Model-Free Adaptive Switching Control of Time-Varying Plants

Giorgio Battistelli, João P. Hespanha, Fellow, IEEE, Edoardo Mosca, Life Fellow, IEEE, and Pietro Tesi

Abstract—This paper addresses the problem of controlling an uncertain time-varying plant by means of a finite family of candidate controllers supervised by an appropriate switching logic. It is assumed that, at every time, the plant consists of an uncertain single-input/single output linear system. It is shown that stability of the switched closed-loop system can be ensured provided that 1) at every time there is at least one candidate controller capable of potentially stabilizing the current time-invariant “frozen” plant model, and 2) the plant changes are infrequent or satisfy a slow drift condition.

Index Terms—Adaptive control, control of uncertain plants, switching control, time-varying systems.

I. INTRODUCTION

O

NE of the approaches for controlling uncertain or time-varying plants relies on the introduction of adaptation in the feedback loop. In recent years, adaptive switching control has emerged as an alternative to conventional continuous adaptation. In switching control, a so-called supervisor selects a specific feedback controller among a family of admissible ones, based on the measured data. The latter are processed so as to enable the supervisor to determine whether or not the current controller is adequate, and, in the negative, to replace it by a different candidate controller. For an early overview of the topic, the reader is referred to [1].

To date, most of the contributions on switching control have been basically of a two-fold nature. On one side the major emphasis in [2]–[9] has been on robust adaptive stabilization of time-invariant systems. Within these contributions, the Unfalsified Control approach developed by M.G. Safonov and co-workers [5], [6] provides guarantees of stability for plants subject to large parametric uncertainties, unmodeled dynamics and disturbances. Unfortunately, as will be discussed in detail later, this methodology is tailored to control time-invariant systems and has no direct generalization to time-varying systems.

On the other side the main focus in [1], [10]–[15], has been on switching control schemes capable, at least in principle, of dealing with plant variations. However, these techniques can become ineffective if the available knowledge about the plant is limited so that the family of candidate plant models does not tightly approximate the process dynamics over the whole uncertainty set.

The main goal of this paper is to consider a novel supervisory control scheme by which previous theoretical results on Unfalsified Control can be extended to time-varying plants. The proposed scheme embeds a family of pre-designed candidate controllers and a supervisory unit that selects the controller minimizing a certain cost function. Unlike previous works on Unfalsified Control [4]–[6], [8], the proposed scheme follows a fading memory paradigm in that the cost functions used for controller switching are evaluated over a suitable time-window. The key feature of the scheme is the use of a dynamic window, viz. a window whose length can vary with time. Specifically, we propose a resetting logic by which the length of the time-window is adjusted online, according to the rule that past records of the cost functions are discarded or retained depending on whether they contain information relevant to stability. As will be seen, this supervisory scheme not only retains the desirable robustness features of Unfalsified Control, but, being based on a fading memory paradigm, can also provide stability guarantees for plants whose parameters are either slowly time-varying or subject to infrequent jumps.

A final point is worth mentioning. Various schemes for switching adaptive control have been proposed in the literature, which differ on how they choose when to switch controllers, and how to select a new controller. A first class of algorithms, usually referred to as pre-routed [3], [11], [16], essentially try to determine whether the online controller meets a desired level of performance that is consistent with a stable closed-loop. In the negative, the current controller is replaced in the feedback loop by a different one. In this context, a recent important contribution is given by [17], where suitable logics are derived which can ensure stability even for time-varying plants. The supervisory scheme proposed hereafter belongs to a different class of algorithms in that controller switching occurs whenever the inferred virtual performance of an offline controller turns out to be better than the one achieved by the active controller. This obviates the need for a pre-routed search and permits the logic to pick those controllers with the potential of yielding the highest performance. Specifically, we use a hysteresis logic which switches to a new controller when a “significant” difference between performance levels is detected. This type of supervisor does not directly enforce a dwell-time [10], [17],
of C is taken as a linear time-invariant (LTI) controller with transfer function $S_i(d)/R_i(d)$. Accordingly, the plant input u is given by

$$R_{n_f}(d) u(t) = S_{n_f}(d) \{r(t) - y(t)\}$$

so that the switching controller reduces to a single controller with switched parameters. Given a finite family \mathcal{C} of candidate controllers, $\mathcal{C}(P_*)$ will denote the subset of \mathcal{C} composed by all controllers which (internally) stabilize P_*.

Definition I: The switched system (1)–(2) is said to be **stable** if, for all initial conditions, any bounded exogenous input $\{r, n_u, n_y\}$ produces a bounded output $\{u, y\}$. The problem is said to be feasible if $\mathcal{C}(P_*) \neq \emptyset, \forall P_* \in \mathcal{C}$.

B. Supervisory Control Architecture

The supervisor processes the recorded plant I/O data to generate the sequence σ that specifies the switching controller C_σ. In particular, to decide when and how to change the controller, the supervisor embodies a family $\Pi := \{\Pi_i; i \in \mathcal{N}\}$ of test functionals which quantify the suitability of each candidate controller to control P. Given Π, the hysteresis switching logic considered hereafter is as follows: At each step, one computes the least index $i_\ast(t)$ in \mathcal{N} such that $\Pi_i(t) \leq \Pi_{i_\ast}(t), \forall i \in \mathcal{N}$. Then, the switching index sequence σ is given by

$$\sigma(t + 1) = I(\sigma(t), \Pi(t)), \quad \sigma(0) = i_\ast \in \mathcal{N}$$

$$I(i, \Pi_i(t)) = \begin{cases} i, & \text{if } \Pi_i(t) < \Pi_{i_\ast}(t) + h; \\ i_{i_\ast}(t), & \text{otherwise} \end{cases}$$

where $h > 0$ is the hysteresis constant.

Many adaptive control schemes based on hysteresis switching have been considered for time-invariant plants, and shown to provide robustness against large uncertainties, unmodeled dynamics and disturbances. However, no similar results are available for plants subject to time variations.

To handle time variations in the plant dynamics, one needs to select Π with a finite or fading memory. Unfortunately, this involves the potential risk that the switched system become unstable due to persistent switching. To the best of the authors’ knowledge, efforts to ensure stability without relying on a finite switching stopping time are restricted to [1], [10]–[15]. However, these techniques can become ineffective if the plant models do not tightly approximate the admissible plants. To prevent the type of instability induced by persistent switching and to provide robustness of the control scheme several techniques have been proposed [2], [5]–[8], [19]. These techniques combine (3) with test functionals of the form

$$\Pi_i(t) := |\pi_i(t)|_\infty$$

where $\pi := \{\pi_i; i \in \mathcal{N}\}$ is an underlying family of test functionals. This type of supervisory schemes, including unfalsified control, provides a simple means for preventing the risk of instability caused by persistent switching. Indeed, the maximum norm in (4) ensures that all the test functionals admit a limit as t tends to infinity. Then, by the presence of the hysteresis in the logic (3), the switching stops whenever at least one of the π_i’s is bounded ([20, Lemma 1]). However, such a maximum norm may yield unbounded Π_i’s in a time-varying plant case.
This paper aims at overcoming such limitations by considering novel hysteresis switching algorithms in which the test functionals have an adaptive memory. In particular, the scheme here proposed embeds in (3) a resetting logic, viz. a mechanism according to which the supervisor resets all the Π_k’s to zero whenever suitable events (resetting conditions) occur. Specifically, we consider test functionals of the form

$$
\Pi_k(t) := \| \pi_k(t) \|_{\infty}, \quad t \in T_k := \{ t_k, \ldots, t_{k+1} - 1 \}
$$

where $\{t_k\}_{k \in \mathbb{Z}}$ denotes a sequence of resetting instants to be specified. For clarity, we shall denote by HSL-∞ the hysteresis switching logic defined by (3) and (4), and by hysteresis switching logic with resetting (HSL-R) the new switching logic defined by (3) and (5).

The remainder of the paper is as follows. In Section III, we recall basic concepts underlying unfalsified control, and derive certain key properties of HSL-R. The adaptive mechanism used by the supervisor to generate the resetting instants is analyzed in Sections IV and V. It is shown that, for time-invariant systems, the proposed supervisory scheme can ensure stability without relying on a finite switching stopping time, thus extending the theoretical properties of unfalsified control to logics other than HSL-∞. In Section VI, we show that without any further modification, the same supervisory scheme can also ensure stability in the presence of time variations of the plant parameters. Section VII ends the paper with some concluding remarks.

III. Model-Free Adaptive Control

In unfalsified control, the feedback adaptation task is replaced by the so-called controller falsification. The basic concept of this approach is as follows. At each time and for each $i \in \mathbb{N}$ one computes in real-time the solution v_i to the difference equation (cf. Remark 1)

$$
S_i(d) \{ v_i(t) - y(t) \} = R_i(d) u(t).
$$

As shown in Fig. 2, v_i equals the virtual reference sequence [4] which would reproduce the recorded I/O sequence (u, y) should the plant P be fed-back by the controller C_i, irrespective of the way the plant input u is generated. This makes it possible to evaluate what would have been achieved by the feedback connection of the controller C_i with the process (denoted by (P/C_i)) if the reference have been equal to v_i. In this respect, consider the time-varying feedback system (P/C_i) mapping the “input” $w_i := [v_i \ n_u \ n_y]$, to the “output” $\zeta_i := [u \ [v_i - y_i]]$. Accordingly, a possible related performance measure can be constructed as follows:

$$
\pi_i(t) := \frac{\| \zeta_i(t) \|_\infty}{\mu + \| v_i(t) \|_\infty}, \quad t \in \mathbb{Z}_+
$$

where μ is a positive constant. In case of noise-free LTI plant, π_i provides an estimate from below of the λ-weighted H_∞ mixed-sensitivity norm [21] of the loop (P/C_i) with virtual reference input v_i and output ζ_i containing the control input u and the virtual tracking error $v_i - y_i$, which we would like to minimize. The test functional (7) can be viewed as a variant of the (unweighted) H_∞ mixed-sensitivity performance criterion often considered in unfalsified control [5]. The performance measure given by (7) is obtained with no plant model identification effort, and this motivates the adoption of the term “model-free.”

Remark 1: Online computation of (6) requires that all the candidate controllers be stably causally invertible (SCI), but suitable arrangements which remove this design constraint have been reported in the literature [22].

Assumptions

We now introduce the assumptions needed to provide stability of the switched system. For ease of reference, some shorthand notations are defined.

Definition 2: A polynomial $p(d)$ is said to be a λ-Hurwitz polynomial (in the indeterminate d) if it has no root in the closed disc of radius λ^{-1} of the complex plane.

Definition 3: The feedback loop (P_i/C_i) composed by the time-invariant plant P_i and the controller C_i is said to be λ-stable if its characteristic polynomial $\chi_{i}(d) := A_i(d) R_i(d) + H_i(d) S_i(d)$ is a λ-Hurwitz polynomial.

We make the following assumptions.

A1) The plant uncertainty set \mathcal{F} is compact, in the sense that there exists an integer n^* (possibly unknown) such that for every $P_r \in \mathcal{F}$ the polynomials A_r and B_r have order smaller than n^* and their coefficients belong to a compact subset of \mathbb{R}^{n^*+1}.

A2) For any $P_r \in \mathcal{F}$, there exists a candidate controller $C_r \in \mathcal{C}$ such that (P_r/C_r) is λ-stable, λ as in (7).

A3) For each candidate controller $C_r \in \mathcal{C}$, S_r is a λ-Hurwitz polynomial, λ as in (7).

A4) The exogenous inputs r, n_u, and n_y are bounded.

Remark 2: A2 implies feasibility, viz. $\forall (P_r) \neq 0, \forall P_r \in \mathcal{F}$. Specifically, it guarantees that for any $P_r \in \mathcal{F}$ there exists a controller $C_r \in \mathcal{C}$ such that the closed-loop eigenvalues of (P_r/C_r) are strictly less than λ. A_2 is related to the choice of the cost function π_i in (7). As will be seen in next Lemma 3, in fact, λ-stability of a feedback loop (P_r/C_r) implies boundedness of the corresponding cost function π_i. From a practical point of view, however, A_2 is no stronger than feasibility in the sense that under feasibility we can always satisfy A_2 by selecting λ close enough to one in (7). A similar remark applies to A_3. In fact, one can always increase λ in (7) so that A_3 is no stronger than requiring all controllers to be SCI (see Remark 1 above).

A. Key Lemmas

In this subsection, we introduce certain key properties upon which the stability analysis depends. To this end, some preliminary observations are needed.

To avoid needless complications, we assume that the switching controller (2) as well as (6) are both initialized at zero time from zero initial conditions: Let

![Fig. 2. The ith virtual candidate loop.](image-url)

of the (unweighted) H_∞ mixed-sensitivity performance criterion often considered in unfalsified control [5]. The performance measure given by (7) is obtained with no plant model identification effort, and this motivates the adoption of the term “model-free.”
The control input is then given by

\[u(t) = \sum_{k=0}^{m} s_{tk} (r(t-k) - y(t-k)) - \sum_{k=1}^{m} r_{tk} u(t-k) \]

where \(s_{tk} \) and \(r_{tk} \) denote the coefficients of the polynomials \(S_i(d) \) and \(R_i(d) \), respectively. An analogous initialization is made for (6). Regarding (1), consider that in the difference equation

\[y(t) = n_y(t) + \sum_{k=1}^{n^*} b_{yk} (u(t) - y(t-k)) \]

where \(b_{yk} \) and \(a_{yk} \) denote the coefficients of the polynomials \(B_i(d) \) and \(A_i(d) \), the values taken on by \(u(k) \) and \(y(k) \) for \(k = -1, \ldots, -n^* \) need not be consistent with those specified in (8). In fact, the plant is supposed to be controlled with the architecture of Fig. 1 only from time \(t = 0 \), whereas no assumption is made on how the plant inputs were generated for \(t < 0 \). For notational simplicity we set \(u(k) = 0 \) and \(y(k) = 0 \) for negative times and denote by \(\pi(t) \) the vector composed by the plant initial conditions. This entails no loss of generality in that any nonzero plant initial state can be thought of as generated by a suitable plant input/output disturbance sequence.

Let now

\[\Pi_k := \min_{\alpha \in \Delta} \left\{ \max_{t \in T_k} \pi_i(t) \right\} + h, \quad k \in \mathbb{Z}_+ \]

The following lemmas are the main results of this section and fundamental for the developments of the paper.

Lemma 1: Consider the HSL-R. Let \(\mathfrak{N}_k \) denote the number of switchings over the interval \(T_k \), and \([\alpha] \) denote the smallest positive integer greater than or equal to \(\mathfrak{N}_k \). Then, \(\mathfrak{N}_k \leq \max_{t \in T_k} \pi_i(t) + 2h \), \(k \in \mathbb{Z}_+ \).

Proof: See the Appendix.

Before concluding this section it is important to observe that in Lemma 2 the time variations of the plant parameters can be arbitrary and, at this time, we do not yet need assumption A2.

IV. Stability Under Admissible Resetting

As seen from Lemma 2, the bound in (12) depends on both the sequences \(\{\pi_k\}_{k \in \mathbb{Z}_+} \) and \(\{\xi_k\}_{k \in \mathbb{Z}_+} \). In unfalsified control based on HSL-\(\alpha \), the term \(\|\zeta(t) - \xi(t)\|_\lambda \) is absent since there is only one reset time, \(t_0 := 0 \) at startup, and \(t_0 = \mathbb{Z}_+ \). In this case, stability depends only on boundedness of \(\Pi_k \) and, hence, it can be guaranteed simply by ensuring boundedness of at least one of the test functionals (this nice property is precisely the motivation which led [5] to introduce the notion of cost detectability of the test functionals). Under resetting, the analysis becomes more complicated. Indeed, even if the plant is time-invariant but there are infinitely many resets, \(t - t_k \) does not grow unbounded as \(t \to \infty \), and, hence, the term \(\|\zeta(t) - \xi(t)\|_\lambda \) need not vanish. This is consistent with the intuition that resetting destroys the monotonicity of the test functionals and therefore that boundedness of \(\{\Pi_k\}_{k \in \mathbb{Z}_+} \) alone may not prevent instability due to persistent switching.

The remainder of this section is devoted to show that, nonetheless, adaptive resetting mechanisms do exist which preserve stability of the switched system.

A. Admissible Resetting Times

The notation for this subsection is as in Section III-C. Consider the switched system \(\Sigma_\sigma \) and define the following performance measure for the closed-loop:

\[\pi_\sigma(t) := \frac{\|\zeta(t)\|_\lambda}{\mu + \|y(t)\|_\lambda}, \quad t \in \mathbb{Z}_+ \]

Consider now the following definition.

Definition 4: (Admissible Resetting Times). A sequence of reset times \(\{t_k\}_{k \in \mathbb{Z}_+} \) is called admissible if, for every \(k \in \mathbb{Z}_+ \), we have that

\[\pi_\sigma(t_k) \leq \pi_\sigma(t_k) + \epsilon, \quad \epsilon > 0 \]

In essence, (14) only allows the \(k \)th reset to occur at the time \(t_k \) if (14) holds.

To understand the rationale for (14), observe that \(\pi_\sigma \) acts as an estimate of the actual reference-to-data induced gain. In particular, to obtain stability it is required that \(\pi_\sigma \) remains bounded. The test functional \(\pi_\sigma \), related to the switched-on controller, however, does only provide an estimate of the virtual reference-to-data induced gain. Depending on the values taken on by the virtual reference \(y_{\sigma} \), \(\pi_\sigma \) can be greater or smaller than \(\pi_\sigma \). The inequality (14) imposes that a reset can occur only if \(\pi_\sigma \) is not much larger than \(\pi_\sigma \). As shown hereafter, for time-invariant plants, the selection of \(\sigma \) through the switching logic makes sure that \(\pi_\sigma \) remains bounded. Condition (14) therefore ensures that at the times of resetting \(\pi_\sigma \) satisfies a boundedness constraint. We will also see that this is sufficient for closed-loop stability to hold.
Consider an admissible resetting sequence. Combining (13) with (14) and (10) we obtain \(\|z_k\|_\lambda \leq (11^{k-1} + \epsilon)(\mu + |r^{k-1}|_\lambda) \). Notice that the above inequality is well-defined for \(k = 0 \) since \(\|z^{-1}\|_\lambda = 0 \), which leads to \(11^{-1} = 0 \). Further, \(|r^{k-1}|_\lambda \| x^{k-1} + 1 \| \leq |r^{k-1}|_\lambda \leq \|w^{k-1}|_\lambda \). Then, under an admissible resetting sequence, Lemma 2 implies that

\[
\|z_k\|_\lambda \leq g(11^{k})|\xi_F|_\lambda \lambda^{k} + (11^{k-1} + \epsilon + 1)(\mu + |w^{k-1}|_\lambda), \quad \forall t \in T_k.
\]

From (15) one sees that a sufficient condition for stability is that \(\{11^{k}\}_{k \in \mathbb{Z}_+} \) is bounded. This is formalized in next theorem.

Theorem 1: Consider the same assumptions as in Lemma 2 and further assume that \(11^{k} \leq \Pi^* \), \(\forall k \in \mathbb{Z}_+ \), for some finite constant \(\Pi^* \). Then, the HSL-R switched system \(\Sigma_\sigma \) is stable for any admissible resetting sequence \(\{t_k\}_{k \in \mathbb{Z}_+} \) and

\[
|z_k|_\lambda \leq h(\Pi^*)|\xi_F|_\lambda \lambda^{k} + \Pi^* (\mu + |w^k|_\lambda), \quad \forall t \in \mathbb{Z}_+.
\]

where \(h(\Pi^*) := g(\Pi^*) (\Pi^* + \epsilon + 1) \).

In essence, Theorem 1 indicates that, under the admissibility condition (14), stability of the switched system depends only on boundedness of \(\{11^{k}\}_{k \in \mathbb{Z}_+} \). This is precisely the point where assumption A2 becomes important. In particular, as discussed in next subsection, for time-invariant plants, A2 is sufficient to prove that, like HSL-\(\infty \), HSL-R leads to stability, as long as the resetting sequence is admissible in the sense of Definition 4.

B. Stability in the Time-Invariant Case

To prove boundedness of \(\{11^{k}\}_{k \in \mathbb{Z}_+} \) for time-invariant plants, we use the following result.

Lemma 3: Let the HSL-R switched system \(\Sigma_\sigma \) be based on the test functionals (7). Let A1–A4 hold and further assume that on a given interval \(\{\tau, \tau + 1, \ldots, T\} \) the coefficients of the polynomials \(A_t \) and \(H_t \) in (1) remain constant. Then, there exist positive constants \(g_0, g_1, g_2 \) and \(g_3 \) such that, for any \(\Pi_\sigma \in \mathcal{P} \):

\[
\pi_\sigma(t) \leq g_0 + g_1 |\xi_F|_\lambda \lambda^{(t-k)} + g_2 |w^t|_\lambda + g_3 |x^{t-k}|_\lambda \lambda^{(t-k)} + g_4 \|
\]

\[
\forall t \in \{\tau, \tau + 1, \ldots, T\}.
\]

holds true for some \(s \in \mathcal{P} \).

Proof: See the Appendix.

From Lemma 3 one sees that when the plant is a time-invariant system \((\tau = 0 \) and \(T = \infty) \), A2 is sufficient to ensure boundedness of \(\{11^{k}\}_{k \in \mathbb{Z}_+} \). Indeed, by letting \(\mathcal{K}_0 := g_0, \mathcal{K}_1 := g_1 \) and \(\mathcal{K}_2 := (1 - \lambda^2)^{-1/2} g_2 \) and recalling that \(|z^{-1}|_\lambda = 0 \), we have from (17) that

\[
\pi_\sigma(t) + h \leq \mathcal{K}_0 + \mathcal{K}_1 |\xi_F|_\lambda + \mathcal{K}_2 |w|_\infty + h := \Pi^*_T, \quad \forall t \in \mathbb{Z}_+.
\]

holds true for some \(\mathcal{P} \). Hence, from definition of \(\Pi^*_T \), we obtain that \(11^{k} \leq \Pi^*_T, \forall k \in \mathbb{Z}_+ \). From boundedness of \(\{11^{k}\}_{k \in \mathbb{Z}_+} \), next result follows directly from Theorem 1.

Theorem 2: Let the HSL-R switched system \(\Sigma_\sigma \) be based on the test functionals (7). Then, if the plant is time-invariant, under A1–A3, \(\Sigma_\sigma \) is stable for any admissible resetting sequence \(\{t_k\}_{k \in \mathbb{Z}_+} \).

Remark 3: For time-invariant systems, stability of switched systems based on unfalsified control can be proven using analysis tools quite simple compared to the ones given here (cf. [5]–[7]). On the other hand, the present analysis tools do not rely on switching stopping, a property that is crucial for the results in [5], [6] and [7].

V. FINITE-TIME RESETTING

As described in the previous subsection, for time-invariant plants, HSL-R allows one to prove stability results similar to those available for HSL-\(\infty \). In this subsection, we show that the reset admissibility condition (14) is always attained in finite time, which ensures that past data records are periodically discarded whenever the plant dynamics remain constant over a large enough horizon, and it will become crucial in the presence of plant variations.

Taking (14) and Theorem 1 into account, consider the following resetting rule (\(\epsilon_0 := 0 \)):

\[
t_{k+1} := 1 + \min \{ t : t \geq t_k ; \pi_\sigma(t) \leq \pi_\sigma(t+\epsilon_0); (t) + \epsilon \}, \quad k \in \mathbb{Z}_+
\]

(19)

which, by construction, always generates an admissible resetting sequence satisfying (14). Notice now that, under the same assumptions as in Theorem 1, the following upper bound on the plant data can be derived

\[
max t \in \mathbb{Z}_+ \|z(t)\|_\lambda \leq g(\Pi^*)|\xi_F|_\lambda + (1 - \lambda^2)^{-1/2} h(\Pi^*) (\mu + |w|_\infty) \]

\[
= : Z(\Pi^*) \]

(20)

where \(|w|_\infty \) is finite in view of assumption A4. Then, by letting

\[
\mathcal{M}_\sigma := N \left[\Pi^*_T \right] \frac{\epsilon}{h}, \quad \Delta(\Pi^*) := (\mathcal{M}_\sigma + 1) \left[\log_{\lambda} \frac{\epsilon}{Z(\Pi^*)} \right] \]

(21)

the following result states that when \(\{11^{k}\}_{k \in \mathbb{Z}_+} \) is bounded, the HSL-R based on (19) always experiences at least one resetting.

Lemma 4: Consider the HSL-R based on (19). Then, under the same assumptions as in Theorem 1, one has

\[
t_{k+1} - t_k \leq \Delta(\Pi^*), \quad \forall k \in \mathbb{Z}_+.
\]

(22)

Proof: See the Appendix.

Remark 4: From Lemma 4 it is also immediate to conclude that, when the plant is time-invariant, under A1–A4, a reset always occurs after at most \(\Delta(\Pi^*_T) \) time steps, where \(\Pi^*_T \) is as in (18). Lemma 4, along with Theorem 2, completes the analysis for LTI plants. It is important to emphasize that the complexity of the control scheme proposed here does not depend on the “complexity” of the set \(\mathcal{P} \) of frozen plant models, which could contain plants with very high order or be very non-convex. In fact, the complexity of the proposed control scheme is comparable to that of standard Unfalsified Control. The only additional requirements are the computation of the actual reference-to-data induced gain \(\pi_\sigma \) and the application of the rest rule (19).
Although the introduction of HSL-R is mainly motivated by the goal of handling possible plant variations, there are good reasons to use it also in the time-invariant case. In fact, when the plant is time-invariant, (17) implies that

$$\pi_s(t) \leq g_0 + g_1 \xi \lambda^{t+1} + g_2 \| w^t \| \lambda + g_2 \| w^{s-1} \| \lambda$$

holds for some $s \in \mathbb{N}$. This equation indicates that the effect of plant initial conditions and past disturbances on Π^k and, hence, on the controller selection, vanishes as s increases. In view of Lemma 4, this property, which cannot be exploited in HSL-∞ because of infinite memory, can provide definite improvements in performance for HSL-R.

As a simple illustration, consider the continuous-time LTI unstable plant with transfer function $P(s) = \frac{K}{s - 0.4}$, $K \in [0.1, 1]$, controlled by feeding its input via a zero-order hold and sampling its output every 0.2 s. Two proportional-integral (PI) controllers, $C_1(s) = (3.405 - 3.265 d)/(1 - d)$ and $C_2(s) = (27.36 - 25.63 d)/(1 - d)$, have been designed so as to provide good performance over the uncertainty set. In particular, λ has been selected so as to satisfy A2 and A3 for the uncertain discrete-time plant and the candidate controllers. For HSL-R, we have adopted the reset rule (19) with $\epsilon = 0.01$. Let $K = 0.16$ so that both the controllers stabilize the plant but only C_2 performs satisfactorily and further assume that n_k and n_a are zero everywhere except on the interval $[400, 800]$ where a burst in noise is modeled by taking n_k to be uniformly distributed on $[-0.5, 0.5]$. Figs. 3–4 show the plant output response for zero plant initial conditions and a square-wave reference of period 500 s and amplitude 2.5. In both HSL-∞ and HSL-R, the output noise causes C_2 to be switched-off. However, due to its memory feature, the HSL-∞ does not allow C_2 to be switched-on again. On the contrary, with HSL-R, C_2 is promptly re-selected right after resetting, as shown in Fig. 5.

Remark 4: In contrast with HSL-∞, HSL-R need not ensure finite-time convergence for switching even when the plant is time-invariant. This is the price paid for considering time-windowed test functionals. Hence, for time-invariant plants, HSL-∞ still maintains an advantage in this respect. To prevent possible spurious switching caused by resetting (we discuss qualitatively the situation), the basic scheme of HSL-R can be suitably modified in many ways, e.g., one can replace Π in the logic (5) with

$$\Pi_t(t) := \left\| \pi_{t,T_k^t} \right\|_{\infty} ; t \in T_k$$

where $T, T' > 1$, indicates the minimum memory-length of the Π_t’s, i.e., the number of past performance records which are not discarded upon resetting. Clearly, T has to be chosen by trading off readiness of the algorithm in discarding past information versus false-alarm rate.

VI. STABILITY UNDER TIME VARIATIONS OF THE PLANT PARAMETERS

This section shows how, even in the presence of plant variations, HSL-R makes it possible to achieve stability properties similar to those derived for LTI plants. Recall from Theorem 1 that a sufficient condition for stability is the existence of a finite constant Π^* such that $\Pi^k \leq \Pi^*$ for every $k \in \mathbb{Z}_+$. In the presence of plant variations, it is not immediate to conclude that such a property still holds. This is because a single controller able to
ensure stability over the whole uncertainty set need not exist, the set of stabilizing controllers changing with the plant. As shown hereafter, nonetheless, such a property holds whenever the plant variations are infrequent or satisfy a slow drift condition.

A. Infrequent Plant Changes

Let \(\{ \ell_c \} \) denote the sequence of time instants at which a plant variation occurs, with \(\ell_0 := 0 \) by convention. Accordingly, \(L_c := \{ \ell_c, \ldots, \ell_{c+1} - 1 \} \), \(c \in \mathbb{Z}_+ \), will denote the \(c \)th time interval over which the plant is constant. Although we can no longer use \(L_c^\nu \) in (18) to deduce that the switched system is stable, Lemma 3 ensures that for every \(c \) there exists a candidate index \(\tilde{s} \) such that

\[
\pi_s(t) + h \leq \Pi_{T_s} + g_3 \| \xi^{\ell_{c-1}} \| \lambda^{t-\ell_c+1}, \quad \forall \ t \in L_c
\]

(25)

where \(g_3 \) is as in (18). Thus, for any given accuracy \(\nu \) and provided that \(L_c \) be large enough, the right hand side of (25) will eventually become smaller than \(\Pi_{T_s} + \nu \). In this respect, let

\[
L_c^\nu := \{ t \in L_c ; \ g_3 \| \xi^{\ell_{c-1}} \| \lambda^{t-\ell_c+1} \leq \nu \}.
\]

Then, if at least two resets occur over \(L_c^\nu \), i.e., there is at least one \(k \) such that \(\Upsilon_k \subseteq L_c^\nu \) one can use (15) to conclude that at time \(\ell_{c+1} \) we have

\[
\| \xi^{\ell_{c+1}} \|_{\lambda} \leq Z(\Pi_{T_s} + \nu)
\]

(26)

where \(Z(\cdot) \) is as in (20). Notice that one single reset would not be sufficient since the bound in (15) depends on both \(\Pi_k \) and \(\Pi^{\ell_{c-1}} \). Although Theorem 1 cannot be invoked to conclude closed-loop stability (since the existence of a finite upper bound for \(\{ \Pi^{k} \} \) is not apparent from boundedness of \(\{ \xi^{\ell_{c-1}} \} \)), this implication actually holds.

Lemma 5: Let the HSL-R switched system \(\Sigma_\nu \) be based on the test functionals (7) and reset rule (19). Let A1–A4 hold. Further assume that

\[
\forall v \in \mathbb{Z}_+, \ \exists \ k \in \mathbb{Z}_+ \text{ such that } \Upsilon_k \subseteq L_c^\nu.
\]

Then, \(\Pi_k^{\nu} \leq \Pi_{T_s}^{\nu} \) for every \(k \in \mathbb{Z}_+ \), with

\[
\Pi_{T_s}^{\nu} := \Pi_{T_s} + g Z(\Pi_{T_s} + \nu)
\]

(28)

where \(g := \max \{ g_3, 2\mu^{-1} \} \). Hence, \(\Sigma_\nu \) is stable.

Proof: See the Appendix.

In the light of Lemma 5, a sufficient condition for stability of the switched system is that the minimum interval between two consecutive plant variations (or plant dwell-time) be large enough to allow the fulfillment of the condition (27). This happens when the plant dwell-time is such that: 1) the transient term in (25) becomes smaller than \(\nu \); 2) at least two resets occur afterwards. To see this, recall that items i) and 3) above imply (26). Let now \(\ell_c^\nu \) denote the first time instant of \(L_c^\nu \), i.e., \(\ell_c^\nu := \min \{ t : t \in L_c^\nu \} \). Accordingly, condition (27) amounts to requiring that, for any \(c \in \mathbb{Z}_+ \), \(\ell_{c+1} \) is always greater or equal to \(\ell_c^\nu \) plus the time needed for two resetting to occur. In this respect, using (26) in the definition of \(L_c^\nu \) one has

\[
\ell_{c+1} - \ell_c \geq \left[\log_{\lambda} \frac{\nu}{g_3 Z(\Pi_{T_s} + \nu)} \right] + 2A(\Pi_{T_s}^{\nu})
\]

(29)

Moreover, by simple induction argument, if condition (27) is satisfied up to a certain \(\ell_c \), then, by (28), \(\Pi_{T_s}^{\nu} \) is an upper bound on the smallest test functional over \(L_c \). In turns, in agreement with Lemma 4, this implies that after at most \(2A(\Pi_{T_s}^{\nu}) \) steps subsequent to \(\ell_c^\nu \) the two required reset times occur. Summing the bound on \(\ell_{c+1} - \ell_c \) with \(\ell_c^\nu \), we have next result.

Theorem 3: Let the HSL-R switched system \(\Sigma_\nu \) be based on the test functionals (7) and the resetting rule (19). Let A1–A4 hold. Then, \(\Sigma_\nu \) is stable provided that

\[
\ell_{c+1} - \ell_c \geq \left[\log_{\lambda} \frac{\nu}{g_3 Z(\Pi_{T_s} + \nu)} \right] + 2A(\Pi_{T_s}^{\nu})
\]

(30)

holds for every \(c \in \mathbb{Z}_+ \).

Notice that the dwell-time \(L_c \) depends, through \(\Pi_{T_s}^{\nu} \), on the disturbance amplitude. In words, the larger the level of the disturbances, the larger (at least conceptually) the time required to select an appropriate controller, hence the larger the interval required between two successive plant variations. Hence, \(L_c \) cannot be known \emph{a priori} unless knowledge on a disturbance upper bound is assumed. Nonetheless, Theorem 3 guarantees that for any disturbance level there exists a sufficiently large plant dwell-time such that stability is not destroyed.

B. Slow Parameter Drift

Let \(\theta(t) \in \mathbb{R}^{2n} \), \(t \in \mathbb{Z}_+ \), denote the vector of time-varying parameters composed by the coefficients of \(A_k(d) \) and \(B_k(d) \). Consistent with this notation, we can rewrite A1 as requiring that \(\theta(t) \in \Theta, \forall t \in \mathbb{Z}_+ \) for some compact set \(\Theta \). Assume now that the parameter vector \(\theta(t) \) takes values inside \(\Theta \) with bounded variation rate, i.e.,

\[
\dot{\theta}(t) \in \Theta, \quad |\theta(t + 1) - \theta(t)| \leq \delta, \quad \forall t \in \mathbb{Z}_+
\]

(30)

where \(\delta > 0 \) defines the variation rate.
In order to extend the results of the previous section to this setting, it is convenient to define a collection of sets \(\{\Theta_1, \ldots, \Theta_N\} \), one for each controller index \(i \), with the following properties:

1. all the sets \(\Theta_i \), \(i \in \mathbb{N} \) are compact;
2. for all \(\beta \in \Theta_i \), the frozen-time feedback loop \((P(\beta)/C_i) \) is \(\lambda \)-stable;
3. the collection of sets \(\{\Theta_1, \ldots, \Theta_N\} \) covers the set \(\Theta \) with overlap \(\beta > 0 \) in the sense that, for any \(\theta \in \Theta \), there exists at least one index \(i \in \mathbb{N} \) such that \(\theta \in \Theta_i \) and

\[
\text{dist}(\theta, \partial \Theta_i) \geq \beta,
\] where \(\partial \Theta_i \) denotes the boundary of \(\Theta_i \) and \(\text{dist}(\cdot, \cdot) \) the Euclidean point-to-set distance.

Thanks to the compactness of the set \(\Theta \), by resorting to standard topology arguments, it can be shown that a collection of sets satisfying such properties always exists under the stated assumptions (the existence of a strictly positive \(\beta \) being connected to the existence of a strictly positive Lebesgue number for any open cover of the compact set \(\Theta \)). More specifically, the following result holds.

Proposition 1: Under assumptions A1 and A2, there always exist an overlap \(\beta > 0 \) and a collection of sets \(\{\Theta_1, \ldots, \Theta_N\} \) for which properties 1)–3) hold.

Proof: See the Appendix.

Notice that the overlap \(\beta \) can be increased by augmenting the set \(\Theta \) with additional controllers. We proceed now to derive a bound on cost \(\pi_s(t) \) that is valid on those time intervals for which the parameter vector \(\theta(t) \) belongs to \(\Theta_i \). To this end, we exploit the well-known fact that, although stability of all the frozen-time loops \((P(\theta(t))/C_i) \), \(\theta \in \Theta \), need not imply stability of the time-varying loop \((P(\theta(t))/C_i) \), \(\theta(t) \in \Theta \), such a property holds provided that the variation rate \(\delta \) be small enough. More specifically, the following result can be stated.

Lemma 6: Let the HSL-R switched system \(\Sigma_\sigma \) be based on the test functionals (7). Let A1–A4 hold and further assume that on a given interval \(\{\tau, \tau + 1, \ldots, T\} \), the parameter vector \(\theta(t) \) always remains inside one of the sets \(\Theta_i \), \(i \in \mathbb{N} \). Then, there exist positive constants \(\delta_{\text{max}}, c_0, c_1, c_2 \) and \(c_3 \) such that, when the variation rate does not exceed the threshold \(\delta_{\text{max}} \), i.e., \(\delta \leq \delta_{\text{max}} \), cost \(\pi_s(t) \) can be upper bounded as

\[
\pi_s(t) \leq c_0 + c_1 |\xi| |\lambda^{i+1} + c_2| |w^\delta| c_3 |\lambda^{i-1}||\lambda^{\tau+1}||\lambda^\tau-1||\lambda^{\tau+1}|
\] for all \(t \in \{\tau, \tau + 1, \ldots, T\} \).

Proof: See the Appendix.

Comparing Lemma 6 with its time-invariant counterpart Lemma 3, it must be noted that the constants \(c_0, c_1, c_2 \) and \(c_3 \) will now depend on \(\delta \) and hence, in general, will be greater than the constants \(g_0, g_1, g_2 \), and \(g_3 \) in (17) pertaining to the frozen-time analysis.

As shown hereafter, in view of Proposition 1 and Lemma 6, conclusions similar to those derived in Section VI-A hold true in case the plant variations satisfy a slow drift conditions. The idea is to derive an inequality of the type given in (25). To this end, we recursively construct a sequence of time instants \(\{\hat{\tau}_q\}_{q \in \mathbb{Z}_+} \) as follows: \(\hat{\tau}_0 \) is set equal to 0; given \(\hat{\tau}_q, \hat{\tau}_{q+1} \) is defined as the largest time instant such that there exists at least one index \(i \in \mathbb{N} \) for which \(\theta(t) \in \Theta_i \), for any \(t \in \{\hat{\tau}_q, \hat{\tau}_q + 1, \ldots, \hat{\tau}_{q+1} - 1\} \). In words, if \(\theta(t) \) belongs to \(\Theta_i \) then \(\hat{\tau}_{q+1} \) denotes the first time instant at which a variation in the parameter vector can cause \(\theta \) to leave \(\Theta_i \). In view of property 3) above, we have that \(\hat{\tau}_{q+1} - \hat{\tau}_q \geq \frac{\beta}{\delta} \) for any \(q \in \mathbb{Z}_+ \). Hence, we have from Lemma 6 that if \(\beta \leq \delta_{\text{max}} \), then there exists a candidate index \(s \in \mathbb{N} \) such that

\[
\pi_s(t) \leq c_0 + c_1 |\xi| |\lambda^{i+1} + c_2| |w^\delta| c_3 |\lambda^{i-1}||\lambda^{\tau+1}|
\] for all \(t \in \{\hat{\tau}_q, \ldots, \hat{\tau}_{q+1} - 1\} \).

Define

\[
\hat{\Pi}^*_T := c_0 + c_1 |\xi| + (1 - \lambda^2)^{-1/2} c_2 |w| + \lambda^\tau h \tag{31}
\]

We therefore obtain \(\pi_s(t) + h \leq \hat{\Pi}^*_T + c_3 |\xi|^{i-1} \lambda^\tau \lambda^{i+1} \) for all \(t \in \{\hat{\tau}_q, \ldots, \hat{\tau}_{q+1} - 1\} \). This formula clearly parallels the one in (25) for the case of infrequent plant changes. Accordingly, let

\[
\hat{\Pi}^*_T := \hat{\Pi}^*_T + c Z(\hat{\Pi}^*_T + \nu), \quad \nu := \max\{c_3, 2\mu^{-1}\}
\]

and further assume that

\[
\left|\frac{\beta}{\delta}\right| \geq \left[\frac{\log_\lambda \frac{\nu}{c_3} \cdot Z(\hat{\Pi}^*_T + \nu)}{c_3} \right] + 2\Delta(\hat{\Pi}^*_T) = \Xi(\hat{\Pi}^*_T).
\]

Since (32) implies that \(\hat{\tau}_{q+1} - \hat{\tau}_q \geq \Xi(\hat{\Pi}^*_T) \) for all \(q \in \mathbb{Z}_+ \), we have from Theorem 3 that condition (32) is sufficient for stability to hold. Recall now that in order to derive (32) we used the assumption that \(\delta \leq \delta_{\text{max}} \). Combining this latter inequality with the fact that \(\beta/\delta \geq \Xi(\hat{\Pi}^*_T) \) implies \(|\beta/\delta| \geq \Xi(\hat{\Pi}^*_T) \) because \(\Xi(\hat{\Pi}^*_T) \) is a positive integer, we have the following stability result in terms of allowed parameter variation rate.

Theorem 4: Let the HSL-R switched system \(\Sigma_\sigma \) be based on the test functionals (7) and the resetting rule (19). Let A1–A4 hold. Then, \(\Sigma_\sigma \) is stable provided that

\[
\delta \leq \min\left\{ \delta_{\text{max}}, \frac{\beta}{\Xi(\hat{\Pi}^*_T)} \right\} \tag{33}
\]

Example 2

We consider a simple model of a robot arm [23]. The transfer function from the control input (motor current) to measurement output (motor angular velocity) is

\[
P(s) = \frac{k_m (J_0 s^2 + ds + k)}{J_\alpha J_m s^3 + d (J_\alpha + J_m) s^2 + k (J_\alpha + J_m) s} + k_m
\]

with \(J_\alpha \in [0.0001, 0.02] \), \(J_m = 0.002 \), \(d = 0.0001 \), \(k = 100 \), and \(k_m = 0.5 \). The purpose of the control system is to control the angular velocity responses for all admissible values of the moment of inertia \(J_\alpha \). Two controllers \(C_1(d) = (0.0146 - 0.00012 d) d - 0.0205 d^3/(1 - d) \) and \(C_2(d) = (0.0055 + 0.0113 d - 0.0044 d^2 - 0.0016 d^3/(1 - d) \) have been designed. To illustrate the advantages of HSL-R over HSL-\(\infty \) in the presence of persistent plant variations, we consider the case where \(J_\alpha \) switches between 0.0001 (only \(C_1 \) is stabilizing) to 0.02 (only \(C_2 \) is stabilizing).
Fig. 6. Supervision based on HSL-R. (a) Plant Output. (b) Plant switching sequence (dotted line) and controller switching sequence (solid line).

Fig. 7. Detail of HSL-R on the time interval \([0, 2000]\) s. (a) Test functionals (\(I_1\) gray line, \(I_2\) black line). (b) Resetting sequence (1 stands for resetting).

VII. CONCLUSION

Consideration has been given to the control of uncertain time-varying plants by means of adaptive switching control techniques. We have introduced a novel class of algorithms based on hysteresis switching, which, when combined with appropriate test functionals, makes it possible to achieve stability for time-varying systems under large plant modeling errors, unmodeled dynamics and persistent disturbances. The characterizing feature of this novel scheme is that the supervisor orchestrates the switching by means of a specially devised mechanism which, from time to time, determines whether past data are still relevant to achieve closed-loop stability. In particular, this mechanism consists of a logic according to which the test functionals are reset to zero whenever the recorded data indicate that the information contained in the test functionals is no longer needed to achieve stability. Although the major emphasis has been on the stabilization of time-varying systems, simulation results indicate that this supervisory scheme compares favorably with HSL-\(\infty\) even when applied to time-invariant systems, since it does not rely on a finite switching stopping-time. These results lend themselves to be extended in various directions. First, the idea of selecting online the memory of the test functionals can be extended to more elaborated rules than a simple resetting logic. As a second point, notice that the motivation for considering supervisory schemes based on unfalsified control was mainly dictated by the goal of achieving robustness against large modeling uncertainties. Nonetheless, the approach here introduced could be used within supervisory schemes alternative to model-free switching control. In this respect, it is known that the adoption of model-based test functionals can significantly improve the transients performance [7], [22]. Hence, a natural question arises on whether resetting logics can be adapted to supervisory schemes based on multiple models.
Throughout the appendix, we shall make use of the following properties:

1) \[|x(t)| \leq C x(t)^\gamma \]

2) \[|x(t) - x(t^-)| \leq C |x(t^-)| |x(t)| \]

3) \[|x(t)| \leq C x(t)^\gamma \]

To prove Lemma 2 we use the following result.

Proposition 2: Under A1, there exist finite nonnegative constants \(g_0, g_1 \) and \(g_2 \) such that

\[|\zeta^t(t)| \leq g_0 |\zeta^t(t)| + g_1 |w^t(t)| + g_2 |\zeta^t(t)| \]

for all \(t \in \mathbb{Z}_+ \).

Proof of Proposition 2: For any LTI feedback loop \((P_r/C_i)\) we have

\[[R_i - S_i]

\[B_i - A_i \]

\[\zeta - [0 0 0]

\[A_i - B_i - A_i \]

\[w. \]

By A1, we also get

\[\zeta(t) \leq c_0 |\zeta(t^-)| + c_1 |w(t^-)| \quad \forall t \in \mathbb{Z}_+ \]

for some positive constants \(c_0 \) and \(c_1 \), with \(q = \max\{n^*, m\} \).

By 1), letting \(c_2 := c_0 \lambda^{-n-1} \) and \(c_3 := c_1 \lambda^{-n} \) we get

\[|\zeta^t(t)| \leq (c_2 + \lambda) |\zeta^t(t)| + c_2 |w|^\gamma \quad \forall t \in \mathbb{Z}_+ \]

where the second inequality follows since \(\zeta(k) = 0 \), \(k = -1, -2, \ldots \). The proof follows using 2) and recalling that \(n_k[k] = u_{\sigma}(k), n_k[k] = y_{\sigma}(k) \), \(k = -1, \ldots, n^* \).

Proof of Lemma 2: Consider an arbitrary \(k \in \mathbb{N} \) and let \(T_{k|j} := \{t_{k|j}, \ldots, t_{k|j+1} - 1\}, t_{k|0} := t_k \), represent the jth subinterval of \(T_k \) over which the switching signal is constant.

Basic Recursive Equation: First, notice that

\[|\zeta^t(t)| \leq |\zeta^t(t^-)| + |(v_{\sigma}(t^-) - r^t)| \leq |\sigma(t)| \{\mu + |r^t|\} \]

\[+ (1 + |\sigma(t^-)|)|w_{\sigma}(t^-) - r^t| \quad \forall t \in \mathbb{Z}_+ \]

Consider now an arbitrary \(t_{k|j} \). Accordingly, for some \(i \in \mathbb{N} \), one has \(\sigma(t) = i, \forall t \in T_{k|j} \). Let \(\delta_i := v_{\sigma}(t) - r^t \). By exploiting 2) with respect to \(\delta_i \), with \(\alpha = 0 \) and \(h = t_{k|j} - 1 \), we get

\[|\delta_i^t(t)| \leq |\delta_i^t(t^-)| + |\delta_i^{t-1}| \lambda^{\lambda - t_{k|j}} \]

\[\leq g_i |\delta_i^{t-1}| \lambda^{\lambda - t_{k|j}} \lambda^{\lambda - t_{k|j}} \]

\[\leq g_i |\delta_i^{t-1}| \lambda^{\lambda - t_{k|j}} \lambda^{\lambda - t_{k|j}} \]

\[\leq |\delta_i^{t-1}| \lambda^{\lambda - t_{k|j}} \lambda^{\lambda - t_{k|j}} \]

In (36), we make use of the following facts: The second inequality follows, for some finite positive constant \(g_i \), because \(S_i(d) \delta_i(t) = 0 \) for every \(t \in T_{k|j} \) and \(S_i(d) \) is a \(\lambda \)–Hurwitz polynomial; the third inequality is obtained using 1) and letting \(g_i := \max i \in \mathbb{N} \) since, for all candidate indices, (6) is initialized at time zero from zero initial conditions, viz. \(\delta_i(k) = 0, k = -1, -2, \ldots \). By A3 one sees that the map from \(\zeta \) to \(\delta_i \)

\[S_i(d) \delta_i(t) = S_i[d] \{v_i(t) - r(t)\} = |R_i(d) - S_i[d]| \zeta(t) \]

has bounded \(\lambda \)-weighted \(\ell_2 \)-norm. In particular, since (6) is initialized at time zero from zero initial conditions, it readily follows that \(|\zeta^t(t)| \leq g_i |\zeta^t(t)|, \forall t \in \mathbb{Z}_+, \forall i \in \mathbb{N} \), and some finite positive constant \(g_i \). Letting \(\bar{g} := \max i \in \mathbb{N} \{g_i\} \), we finally get

\[\| \zeta^t(t) \leq \mu + |r^t| \lambda \]

\[+ g \{1 + \sigma(t)\}|w_{\sigma}(t^-) - r^t| \lambda^{\lambda - t_{k|j}} \}

\[\forall t \in T_{k|j}, \quad j = 0, \ldots, n_k \]

In words, the performance signal related to the switched-on controller cannot exceed \(\Pi_k \), apart from the time instants right before switching. Notice that by Lemma 1 this may happen at most \(n_k \)-times, since, after \(n_k \) switching, no more switching occurs over \(T_k \).

Proof of (12): In order to prove (12) we use (38) and exploit the results of Proposition 2 at the time instants \(\{t_{k|j+1} - 1\} \). Without loss of generality, let \(g_2, g \geq 1, g_2 \) and \(g \) as in (34) and, respectively, (38). It is also convenient to let \(g := \max \{g_0, g_1, g_2\} \) as in (34), and write in more compact form \(l(t, \xi_p, \mu, w) := \mu + \zeta^{t} \lambda^{\lambda - t_{k|j}} + |w|^\gamma \). Then, combining (34) and (38), we get

\[|\zeta^t(t)| \leq \Pi_k \mu + |r^t| \lambda \]

\[+ g \{1 + \Pi_k\}|w_{\sigma}(t^-) - r^t| \lambda^{\lambda - t_{k|j}} \}

\[\forall t \in T_{k|j}, \quad j = 0, \ldots, n_k \]

In the second inequality we used the fact that \(|r^t| \leq |w|^\gamma \), while \(G_k := g_2 + g_2(1 + \Pi_k) \).

By induction, it is easy to show that

\[|\zeta^t(t)| \leq \sum_{m=-\infty}^{n_k} G^m \]

\[\| \zeta^{t-1} \| \lambda^{\lambda - t_{k|j}} + L(t, \xi_p, \mu, w) \]

\[\forall t \in \bigcup_{j=0}^{n_k} T_{k|j}, \quad j = 0, \ldots, n_k \]

Hence, (40) holds true for \(j + 1 \), and the proof follows by letting \(\bar{g} \Pi_k := \sum_{m=-\infty}^{n_k} G^m \).

Proof of Lemma 3: Let \(\theta(t) \in \mathbb{R}^{2n} \), \(t \in \mathbb{Z}_+ \), denote the vector of time-varying parameters composed by the coefficients of \(A_i \) and \(B_i \). Consistently, we can rewrite A1 as requiring that \(\theta(t) \in \mathbb{R} \), \(\forall t \in \mathbb{Z}_+ \) for some compact set \(\Theta \).

By assumption, \(\theta(t) \equiv \theta \) for all \(t \in \{\tau, \tau + 1, \ldots, T\} \) and some \(\theta \in \Theta \), i.e., \(P = P(\theta) = A(\theta) \) for all \(t \in \{\tau, \tau + 1, \ldots, T\} \). Consider now that, under assumption A3, the virtual
references in (6) are well-defined. Thus, combining (6) and (1) we can write
\[\Phi_{\theta_j} := \begin{bmatrix} R_{\theta} & -S_{\theta} \\ B(\theta) & A(\theta) \end{bmatrix}, \quad \Psi_{\theta} := \begin{bmatrix} 0 \\ A(\theta) - B(\theta) - A(\theta) \end{bmatrix}. \]

Consider next that, for any candidate controller \(C_{\theta} \) such that \((P(\theta)/C_{\theta}) \) is \(\lambda \)-stable there exists a polynomial matrix \(I_{\theta}(d) \) such that
\[\xi_j(t) = \Phi_{\theta_j}^{-1}(d) \Psi \xi_j(d); \quad \xi_j^{-1} \mathcal{L}^{t+1} + \Phi_{\theta_j}^{-1}(d) \Psi \nu(t) \]
where \(\xi_j := [\xi_j^t, \eta_j^t]' \), \(q = \max\{n^t, m^t\} \), and \(\Phi_{\theta_j} \), is such that \(\det \Phi_{\theta_j} \) is a \(\lambda \)-Hurwitz polynomial. Consider now that, by assumption A2, for any \(\theta_j \) there exist a candidate controller \(C \) and an open ball \(B \) around \(\theta_j \) such that \((P(\theta)/C) \) is \(\lambda \)-stable for all \(\theta \in \Theta_j \). Thus, an infinite open cover for \(\Theta \) exists. In turn, in view of assumptions A1 and A2, this implies the existence of a finite (closed) cover \(\Theta_1, \ldots, \Theta_n \) for \(\Theta \) such that, for each \(j \), all the plants \(P(\theta_j) \), \(\theta_j \in \Theta_j \), are stabilized by controller \(C_{\theta_j} \) (see the proof of Proposition 1 below).

As a consequence, from (42), it is therefore immediate to conclude that there exist positive reals \(m_{0,j} \) and \(m_{1,j} \) such that, for any \(\theta_j \in \Theta_j \)
\[\| \xi_{j} \|_\lambda \leq m_{0,j} \| \xi_{j}^{-1} \| \mathcal{L}^{t+1} + m_{1,j} \| \nu(t) \|_\lambda \quad \forall t \in \{ \tau, \tau + 1, \ldots, T \} \]
holds true where \(m_{0,j} := \sup_{\theta_j \in \Theta_j} \| \Phi_{\theta_j}^{-1} \| \mathcal{L} \), \(m_{1,j} := \sup_{\theta_j \in \Theta_j} \| \Phi_{\theta_j}^{-1} \Psi \|_\infty, \lambda \) and \(\| H \|_\infty, \lambda \) denotes the \(\lambda \)-weighted \(\mathcal{H}_\infty \) norm of \(H \). Hence, (43) holds true over \(\Theta \) with finite positive constants \(m_{0,j} := \max_{j \in \mathbb{N}} m_{0,j} \) and \(m_{1,j} := \max_{j \in \mathbb{N}} m_{1,j} \). By ii) with \(\alpha = 0 \) and \(h = \tau - 1 \) we have \(\| \xi_{\tau} \|_\lambda \leq \| \xi_{\tau} \|_\lambda + \| \xi_{\tau} \|_\lambda \mathcal{L}^{\tau-t+1} \). By ii), we also have
\[\| \xi_{\tau} \|_\lambda \leq \| \xi_{\tau} \|_\lambda \mathcal{L}^{\tau-t+1} \]
the first inequality being obtained from 2) with \(\alpha = \tau - q \) and \(h = -1 \). Overall, we get
\[\| \xi_{\tau} \|_\lambda \leq m_{1} \| \nu \|_\lambda + m_{2} \| \xi_{\tau} \|_\lambda \mathcal{L}^{\tau-t+1} + m_{3} \| \nu \|_\lambda \mathcal{L}^{\tau-t+1} \]
where \(m_{2} := 1 + m_{0,\lambda} \mathcal{L}^{\tau-t+1} \) and \(m_{3} := m_{0,\lambda} \mathcal{L}^{\tau-t+1} \). Noting that \(\| \xi_{\tau} \|_\lambda \leq \| \xi_{\tau} \|_\lambda + \| \nu \|_\lambda \mathcal{L}^{\tau-t+1} \| \lambda \) and \(\| \nu \|_\lambda \mathcal{L}^{\tau-t+1} \| \lambda \) and \(\| \nu \|_\lambda \mathcal{L}^{\tau-t+1} \| \lambda \), using 3) with respect to \(\nu \) and \(\nu \), with \(\alpha = 0 \), \(h = \tau + \ell - 1 \) and \(\ell = 0 \), we get
\[\| \xi_{\tau} \|_\lambda \leq m_{4} \| \nu \|_\lambda + m_{5} \| \nu \|_\lambda \mathcal{L}^{\tau-t+1} \]
where \(m_{4} := 1 + m_{0,\lambda} \mathcal{L}^{\tau-t+1} \) and \(m_{5} := m_{0,\lambda} \mathcal{L}^{\tau-t+1} \). Indeed, if the latter condition were not satisfied we would then have a reset before \(t_{k,j+1} \), contradicting the fact that \(t_{k,j+1} \leq t_{k+1} \). Applying (48) recursively, we get \(t_{k,[j]} \leq t_{k+1} - \log_\lambda \mathcal{E} \mathcal{L} \mathcal{Z} \). The claim follows by recalling that the number of resetting is bounded by \(\mathcal{N}_k \).
sufficient to prove that the upper bound Π^*_r holds over each interval Q_r, since this implies that the same upper bound will hold over each T_r.

Decompose Q_r as $Q_r = (Q_r \cap L_{c-1}) \cup (Q_r \cap L_c)$ and first assume that the interval $Q_r \cap L_{c-1}$ is nonempty. By definition, q_r necessarily belongs to L_{c-1}. Then, from (25) it follows that on this interval one has the upper bound $\Pi^*_U + \nu$. Thus, (12) implies

$$\begin{align*}
\| \zeta \|_2 & \leq \mathbf{g}(\Pi^*_U + \nu) \left\{ \mu + \xi \right\} \lambda^{c+1} \\
& \quad + \| w \|_2 \lambda + \| \zeta \|_2 \lambda^{c-\nu+1} \\
& \quad \forall t \in Q_r \cap L_{c-1}. \quad (49)
\end{align*}$$

Indeed, (49) follows immediately by extending the conclusions of Lemma 2 to any truncation of a resetting interval (Q_r in this case). In addition, by (27) there exists a resetting interval, say I_{k-1}, containing I_{c-1} and therefore such that $\Pi^{c-1}_U \leq \Pi^*_2 + \nu$. Since by virtue of (19) the sequence of reset times is admissible, the sequence $\left\{ \xi^{c-1}_r \right\}_{r \in \mathcal{A}_4}$ is such that $\| \xi^{c-1}_r \|_2 \leq \Pi^{c-1}_U + \nu + \epsilon$, $\forall t \in Q_r \cap L_{c-1}$. From definition of π_r we have $\pi_r(t) \leq 1 + \mu + \xi^{c-1}_r \lambda + \mu + \xi^{c-1}_r \| w \|_2 \lambda$. Combining this inequality with (49), it follows immediately that $\| \xi \|_2 \lambda \leq Z(\Pi^*_U + \nu + \epsilon)$ for every $t \in Q_r \cap L_{c-1}$. From definition of $Z(\cdot)$ we obtain $\pi_r(t) \leq 2 \mu \Pi^*_U + \nu + \epsilon$ for every $t \in Q_r \cap L_{c-1}$. Finally, substituting (25) into (26) it follows that for some index s we have that $\pi_s(t) + h < \Pi^*_U + g \Pi_z(\Pi^*_U + \nu)$ holds on the interval $Q_r \cap L_{c-1}$ from which the upper bound (28) follows. If instead $Q_r \cap L_{c-1} = \emptyset$, then $Q_r \subseteq L_r$ and $q_r = \zeta^r$. In such a case (28) follows immediately by (25) and (26).

Proof of Proposition 1: Consider first that, by assumption A2, for any $\theta_j \in \Theta$ there exist a candidate controller $C_{\rho(j)}$, $\rho(j) \in \mathcal{N}$ and an open ball $B_{\rho(j)}$ around θ_j such that $(P(\theta))/C_{\rho(j)}$ is λ-stable for all $\theta \in \Theta_j$. Thus, an infinite open cover for Θ exists. Recall now, that by the Heine–Borel theorem, under assumption A1 any infinite open cover of Θ has a finite open subcover. Then, this implies the existence of a finite collection of open sets $\{ \Theta_1, \ldots, \Theta_N \}$ that covers Θ and such that, for each j, all the plants $P(\theta)$, $\theta \in \Theta_j$, are stabilized by a common controller $C_{\rho(j)}$, $\rho(j) \in \mathcal{N}$. Further, as well known, the Lebesgue’s number lemma ensures that there exists a positive real ε such that every subset of Θ having diameter less than ε is contained in at least one of the sets Θ_j, $j \in \{1, \ldots, N\}$. This implies that the cover $\Theta_1, \ldots, \Theta_N$ is overlapping in the sense that for any $\theta \in \Theta$ there exists at least one index $j \in N$ such that $\theta \in \Theta_j$ and dist$(\theta, \partial \Theta_j)$ $\geq \eta$. In order to conclude the proof, it is now sufficient to pick a positive real $\eta < \eta$ and define, for each $i \in \mathcal{N}$, the closed set

$$\Theta_i = \bigcup_{j \in \mathcal{N} : \rho(j) = i} \{ \theta \in \Theta_j : \text{dist}(\theta, \partial \Theta_j) \leq \eta \}. \quad (50)$$

In fact, it is immediate to verify that, with such a definition, the collection of sets $\{ \Theta_1, \ldots, \Theta_N \}$ satisfies properties 1–2) by construction. As for 3), let $\beta := \eta - \eta$. From the overlapping property of the cover $\Theta_1, \ldots, \Theta_N$, we have that for any given θ there exists $j \in \mathcal{N}$ such that the open ball $B(\theta, \eta) := \{ x_1 \mid x_1 - \beta < \eta \}$ is contained in Θ_j. This, in turn, implies that the open ball $B(\theta, \beta)$ is contained in the closed set

$$\{ \theta \in \Theta_j : \text{dist}(\theta, \partial \Theta_j) \leq \eta \}$$

which is obtained by shrinking the original open set Θ_j. Then, by definition of Θ_j, $B(\theta, \beta)$ is also contained in the set Θ_i with $i = \rho(j)$, which implies that dist$(\theta, \partial \Theta_i) \geq \beta$. \hfill \Box

Proof of Lemma 6: Following the same lines as in the proof of Lemma 3, it can be seen that the signal ζ_4 satisfies the recursion

$$\Phi_{\theta_{i+k}(j)}(d) \zeta_4(t) = \Psi_{\theta_{i+k}(j)}(d) w_i(t). \quad (51)$$

Let $\tilde{\zeta}_4(t) := \zeta_4(t) \lambda^{-1}$ and $\tilde{w}_i(t) := w_i(t) \lambda^{-1}$. Then (50) can be rewritten as

$$\Phi_{\theta_{i+k}(j)}(d) \tilde{\zeta}_4(t) = \Psi_{\theta_{i+k}(j)}(d) \tilde{w}_i(t). \quad (51)$$

where $\Phi_{\theta_{i+k}(j)}(d) := \Phi_{\theta_{i+k}(j)\lambda^{-1}}(d)$ and $\Psi_{\theta_{i+k}(j)}(d) := \Psi_{\theta_{i+k}(j)\lambda^{-1}}(d)$.

Suppose now that, in a given interval $I := \{ t, r + 1, \ldots, T \}$, one has $\theta(t) \in \Theta_i$. Then, for any $t \in I$, the frozen-time characteristic polynomial det $\Phi_{\theta_{i+k}(j)}(d)$ of (50) is λ-Hurwitz. This, in turn, implies that, for any $t \in I$, the frozen-time characteristic polynomial det $\Phi_{\theta_{i+k}(j)}(d)$ of (51) is Hurwitz. More specifically, since the set Θ_i is compact, we have that when $\theta(t) \in \Theta_i$ all the roots of det $\Phi_{\theta_{i+k}(j)}(d)$ always lie outside a disk of radius $1 + \varepsilon_i$ with ε_i strictly positive. As a consequence, we can invoke classical results on slowly time-varying systems [22] and conclude that, when the variation rate δ does not exceed a given threshold $\delta_{\lambda_{\max, \tau}}$, then the system (51) is exponentially stable in the interval I. Thus, it is immediate to conclude that, in this case, there exist positive reals $\bar{m}_{1 \lambda}$ and $\bar{m}_{1 \lambda}$ such that, for any $t \in I$

$$\begin{align*}
\| \zeta_4^r \|_2 & \leq \bar{m}_{1 \lambda} \| \zeta_4^{r-\varepsilon} \|_2 + \bar{m}_{1 \lambda} \tilde{w}_i \| \tilde{w}_i \|_2 \\
& \quad \forall i \in \mathcal{N}
\end{align*} \quad (52)$$

where $\zeta_i^r := \zeta_i^r \lambda^{-1}$. Again, the finiteness of $\delta_{\lambda_{\max, \tau}}$, $\bar{m}_{1 \lambda}$, and $\bar{m}_{1 \lambda}$ stems from the compactness of Θ_i.

Note now that, by construction

$$\begin{align*}
\| \tilde{w}_i \|_2 & = \lambda^{-1} \| \zeta_4 \|_2 \lambda^{c-1} + \bar{m}_{1 \lambda} \tilde{w}_i \| \tilde{w}_i \|_2 \\
& \quad \| \tilde{w}_i \|_2 = \lambda^{-1} \| \zeta_4 \|_2 \lambda^{c-1} + \bar{m}_{1 \lambda} \tilde{w}_i \| \tilde{w}_i \|_2 \lambda
\end{align*} \quad (53)$$

Hence, inequality (52) can be rewritten as $\| \tilde{z}_4 \|_2 \lambda^{c-1} \leq \bar{m}_{1 \lambda} \| \tilde{z}_4 \|_2 \lambda^{c-1} + \bar{m}_{1 \lambda} \| \tilde{w}_i \|_2 \lambda$. The rest of the proof follows along the same lines of the proof of Lemma 3.

References

Dr. Battistelli is currently an editor of the IFAC journal Engineering Applications of Artificial Intelligence, an associate editor of the IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, and a member of the IEEE Control Systems Society Conference Editorial Board.

João P. Hespanha (S’95–M’98–SM’02–F’08) received the Licenciatura in electrical and computer engineering from the Instituto Superior Técnico, Lisbon, Portugal, in 1991 and the Ph.D. degree in electrical engineering and applied science from Yale University, New Haven, CT, USA, in 1998. From 1999 to 2001, he was Assistant Professor at the University of Southern California, Los Angeles, CA, USA. He moved to the University of California, Santa Barbara, in 2002, where he currently holds a Professor position with the Department of Electrical and Computer Engineering. He is an Associate Director for the Center for Control, Dynamical-Systems, and Computation (CDC), Vice-Chair of the Department of Electrical and Computer Engineering, and a member of the Executive Committee for the Institute for Collaborative Biotechnologies (ICB). His current research interests include hybrid and switched systems, the modeling and control of communication networks, distributed control over communication networks (also known as networked control systems), the use of vision in feedback control, and stochastic modeling in biology.

Dr. Hespanha is the recipient of the Yale University’s Henry Prentiss Becton Graduate Prize for exceptional achievement in research in Engineering and Applied Science, a National Science Foundation CAREER Award, the 2005 best paper award at the 2nd International Conference on Intelligent Sensing and Information Processing, the 2005 Automatica Theory/Methodology best paper prize, the 2006 George S. Axelby Outstanding Paper Award, and the 2009 Ruberti Young Researcher Prize. Dr. Hespanha is an IEEE distinguished lecturer since 2007. From 2004 to 2007, he was an Associate Editor for the IEEE TRANSACTIONS ON AUTOMATIC CONTROL.

Edoardo Mosca (S’63–M’65–SM’95–F’97–LF-06) received the Dr. Eng. degree in electronic engineering from the University of Rome “La Sapienza,” Rome, Italy, in 1963.

He then spent four years in the aerospace industry where he worked on research and development of advanced radar systems. Thereafter, from 1968 to 1972, he held academic positions at the University of Michigan, Ann Arbor, MI, USA, and McMaster University, Hamilton, ON, Canada. Since 1972, he has been with the University of Florence, Florence, Italy: until 1974 as an Associate Professor; from 1975 as a full Professor of Control Engineering; and, from 2012, an Emeritus Professor. He has been active in various diversified research fields such as radar signal synthesis and processing, radio communications, system identification, adaptive, predictive, switching supervisory control, and detection of performance degradation in feedback-control systems. He is the author of a book, Optimal, Predictive, and Adaptive Control (Prentice Hall, 1995). He has been a journal editor of the European Journal of Control and of the IET Control Theory and Applications; and, currently, of the International Journal of Adaptive Control and Signal Processing. He is the Italian NMO representative in IFAC where he was a Council member from 1996 to 2002, and until 1998 a Council member of EUC (European Union Control Association). He is a Fellow of IFAC.

Giorgio Battistelli was born in Genoa, Italy, in 1975. He received the Laurea degree in electronic engineering and the Ph.D. degree in robotics, both from the University of Genoa, Genoa, Italy, in 2000 and 2004, respectively. From 2004 to 2006, he was a Research Associate in the Dipartimento di Informatica, Sistemistica e Telematica, University of Genoa. He is currently an Assistant Professor of automatic control in the Dipartimento di Ingegneria dell’Informazione, University of Florence. His research interests include adaptive control, linear and nonlinear estimation, hybrid systems, and data fusion.

Pietro Tesi received the Laurea degree and the Ph.D. degree in computer and control engineering, both from the University of Florence, Florence, Italy, in 2005 and 2010, respectively. In 2006, he worked in the automation industry on research and development of data acquisition systems. During the Ph.D. degree, he was a short-term Ph.D. Scholar at the University of California, Santa Barbara, CA, USA. Since 2010, he has been with both the University of Florence and the University of Genoa, Italy. His current research interests include adaptive control, predictive control, hybrid systems, and adaptive optics.