conditions of these results can be described entirely in terms of the initial data of the control system (1)
without involving any rank calculations.

Corollary 3.10. Assume that in the setting of Theorem 3.2 we have the condition Λ+(A) = {0}. Then the
linear openness of f around (0, 0) ensures that the control system (1) can be locally exponentially stabilized
by means of continuous stationary feedback laws.

Proof. It is obvious to see that condition (C) of Theorem 3.2 holds automatically under the assumptions of
this corollary, and thus the conclusion follows. �

Remark 3.11. Observe that the setting of Corollary 3.10 encompasses an important case where

f(x, u) :=
n
∑

i=1

gi(x)ui

with the vectors {gi(0)}ni=1 being linearly independent. It is worth noting that the latter setting covers the
situation of the example presented in [30] showing that the sufficiency of the openness property in Brockett’s
theorem fails. Indeed, in Sontag’s example all the assumptions of Corollary 3.10 are satisfied except the
linear openness of f around the origin.
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Corollary 3.12. Assume that in the framework of Theorem 3.2 we have

f(x, u) := Ax +Bu, (22)

with Λ+(A) ⊂ R and let g : Rn ×R
m → R

n be of class C1 around the origin with g(0, 0) = 0, ∇xg(0, 0) = 0,
and ∇ug(0, 0) = 0. Then the validity of condition (C) from Theorem 3.2 ensures that the (slightly) perturbed
nonlinear control system

ẋ = Ax+Bu+ g(x, u) (23)

can be locally exponentially stabilized by means of continuous stationary feedback laws.

Proof. This follows directly from Theorem 3.2 applied to the perturbed control system (23). �

Having in mind these observations and the corresponding developments presented in [12], we arrive at the
following two corollaries, which are consequences of Corollary 3.7 and its proof. For the first one, the reader
is referred to [12, Definition 3.2], where the notion of small-time local controllability of (1) is formulated.

Corollary 3.13. Let all the assumptions of Corollary 3.7 hold. Then the control system (1) is small-time
locally controllable at the equilibrium point (0, 0).

Proof. It is shown in [12, Theorem 3.8] that the controllability of the linearized control system (17) ensures
the small-time local controllability of (1). On the other hand, the proof of Corollary 3.7 verifies that
the assumptions imposed therein yield controllability of the linearized control (17) via the Hautus test for
controllability from [19, Theorem 1]. Thus we get the claimed result. �

The next result shows that the linear openness and spectrum assumptions of Corollary 3.7 for the case
of linear autonomous continuous-time control systems ensure actually global controllability in time T (as
defined, e.g., in [12]) of not only the system itself, but also of its bounded perturbations.

Corollary 3.14. Consider the linear version of (1) with f defined by (22). Assume that Λ(A) ⊂ R and
that f is linearly open around (0, 0) with cov f(0, 0) > κ for some constant κ > 0 satisfying

κ > η̃c := max
λ∈Λ(A)

λ.

Given in addition a continuous function g ∈ C1(Rn,Rn), suppose that it is bounded on Rn. Then for each
T > 0 the boundedly perturbed control system

ẋ = Ax+Bu+ g(x) (24)

is globally controllable in the fixed time T .

Proof. Similarly to the proof of Theorem 3.2 we conclude that the assumptions imposed in this corollary
ensure the validity of the Hautus test (21) for controllability of the linear control system under consideration.
To arrive at the claimed conclusion, it remains to apply the result of [12, Corollary 3.41]. �

Example 3.15. Consider the two-dimensional nonlinear control system from [12, Exercise 3.42]:

ẋ1 = x2 + g(x1, x2), ẋ2 = u ∈ R,

where g(x1, x2) := −x2 in (24) is unbounded. It is easy to check that this system is not globally controllable
while all but the boundedness assumption of g in Corollary 3.14 are satisfied.

Finally in this section, we revisit the Brockett’s classical setting [7] concerning local asymptotic stabilization
of (1) by means of smooth stationary feedback laws and derive the strengthening of his main (third) necessary
condition (with the replacement of openness by linear openness) from the first one in [7, Theorem 1] under
an additional assumption on the collection of eigenvalues with nonnegative real parts.

Theorem 3.16. Let f , A, and B be as in Theorem 3.2, and assume that

Λ+(A) =
{

λ ∈ Λ(A)
∣

∣ λ ∈ C with Re(λ) > 0
}

(25)

for the set Λ+(A) defined in (13). Then the local asymptotic stabilization of system (1) by means of contin-
uously differentiable stationary feedback laws implies that f is linearly open around the equilibrium (0, 0).
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Proof. Brockett’s first necessary condition in [7, Theorem 1(i)] tells us that the local asymptotic stabilization
of the control system (1) by means of smooth feedback laws implies that the linearized system (17) should
have no uncontrollable modes associated with eigenvalues whose real part is positive. On the other hand,
condition (25) means that that there are no purely imaginary eigenvalues in the collections of eigenvalues
with nonnegative real parts Λ+(A) of the matrix A. Taking into account the definition of Λ+(A) in (13) and
combining it with the imposed assumption (25) ensure that the Hautus test (16) for asymptotic controllability
of (17) holds. This readily yields, as in the proof of the necessity in Theorem 3.2, that the simple rank
condition (19) is satisfied. The latter amounts to the surjectivity of the derivative operator ∇f |(0,0) : R

n ×
Rm → Rn. Employing the sufficiency part of Theorem 2.6 verifies the linear openness of f around (0, 0) and
thus completes the proof of the theorem. �

Remark 3.17. Note that the aforementioned first necessary condition in [7, Theorem 1] is different from
the Hautus test for asymptotic controllability as, e.g., for the system

ẋ1 = u3
1, ẋ2 = u3

2.

Assumption (25) imposed in Theorem 3.16 merges these two conditions.

Similarly to Corollary 3.4 of Theorem 3.2 in the case of local exponential stabilization, we now arrive at
the corresponding consequence of Theorem 3.16 for the local asymptotic stabilization of (1), where the form
of f in (1) is given by (20).

Corollary 3.18. Let the form of f in (1) be given by (20), and let A and B be as in Theorem 3.2. Assume
in addition that the collection of eigenvalues with nonnegative real parts Λ+(A) of A satisfies condition (25).
If d < n, then the control system (1) cannot be locally asymptotically stabilized by means of continuously
differentiable stationary feedback laws.

Proof. Suppose on the contrary that the system under consideration can be locally asymptotically stabilized
by means of continuously differentiable feedback laws. Then Theorem 3.16 ensures that f is linearly open
around (0, 0) and hence it enjoys the openness property (3) at this point. This contradicts the necessary
condition for local asymptotical stabilization by smooth stationary feedback laws given by Brockett’s theorem
[7, Theorem 1] and the first remark to it in [7] while thus justifying the conclusion of this corollary. �

4. Asymptotic Stabilization of Discrete-Time Control Systems

In this section we implement the above techniques of variational analysis, together with known facts of
control theory, for the case of nonlinear discrete-time control systems

xk+1 = f(xk, uk), k = 0, 1, . . . , (26)

where the index k signifies discrete time. Our achievement here are more modest in comparison with
the case of continuous-time control system in Section 3. Namely, we establish only sufficient conditions
(involving linear openness) for local asymptotic stabilization of (26) by means of continuous stationary
feedback laws. The possibility of deriving sufficient conditions for local exponential stabilization of (26)
as well as establishing advanced necessary conditions for both asymptotic and exponential versions of local
stabilization by continuous and smooth stationary feedback laws constitutes important open questions.

To proceed, recall that the notion of local asymptotic stabilization of (26) by means of continuous stationary
feedback laws is formulated in a similar way to Definition 1.1 with the replacement of the differential closed-
loop system (2) by its discrete counterpart

xk+1 = f
(

xk, u(xk)
)

, k = 0, 1, . . . .

An interesting necessary condition in this direction, by using smooth stationary feedback laws, was obtained
in [17] in terms of the openness property (3) for the mapping (x, u) 7→ x− f(x, u).

The next theorem shows that the linear openness property of the mapping f , combined with appropriate
relationships between its exact bound and the collection of eigenvalues which lie on or outside the unit circle
of the matrix A in the case of discrete-time control systems (26), ensures the local asymptotic stabilization of
(26) by continuous stationary feedback laws. To formulate the result, define the partial derivative matrices
A and B as in (12) and consider the collection of eigenvalues which lie on or outside the unit circle of the
(complex) spectrum Λ(A) of A in the case of (26) given by

Λ1(A) :=
{

λ ∈ Λ(A)
∣

∣ λ ∈ C with |λ| ≥ 1
}

. (27)
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Theorem 4.1. Let f : Rn ×Rm → Rn be of class C1 in a neighborhood of the equilibrium pair (0, 0), let the
matrices A and B be defined in (12), and let Λ1(A) ⊂ R. Assume in addition that:

(D) f is linearly open around (0, 0) with cov f(0, 0) > κ for some positive constant κ satisfying

κ > ηd := sup
λ∈Λ1(A)

λ, (28)

where the latter inequality is automatic if Λ1(A) = ∅. Then the discrete-time nonlinear control system (26)
can be locally asymptotically stabilized by means of continuous stationary feedback laws.

Proof. We basically follow here the lines in the proof of Theorem 3.2 for the continuous-time control system
(1) by using the same approach of variational analysis and the corresponding results of controllability and
stabilization theories known for discrete-time control systems. For any ν > 0 and the discrete index k =
0, 1, . . . define the parametric family of vector functions

fν(xk, uk) := f(xk, uk) + gν(xk, uk) with gν(xk, uk) := −νxk.

Taking into account that lip gν(0, 0) = ν and using the version of [25, Theorem 4.25] for the stability of
linear openness under Lipschitzian perturbations, we get the same lower estimate (15) for the exact covering
bound of f around (0, 0) as in the proof of Theorem 3.2. Then remembering the choice of constants in
condition (D) imposed in this theorem, calculating ηd as in (28) and employing the full rank condition for
the Jacobian matrix ∇fν(0, 0) from the necessity part of Theorem 2.6, gives us the inequality

cov fλ(0, 0) > κ− λ > 0 for all λ ∈ Λ1(A)

with Λ1(A) defined in (27). This yields

rank
[

A− λI | B
]

= n for all λ ∈ Λ1(A),

which is the Hautus test for asymptotic controllability of the linearized discrete-time control system

xk+1 = Axk +Buk, k = 0, 1, . . . ,

with A and B taken from (12). Employing finally Hautus’ stabilization theorem (see [19, Theorem 4] for
discrete-time control systems ensures the existence of a locally asymptotically stabilizing feedback law for
(26) and thus completes the proof of the result claimed in this theorem. �

Various consequences of Theorem 4.1 can be derived similarly to those of Theorem 3.2 in Section 3 for
continuous-time control systems. Let us present just a few of them.

Corollary 4.2. Assume that in the framework of Theorem 4.1 the function f is given by (22) with Λ1(A) ⊂
R, and let g : Rn × Rm → Rn be of class C1 around the origin with g(0, 0) = 0, ∇xg(0, 0) = 0, and
∇ug(0, 0) = 0. Then the validity of condition (D) from Theorem 4.1 ensures that the (slightly) perturbed
nonlinear discrete-time control system

xk+1 = Axk +Buk + g(xk, uk), k = 0, 1, . . . ,

can be locally exponentially stabilized by means of continuous stationary feedback laws.

Proof. Easily follows from Theorem 4.1. �

Corollary 4.3. Suppose that in the setting of Theorem 4.1 we have Λ(A) ⊂ R and that condition (28) in
assumption (D) is replaced by the following:

κ > η̃d := max
i∈{1,...,n}

{

|λi|
∣

∣ λi ∈ Λ(A)
}

.

Then the nonlinear discrete-time control system (26) can be locally asymptotically stabilized by means of
continuous stationary feedback laws.

Proof. It is a clear consequence of Theorem 4.1; cf. also the arguments in the proof of Corollary 3.7 for
continuous-time control systems (1) with the reference to [12]. �
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The last corollary of Theorem 4.1 presented here addresses discrete-time control systems (26) for which the
whole spectrum Λ(A) of the matrix A in (12) consists only of zeros. This setting encompasses, in particular,
an important case of discrete-time control systems where

f(xk, uk) :=

n
∑

i=1

gi(xk)uik

in (26) with the vectors {gi(0)}ni=1 being linearly independent.

Corollary 4.4. Assume that in the setting of Theorem 4.1 we have Λ(A) = {0}. Then the linear open-
ness of the vector function f around (0, 0) ensures that the discrete-time control system (26) can be locally
asymptotically stabilized by means of continuous stationary feedback laws.

Proof. This clearly follows from Corollary 4.3. �

5. Examples

In this section we present two examples illustrating the applications of the main result in Theorem 3.2.
The first example deals with a two-dimensional control system while the second example deals with a more
complicated three-dimensional one.

Example 5.1. Consider the following continuous-time control system:

ẋ1 = x3
1 + x2, (29)

ẋ2 = u. (30)

It is easy to verify that the pair (0, 0) is an equilibrium for (29)–(30). Calculating the matrices A and B

from (12) for this system at (0, 0) gives us

A =

[

0 1
0 0

]

, B =

[

0
1

]

.

By checking the rank condition (19) or directly by Definition 2.2 we confirm that f in (29)–(30) is linearly
open around (0, 0). Furthermore, we can see that all the assumptions of Corollary 3.10 are satisfied, and
hence system (29)–(30) can be locally asymptotically stabilized by means of continuous stationary feedback
laws. In fact, it is not hard to check that the feedback control function u(x) := −x1−x2 gives us one possible
continuous stationary feedback law that locally asymptotically stabilizes system (29)–(30).

Example 5.2. Consider next the following continuous-time control system:

ẋ1 = x3
1 + x3, (31)

ẋ2 = x1 + x3, (32)

ẋ3 = 0.1x1 + x2
2 + u. (33)

It is easy to verify that (0, 0) is an equilibrium pair for (31)–(33). Thus we calculate by (12) the matrices

A =





0 0 1
1 0 1
0.1 0 0



 , B =





0
0
1



 .

The linear openness of f in (31)–(33) can be deduced from the rank condition (19), since

rank
[

A | B
]

= 3.

Furthermore, we calculate that cov f(0, 0) = 0.6144 and ηc = 0.3162, and so assumption (C) of Theorem 3.2
is satisfied. Hence Theorem 3.2 tells us that system (31)–(33) can be locally asymptotically stabilized by
means of continuous stationary feedback laws. In fact, the feedback control function u(x) := −x1 − x2 − x3

is one of the possible feedback laws that locally asymptotically stabilizes the control system (31)–(33).
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6. Concluding Remarks

The main trust of this paper is in suggesting a new approach of variational analysis to study feedback sta-
bilization of nonlinear control systems. The emphasis of this approach is on applying the widely understood
and comprehensively characterized well-posedness properties of single-valued and set-valued mappings to the
issues under consideration instead of conventional topological methods related to degree theory, etc. Imple-
menting these variational ideas in the context of continuous-time nonlinear control systems (1) with smooth
dynamics, we replace the topological openness property in the seminal Brockett’s theorem by the variational
linear openness. In this way, we are able to establish the sufficiency of the linear openness, together with a
certain condition on its moduli, for the exponential stabilization of (1) by means of continuous stationary
feedback laws, while Brockett’s theorem and its extensions assert the necessity of the openness property for
asymptotic stabilization. We also derive new conditions ensuring the necessity of linear openness for both
local exponential and asymptotic stabilization of (1) by means of stationary continuous as well as smooth
feedback laws. Some (but by far not all) counterparts of the obtained results are established by this approach
for asymptotic feedback stabilization of nonlinear discrete-time control systems (26).

We believe that the suggested variational approach has strong potential to the study of feedback stabiliza-
tion and related issues for a much broader class of systems and topics in comparison with those considered
in this paper. A brief discussion on the available machinery of variational analysis and generalized differ-
ential given in Section 2 sheds some light on appropriate tools and results. Among such topics we mention
controllability and the minimum time function in the framework of [10], discontinuous feedback laws in the
vein of [4, 9, 24], extensions to the case of control systems governed by differential inclusions in both finite
and infinite dimensions [1, 2], feedback stabilization of partial differential control systems [3, 12, 24], etc.
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[2] S. Adly, A. Hantoute and M. Théra, Nonsmooth Lyapunov pairs for differential inclusions governed by operators with
nonempty interior domain, Math. Program. 157 (2016), 349–374.

[3] F. Alabau-Boussouira, J.-M. Coron and G. Olive, Internal controllability of first order quasi-linear hyperbolic systems with
a reduced number of controls, SIAM J. Control Optim. 55 (2017), 300–323.

[4] F. Ancona and A. Bressan, Patchy feedbacks for stabilization and optimal control: general theory and robustness properties,
in Geometric Control and Nonsmooth Analysis (F. Ancona et al., eds.), pp. 28-64, World Sci. Publ., Hackensack, NJ, 2008.

[5] Z. Artstein, Stabilization with relaxed controls, Nonlinear Anal. 7 (1983), 1163–1173.
[6] J. M. Borwein and Q. J. Zhu, Techniques of Variational Analysis, Springer, New York, 2005.
[7] R. W. Brockett, Asymptotic stability and feedback stabilization, In Differential Geometric Control Theory (R. W. Brockett

et al., eds.), pp. 181–191, Birkhäuser, Boston, MA, 1983.
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