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Abstract This paper addresses characterizations of integral input-to-state stability
(iISS) for hybrid systems. In particular, we give a Lyapunov characterization of iISS
unifying and generalizing the existing theory for pure continuous-time and pure
discrete-time systems. Moreover, iISS is related to dissipativity and detectability
notions. Robustness of iISS to sufficiently small perturbations is also investigated.
As an application of our results, we provide a maximum allowable sampling period
guaranteeing iISS for sampled-data control systems with an emulated controller.

Keywords Integral input-to-state stability · Hybrid systems · Lyapunov characteri-
zations

1 Introduction

There have been considerable attempts toward stability analysis of nonlinear systems
in the presence of exogenous inputs over the last few decades. In particular, Sontag [22]
introduced the notion of input-to-state stability (ISS) which is indeed a generalization
of H∞ stability for nonlinear systems. Many applications of ISS in analysis and design
of feedback systems have been reported [25]. A variant of ISS notion was introduced in
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[24] extending H2 stability to nonlinear systems. This generalization is called integral
input-to-state stability (iISS) which was studied for continuous-time systems in [4],
followed by an investigation into iISS of discrete-time systems in [1]. As long as we
are interested in stability analysis with respect to compact sets, it has been established
that iISS is a more general concept rather than ISS and so every ISS system is also
iISS, while the converse is not necessarily true [24].

There is a wide variety of dynamical systems that cannot be simply described either
by differential or difference equations. This gives rise to the so-called hybrid systems
that combine both continuous-time (flows) and discrete-time (jumps) behaviors. Sig-
nificant contributions concerned with modeling of hybrid systems have been developed
in [10]. In particular, a framework was developed in [10] which not only models a
wide range of hybrid systems, but also allows the study of stability and robustness of
such systems.

This paper investigates iISS for hybrid systems modeled by the framework in [10].
Although the notion of iISS is well-understood for switched and impulsive systems (cf.
[15] and [11] for more details), to the best of our knowledge, no further generalization
of iISS being applicable to a wide variety of hybrid systems has been developed yet.
Toward this end, we provide a Lyapunov characterization of iISS unifying and gener-
alizing the existing theory for pure continuous-time and pure discrete-time systems.
Furthermore, we relate iISS to dissipativity and detectability notions. We also estab-
lish robustness of the iISS property to vanishing perturbations. We finally illustrate
the effectiveness of our results by application to determination of a maximum allow-
able sampling period (MASP) guaranteeing iISS for sampled-data systems with an
emulated controller. To be more precise, we show that if a continuous-time controller
renders a closed-loop system iISS, the iISS property of the closed-loop control system
is preserved under an emulation-based digital implementation if the sampling period
is taken less than the corresponding MASP.

The rest of this paper is organized as follows: First we introduce our notation in
Sect. 2. In Sect. 3, a description of hybrid systems, solutions and stability notions are
given. The main results are presented in Sect. 4. Section 5 gives the iISS property of
sampled-data control systems. Section 6 provides the concluding remarks.

2 Notation

In this paper,R≥0 (R>0) andZ≥0 (Z>0) are nonnegative (positive) real and nonnegative
(positive) integer numbers, respectively. B is the open unit ball in R

n . The standard
Euclidean norm is denoted by |·|. Given a set A ⊂ R

n , A denotes its closure. |x |A
denotes inf y∈A |x − y| for a closed set A ⊂ R

n and any point x ∈ R
n . Given an open

set X ⊂ R
n containing a compact set A, a function ω : X → R≥0 is a proper indicator

for A on X if ω is continuous, ω(x) = 0 if and only if x ∈ A, and ω(xi ) → +∞
when either xi tends to the boundary of X or |xi | → +∞. The identity function is
denoted by id. Composition of functions from R to R is denoted by the symbol ◦.

A function α : R≥0 → R≥0 is said to be positive definite (α ∈ PD) if it is continu-
ous, zero at zero and positive elsewhere. A positive definite function α : R≥0 → R≥0
is of class-K (α ∈ K) if it is strictly increasing. It is of class-K∞ (α ∈ K∞) if α ∈ K
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and also α(s) → +∞ if s → ∞. A continuous function γ is of class-L (γ ∈ L) if
it is nonincreasing and lims→+∞ γ (s)→ 0. A function β : R≥0 ×R≥0 → R≥0 is of
class-KL (β ∈ KL), if for each s ≥ 0, β(·, s) ∈ K, and for each r ≥ 0, β(r, ·) ∈ L.
A function β : R≥0 × R≥0 × R≥0 → R≥0 is of class-KLL (β ∈ KLL), if for each
s ≥ 0, β(·, s, ·) ∈ KL and β(·, ·, s) ∈ KL. The interested reader is referred to [12]
for more details about comparison functions.

3 Hybrid systems and stability definitions

Consider the following hybrid system with state x ∈ X and input u ∈ U ⊂ R
d as

follows

H :=
{
ẋ = f (x, u) (x, u) ∈ C
x+ = g(x, u) (x, u) ∈ D . (1)

The flow and jump sets are designated by C and D, respectively. We denote the system
(1) by a 6-tuple H = ( f, g, C,D,X ,U). Basic regularity conditions borrowed from
[6] are imposed on the system H as follows

(A1) X ⊂ R
n is open, U ⊂ R

d is closed, and C and D are relatively closed sets in
X × U .

(A2) f : C → R
n and g : D→ X are continuous.

(A3) For each x ∈ X and each ε ≥ 0 the set { f (x, u) | u ∈ U ∩ εB} is convex.

Here, we refer to the assumptions (A1)–(A3) as Standing Assumptions. We note that
the Standing Assumptions guarantee the well-posedness of H (cf. [10, Chapter 6] for
more details). Throughout the paper we suppose that the Standing Assumptions hold
except otherwise stated.

The following definitions are needed in the sequel. A subset E ⊂ R≥0 × Z≥0

is called a compact hybrid time domain if E = ⋃J
j=0([t j , t j+1], j) for some finite

sequence of real numbers 0 = t0 ≤ · · · ≤ tJ+1. We say E is a hybrid time domain
if, for each pair (T, J ) ∈ E , the set E ∩ ([0, T ] × {0, 1, . . . , J }) is a compact hybrid
time domain. For each hybrid time domain E , there is a natural ordering of points:
given (t, j), (t ′, j ′) ∈ E , (t, j) � (t ′, j ′) if t + j ≤ t ′ + j ′, and (t, j) ≺ (t ′, j ′) if
t + j < t ′ + j ′. Given a hybrid time domain E , we define

supt E := sup{t ∈ R≥0 : ∃ j ∈ Z≥0 such that (t, j) ∈ E},
sup j E := sup{ j ∈ Z≥0 : ∃ t ∈ R≥0 such that (t, j) ∈ E},
length(E) := supt E + sup j E .

The operations supt and sup j on a hybrid time domain E return the supremum of the
R and Z coordinates, respectively, of points in E . A function defined on a hybrid time
domain is called a hybrid signal. Given a hybrid signal x : domx → X , for any s ∈[
0, suptdom x

] \{+∞}, i(s) denotes the maximum index i such that (s, i) ∈ domx ,
that is, i(s) := max{i ∈ Z≥0 : (s, i) ∈ domx}. A hybrid signal x : dom x → X
is a hybrid arc if for each j ∈ Z≥0, the function t �→ z(t, j) is locally absolutely
continuous on the interval I j := {t : (t, j) ∈ domx}. A hybrid signal u : dom u → U
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is a hybrid input if for each j ∈ Z≥0, u(·, j) is Lebesgue measurable and locally
essentially bounded.

Let a hybrid signal v : dom v → R
n be given. Let (0, 0), (t, j) ∈ dom v such that

(0, 0) ≺ (t, j) and Γ (v) denotes the set of (t ′, j ′) ∈ dom v so that (t ′, j ′+1) ∈ dom v.
Define

∥∥v(t, j)
∥∥∞ := max

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ess sup
(t ′, j ′) ∈ domv\Γ (v),

(0, 0) � (t ′, j ′) � (t, j)

∣∣v(t ′, j ′)
∣∣ , sup

(t ′, j ′) ∈ Γ (v),

(0, 0) � (t ′, j ′) � (t, j)

∣∣v(t ′, j ′)
∣∣
⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

Let γ1, γ2 ∈ K and let u : dom u → U be a hybrid input such that for all (t, j) ∈
dom u the following hold

∥∥u(t, j)
∥∥

γ1,γ2
:=
∫ t

0
γ1(|u(s, i(s))|)ds +

∑
(t ′, j ′) ∈ Γ (u),

(0, 0) � (t ′, j ′) ≺ (t, j)

γ2(
∣∣u(t ′, j ′)

∣∣) < +∞.

We denote the set of all such hybrid inputs by Lγ1,γ2 . Also, if
∥∥u(t, j)

∥∥
γ1,γ2

< r for
some r > 0 and all (t, j) ∈ dom u, we write u ∈ Lγ1,γ2(r). Assume that the hybrid
input u : dom u → U . For each T ∈ [0, length(dom u)

] \{+∞}, the hybrid input
uT : dom u → U is defined by

uT (t, j) =
{
u(t, j) t + j ≤ T
0 t + j > T

and is called the T -truncation of u. The set Le
γ1,γ2

(
Le

γ1,γ2
(r)
)

consists of all hybrid

inputs u(·, ·) with the property that for all T ∈ [0,∞), uT ∈ Lγ1,γ2

(
uT ∈ Lγ1,γ2(r)

)
,

and is called the extended Lγ1,γ2 -space.
A hybrid arc x : dom x → X and a hybrid input u : dom u → U is a solution pair

(x, u) to H if domx = domu, (x(0, 0), u(0, 0)) ∈ C ∪D, and

– for each j ∈ Z≥0, (x(t, j), u(t, j)) ∈ C and ẋ = f (x(t, j), u(t, j)) for almost all
t ∈ I j where I j has nonempty interior;

– for all (t, j) ∈ Γ (x), (x(t, j), u(t, j)) ∈ D and x(t, j + 1) = g(x(t, j), u(t, j)).

A solution pair (x, u) to H is maximal if it cannot be extended, it is complete if dom x
is unbounded. A maximal solution to H with the initial condition ξ := x(0, 0) and
the input u is denoted by x(·, ·, ξ, u). The set of all maximal solution pairs (x, u) to
H with ξ := x(0, 0) ∈ X is designated by 	u(ξ).

3.1 Stability notions

Given the system H and a nonempty and compact A ⊂ X , then A is called
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– 0-input pre-stable if for any ε > 0 there exists δ > 0 such that each solution pair
(x, 0) ∈ 	u(ξ) with |ξ |A ≤ δ satisfies |x(t, j, ξ, 0)|A ≤ ε for all (t, j) ∈ dom x .

– 0-input pre-attractive if there exists δ > 0 such that each solution pair (x, 0) ∈
	u(ξ) with |ξ |A ≤ δ is bounded (with respect to X ) and if it is complete then
lim(t, j)∈dom x, t+ j→+∞ |x(t, j, ξ, 0)|A → 0.

– 0-input pre-asymptotically stable (pre-AS) if it is both 0-input pre-stable and 0-
input pre-attractive.

– 0-input asymptotically stable (AS) if it is 0-input pre-AS and there exists δ > 0
such that each solution pair (x, 0) ∈ 	u(ξ) with |ξ |A ≤ δ is complete.

It should be noted that the prefix ”pre-” emphasizes that not every solution requires
to be complete. If all solutions are complete, then we drop the pre.

Definition 1 Let A ⊂ X be a compact set. Also, let ω be a proper indicator for A
on X . The hybrid system H is said to be pre-integral input-to-state stable (pre-iISS)

with respect to A if there exist α ∈ K∞, γ1, γ2 ∈ K and β̃ ∈ KLL such that for all
u ∈ Le

γ1,γ2
, all ξ ∈ X , and all (t, j) ∈ dom x , each solution pair (x, u) to H satisfies

α(ω(x(t, j, ξ, u))) ≤ β̃(ω(ξ), t, j)+ ∥∥u(t, j)
∥∥

γ1,γ2
. (2)

Remark 1 We point out that α on the left-hand side of (2) is redundant. In particular,
H is pre-iISS with respect to A if and only if there exist η, γ1, γ2 ∈ K and β ∈ KLL
satisfying

ω(x(t, j, ξ, u)) ≤ β(ω(ξ), t, j)+ η
(∥∥u(t, j)

∥∥
γ1,γ2

)
.

We, however, place emphasis on (2) for two reasons: firstly, (2) is consistent with
the continuous-time and discrete-time counterparts in [1,4]. Secondly, (2) simplifies
exposition of proofs.

Definition 2 Given a compact set A ⊂ X , let ω be a proper indicator for A on X . A
smooth function V : X → R≥0 is called an iISS Lyapunov function with respect to
(ω, |·|) for (1) if there exist functions α1, α2 ∈ K∞, σ ∈ K, and α3 ∈ PD such that

α1(ω(ξ)) ≤ V (ξ) ≤ α2(ω(ξ)) ∀ξ ∈ X , (3)

〈∇V (ξ), f (ξ, u)〉 ≤ −α3(ω(ξ))+ σ(|u|) ∀(ξ, u) ∈ C, (4)

V (g(ξ, u))− V (ξ) ≤ −α3(ω(ξ))+ σ(|u|) ∀(ξ, u) ∈ D. (5)

Definition 3 [4] A positive definite function W : X → R≥0 is called a semi-proper
if there exist π ∈ K, and a proper positive definite function W0 such that W (·) =
π(W0(·)).

The following definitions are required to relate pre-iISS to the hybrid invariance
principle [10].

Definition 4 ([21, Definition 6.2]) Given sets A, K ⊂ X , the distance to A is 0-input
detectable relative to K for H if every complete solution pair (x, 0) to H such that
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x(t, j) ∈ K for all (t, j) ∈ domx implies that lim(t, j)→+∞,(t, j)∈domx ω(x(t, j)) = 0
where ω is a proper indicator for A on X .

Definition 5 Let ω be a proper indicator for A on X . H is said to be smoothly dissipa-
tive with respect to A if there exists a smooth function V : X → R≥0, called a storage
function, functions α4, α5 ∈ K∞, σ ∈ K, and a continuous function ρ : X → R≥0
with ρ(ξ) = 0 for all ξ ∈ A such that

α4(ω(ξ)) ≤ V (ξ) ≤ α5(ω(ξ)) ∀ξ ∈ X , (6)

〈∇V (ξ), f (ξ, u)〉 ≤ −ρ(ξ)+ σ(|u|) ∀(ξ, u) ∈ C, (7)

V (g(ξ, u))− V (ξ) ≤ −ρ(ξ)+ σ(|u|) ∀(ξ, u) ∈ D. (8)

We note that Definition 5 subsumes Definition 2 as a special case. As we will see
later (cf. Theorem 1), the existence of a storage functionV plus the 0-input detectability
relative to K is equivalent to the existence of an iISS Lyapunov function.

4 Main results

This section addresses equivalences for pre-iISS. Particularly, a Lyapunov character-
ization of pre-iISS together with other related notions is presented.

Given a set S ⊂ X × U , we denote Π0(S) := {x ∈ X : (x, 0) ∈ S}. Here is the
main result of this paper.

Theorem 1 LetA ⊂ X be a compact set. Also, letω be a proper indicator forA onX .
Suppose that the Standing Assumptions hold. Also, assume thatΠ0(C)∪Π0(D) = X .
Then the following are equivalent

(i) H is pre-iISS with respect to A.
(ii) H admits a smooth iISS Lyapunov function with respect to (ω, |·|).
(iii) H is smoothly dissipative with respect to A and the distance to A is 0-input

detectable relative to {ξ ∈ X : ρ(ξ) = 0} with ρ as in (7) and (8).
(iv) H is 0-input pre-AS andH is smoothly dissipative with respect toA with ρ ≡ 0.

Proof We show that (i i) ⇒ (i) in Sect. 4.2. We also give a proof of the implication
(i) ⇒ (i i) in Sect. 4.3. The implication (iv) ⇒ (i i) immediately follows from the
combination of Proposition 2 (see below) and Definition 5. To see the implication
(i i) ⇒ (i i i), let the iISS Lyapunov function V be a storage function with ρ(x) :=
α3(ω(x)) and α3 as in (4) and (5). SoH is smoothly dissipative. Moreover, the distance
to A is 0-input detectable relative to {ξ ∈ X : ρ(x) = 0} because ρ(x) = 0 implies
that x ∈ A. Finally the implication (i i i) ⇒ (iv) is provided as follows: Let V be
a storage function. Also, assume that u ≡ 0. According to [9, Theorem 23], A is
0-input pre-stable. To show 0-input pre-attractivity of A, consider a complete solution
pair (x, 0) to H, that is bounded by 0-input pre-stability of A. We first note that H
satisfying the Standing Assumptions and u ≡ 0 imply that the invariance principle for
hybrid systems (e.g., Corollary 8.4 in [10]) can be applied. According to [10, Corollary
8.4], there exists some r ≥ 0 such that every complete solution (x, 0) to H converges
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to the largest weakly invariant set contained in

{
ξ : V (ξ) = r

} ∩ (ρ−1
C (0) ∪ ρ−1

D (0)
)

(9)

where ρ−1
C (0) := {ξ ∈ C : ρ(ξ) = 0} and ρ−1

D (0) := {ξ ∈ D : ρ(ξ) = 0}.
It follows from the 0-input detectability relative to {ξ ∈ X : ρ(ξ) = 0} that every
complete solution contained in the set (9) converges to A. Moreover, from (6), the
only invariant set in (9) is obtained for r = 0. As the set (9) lies in A for r = 0, then
A is 0-input pre-attractive. Eventually, we note that smooth dissipativity of H with
respect to (ω, |·|) with ρ ≡ 0 is obviously satisfied. This completes the proof. ��
Remark 2 The assumption Π0(C)∪Π0(D) = X means that the union of the flow set
and the jump set generated by the disturbance-free system covers X . As shown in [8,
Section IV], there are hybrid systems not satisfying the assumption, hybrid systems
with logic variables for instance. This assumption could be relaxed at the expense of
further technicalities following similar lines as in the proof of [10, Theorem 7.31].
However, we do not focus on that as it makes the proofs much more complicated
without considerable appreciation.

4.1 Illustrative example

Here we verify iISS of a hybrid system using an iISS Lyapunov function. Consider a
first-order integrator

ẋ p = u, (10)

where u ∈ R is the control input to the system. We aim to control the system using a
reset controller under input constraints (i.e., |u| ≤ u for some given u > 0). As shown
in [18], designing a reset controller subjected to disturbances and input constraints
leads to a hybrid system of the form (1) as follows

ẋ p = λp arctan(xp)+ b arctan(xc)+ w

ẋc = λc arctan(xc)+ k arctan(xp)

}
(x, w) ∈ C, (11a)

x+p = xp
x+c = 0

}
(x, w) ∈ D, (11b)

where x := (xp, xc) is the sate of the closed-loop system, w ∈ R is the disturbance
input, C = {(x, w) ∈ R

2 × R : xp(xc − xp) ≤ 0}, D = {(x, w) ∈ R
2 × R :

xp(xc − xp) ≥ 0}, and the constants b, k > 0 and λp, λc < 0 are chosen later. From
D, the output of controller is reset to zero whenever xp(xc − xp) ≥ 0. Note that for
sufficiently large w each solution to the system is unbounded, which shows that the
system is not ISS.

Corollary 1 Consider system (11). Given b, k > 0 and λp, λc < 0, assume that there
exist real positive numbers c1, c2 > 0 such that
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c1λp + bc1 + kc2 ≤ 0, c2λc + kc2 + bc1 ≤ 0. (12)

Take the proper indicator ω(·) = |·|. Then system (11) is pre-iISS with respect to the
origin.

Proof Take the following iISS Lyapunov function candidate

V (x) = c1xp arctan(xp)+ c2xc arctan(xc).

Obviously, V satisfies (6) for some appropriate α1, α2 ∈ K∞ and ω(·) = |·|. Picking
(x, w) ∈ C, we have

〈∇V, f (x, w)〉 = c1

[
arctan(xp)

(
λp arctan(xp)+ b arctan(xc)+ w

)

+ xp
1+ x2

p

(
λp arctan(xp)+ b arctan(xc)+ w

)]

+ c2

[
arctan(xc)

(
λc arctan(xc)+ k arctan(xp)

)

+ xc
1+ x2

c

(
λc arctan(xc)+ k arctan(xp)

)]
.

Using Young’s inequality and the facts that |arctan(s)| ≤ π/2 and |s| /(1 + s2) ≤ 1
for all s ∈ R give

〈∇V, f (x, w)〉 ≤ (c1λp + 0.5bc1 + kc2
)[arctan(xp)]2 + c1λp

xp arctan(xp)

1+ x2
p

+ c1b

2

x2
p

1+ x2
p
+ (c2λc + 0.5kc2 + bc1

)[arctan(xc)]2

+ c2λc
xc arctan(xc)

1+ x2
c

+ c2k

2

x2
c

1+ x2
c
+ c1(π + 1)

2
|w| .

From the fact that s2

1+s2 ≤ [arctan(s)]2 for all s ∈ R, we have

〈∇V, f (x, w)〉 ≤ (c1λp + bc1 + kc2
)[arctan(xp)]2 + c1λp

xp arctan(xp)

1+ x2
p

+ (c2λc + kc2 + bc1
)[arctan(xc)]2 + c2λc

xc arctan(xc)

1+ x2
c

+ c1(π + 1)

2
|w|

≤ (c1λp + bc1 + kc2
)[arctan(xp)]2 +

(
c2λc + kc2 + bc1

)[arctan(xc)]2

+ c1(π + 1)

2
|w| . (13)
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Now we consider jump equations on the set D. For any (x, w) ∈ D we get

V (g(x))− V (x) = −c2xc arctan(xc)

= −ρxp arctan(xp)− c2xc arctan(xc)+ ρxp arctan(xp),

where 0 < ρ < c2. Note that (x, w) ∈ D implies that xp arctan(xp) ≤ xc arctan(xc).
So we have

V (g(x))− V (x) ≤ −ρxp arctan(xp)− c2xc arctan(xc)+ ρxc arctan(xc)

= −ρxp arctan(xp)− (c2 − ρ)xc arctan(xc). (14)

It follows from (12), (13) and (14) that V is an iISS Lyapunov function for system (11).
��

Finding an iISS Lyapunov function is not always easy. Alternatively, either item (iii)
or (iv) can be used to conclude the iISS property; see Sect. 5.

4.2 Proof of the implication (i i) ⇒ (i)

Consider a solution pair (x, u) to H. Given (4) and (5), we have

〈∇V (x(t, j)), f (x(t, j), u(t, j))〉 ≤ −α3(ω(x(t, j)))+ σ(|u(t, j)|)

for almost all t such that (t, j) ∈ dom x\Γ (x); and

V (g(x(t, j), u(t, j)))− V (x(t, j)) ≤ −α3(ω(x(t, j)))+ σ(|u(t, j)|)

for all (t, j) ∈ Γ (x). Applying [4, Lemma IV.1] to α3, there exist ρ1 ∈ K∞ and
ρ2 ∈ L such that

〈∇V (x(t, j)), f (x(t, j), u(t, j))〉 ≤ −ρ1 (ω (x(t, j))) ρ2 (ω (x(t, j)))+σ(|u(t, j)|)

for almost all t such that (t, j) ∈ dom x\Γ (x); and

V (g(x(t, j), u(t, j)))−V (x(t, j)) ≤ −ρ1 (ω (x(t, j))) ρ2 (ω (x(t, j)))+σ(|u(t, j)|)

for all (t, j) ∈ Γ (x). Exploiting (3) and letting ρ̃(·) := ρ1 ◦ α−1
2 (·)ρ2 ◦ α−1

1 (·) yield

〈∇V (x(t, j)), f (x(t, j), u(t, j))〉 ≤ −ρ̃(V (ξ))+ σ(|u|) (15)

for almost all t such that (t, j) ∈ dom x\Γ (x); and

V (g(x(t, j), u(t, j)))− V (x(t, j)) ≤ −ρ̃(V (ξ))+ σ(|u|) (16)
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for all (t, j) ∈ Γ (x). Define the hybrid arcs z and v by

z(t, j) := V (x(t, j))− v(t, j), (17)

v(t, j) :=
∫ t

0
σ(|u(s, i(s))|) ds +

∑
(t ′, j ′) ∈ Γ (u),

(0, 0) � (t ′, j ′) ≺ (t, j)

σ (
∣∣u(t ′, j ′)

∣∣). (18)

It should be pointed out that the hybrid arcs z and v are defined on the same hybrid
time domain dom x because, by the assumption, dom x = dom u. It follows from (15),
(17) and (18) that the following hold for almost all t such that (t, j) ∈ dom z\Γ (z)

ż(t, j) ≤ −ρ̃(V (x(t, j))) = −ρ̃(max{z(t, j)+ v(t, j), 0}). (19)

From (16), (17) and (18), we have for all (t, j) ∈ Γ (z)

z(t, j + 1)− z(t, j) ≤ −ρ̃(max{z(t, j)+ v(t, j), 0}). (20)

It follows from (19), (20) and Lemma 9 (see Appendix 1), there exists β ∈ KLL such
that

z(t, j) ≤max{β(z(0, 0), t, j),
∥∥v(t, j)

∥∥∞} ≤ β(z(0, 0), t, j)+ ∥∥v(t, j)
∥∥∞ (21)

for all (t, j) ∈ dom z. An immediate consequence from (17), (18), and the facts that
z(0, 0) = V (x(0, 0)) and

∥∥v(t, j)
∥∥∞ = v(t, j) is

V (x(t, j)) ≤β (V (x(0, 0)) , t, j)+ 2
∫ t

0
σ (|u(s, i(s))|) ds

+ 2
∑

(t ′, j ′) ∈ Γ (u),

(0, 0) � (t ′, j ′) ≺ (t, j)

σ (
∣∣u(t ′, j ′)

∣∣)

for all (t, j) ∈ dom x . Exploiting (3) and denoting β̃(·, ·, ·) := β(α2(·), ·, ·), γ1(·) :=
2σ(·) and γ2(·) := 2σ(·), α(·) := α1(·) gives the conclusion

α(ω(x(t, j))) ≤ β̃ (ω(x(0, 0)), t, j)+
∫ t

0
γ1 (|u(s, i(s))|) d s

+
∑

(t ′, j ′) ∈ Γ (u),

(0, 0) � (t ′, j ′) ≺ (t, j)

γ2(
∣∣u(t ′, j ′)

∣∣).

4.3 Proof of the implication (i) ⇒ (i i)

The proof is split into the following steps: (1) we recall Theorem 2 that an inflated
system, say Hσ , remains pre-iISS under small enough perturbations when H is pre-
iISS; (2) we define an auxiliary system, say Ĥ, and then we show that some selection
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result holds for Ĥ and H; (3) we start constructing a smooth converse iISS Lyapunov
function for H with providing a preliminary possibly non-smooth function, denoted
by V0, and we show that V0 cannot increase too fast along solutions of Ĥ (cf. Lemma 2
below); (4) we initially smooth V0 and obtain the partially smooth function Vs (cf.
Lemma 3 below); (5) we smooth Vs on the whole state space and get the smooth
function V1 (cf. Lemma 4 below); (6) we pass from the results for Ĥ to the similar
ones for H (cf. Lemma 5 below); (7) we give a characterization of 0-input pre-AS (cf.
Proposition 2 below); (8) finally we combine the results of Lemma 5 with those of
Proposition 2 to obtain the smooth converse iISS Lyapunov function V .

Remark 3 It should be noted that the construction of a smooth converse iISS Lyapunov
function follows the same steps as those in [4] but with different tools and technicali-
ties. Particularly, the authors in [4] provided a preliminary possibly non-smooth iISS
Lyapunov function and then appealed to [14, Theorem B.1] and [14, Proposition 4.2]
to smooth the preliminary iISS Lyapunov function regardless robustness of iISS to
sufficiently small perturbations. However, such a procedure does not necessarily hold
for the case of hybrid systems as the procedure relies on uniform convergence of
solutions. This is the reason that we appeal to results in [7, Sections VI.B-C], that
is originally developed in [27], to smooth our preliminary iISS Lyapunov function.
Toward this end, we need to establish robustness of the pre-iISS property for hybrid
systems to vanishing perturbations, which is challenging and has not been previously
studied in the literature.

4.3.1 Robustness of pre-iISS

Here we show robustness of pre-iISS to small enough perturbations (cf. Theorem 2
below). To be more precise, there exists an inflated hybrid system, denoted by Hσ ,
remaining pre-iISS under sufficiently small perturbations when the original system H
is pre-iISS.

Given the hybrid system H, a compact set A ⊂ X , and a continuous function
σ : X → R≥0 that is positive on X \A, the σ -perturbation of H, denoted by Hσ , is
defined by

Hσ :=
{
ẋ ∈ fσ (x, u) (x, u) ∈ Cσ

x+ ∈ gσ (x, u) (x, u) ∈ Dσ
(22)

where

fσ (x, u) := co f
(
(x + σ(x)B, u) ∩ C

)
+ σ(x)B, (23)

gσ (x, u) := {z ∈ X : z ∈ v + σ(v)B, v ∈ g
(
(x + σ(x)B, u) ∩D

) }
, (24)

Cσ :=
{
(x, u) : (x + σ(x)B, u) ∩ C �= ∅

}
, (25)

Dσ :=
{
(x, u) : (x + σ(x)B, u) ∩D �= ∅

}
. (26)

In what follows, by an admissible perturbation radius, we mean any continuous func-
tion σ : X → R≥0 such that x + σ(x)B ⊂ X for all x ∈ X .
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Theorem 2 Let H satisfy the Standing Assumptions. Let A ⊂ X be a compact set.
Assume that the hybrid systemH is pre-iISS with respect toA. There exists an admis-
sible perturbation radius σ : X → R≥0 that is positive on X \A such that the hybrid
system Hσ , the σ -perturbation of H, is pre-iISS with respect to A, as well.

Proof See Appendix 1. ��
Remark 4 Besides the contribution of Theorem 2 to proof of our main result, it is
of independent interest. We note that model (22) arises in many practical cases. For
instance, assume that H is pre-iISS. Different types of perturbations such as slowly
varying parameters, singular perturbations, highly oscillatory signals to H provide
a perturbed system which may be modeled by (22) (cf. [3,16,28] for more details).
Theorem 2 guarantees pre-iISS of the perturbed system under the certain conditions.

4.3.2 The auxiliary system Ĥ and the associated properties

We need to define the following auxiliary system Ĥ. Assume that H is pre-iISS with
respect to A satisfying (2) with suitable functions α, β̃, γ1, γ2. Pick any ϕ ∈ K∞
with max{γ1 ◦ ϕ(s), γ2 ◦ ϕ(s)} ≤ α(s) for all s ∈ R≥0. Define the following hybrid
inclusion

Ĥ :=
{
ẋ ∈ F̂(x) x ∈ Ĉ
x+ ∈ Ĝ(x) x ∈ D̂ (27)

where

F̂(x) :=
{
ν ∈ R

n : ν ∈ f (x, u) , u ∈ U ∩ ϕ(ω(x))B and (x, u) ∈ C
}

,

Ĝ(x) :=
{
ν ∈ X : ν ∈ g (x, u) , u ∈ U ∩ ϕ(ω(x))B and (x, u) ∈ D

}
,

Ĉ :=
{
x ∈ X : ∃ u ∈ U ∩ ϕ(ω(x))B such that (x, u) ∈ C

}
,

D̂ :=
{
x ∈ X : ∃ u ∈ U ∩ ϕ(ω(x))B such that (x, u) ∈ D

}
.

(28)

The hybrid inclusion (27) is denoted by Ĥ := (F̂, Ĝ, Ĉ, D̂,O) where O = Ĉ ∪ D̂.
We note that O = X because X ⊃ O = Ĉ ∪ D̂ ⊃ Π0(C) ∪ Π0(D) = X . We also
note that F̂(x) = co F̂(x) for each x ∈ Ĉ and the data of Ĥ satisfy the Hybrid Basic
Conditions (cf. Assumption 6.5 in [10]). To distinguish maximal solutions to Ĥ from
those to H, we denote a maximal solution to Ĥ starting from ξ by xϕ(·, ·, ξ). Let 	̂(ξ)

denote the set of all maximal solutions of Ĥ starting from ξ ∈ X .
We first relate solutions to H to those to Ĥ using the following claim whose proof

follows from similar lines as in the proof of [6, Claim 3.7] with minor modifications.

Claim 1 Assume thatH is pre-forward complete. For each solution x to Ĥ, there exists
a hybrid input u such that (x, u) is a solution pair toH with |u(t, j)| ≤ ϕ(ω(x(t, j)))
for all (t, j) ∈ domx.

The following lemma assures that Ĥ is pre-forward complete.
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Lemma 1 Pre-iISS ofH implies that there exists ϕ ∈ K∞ such that Ĥ is pre-forward
complete.

Proof Let d : dom d → B be a hybrid input with dom d = dom x such that d ∈M,
where

M :=
{
d ∈ B :

(
x(t, j), ϕ

(
ω(x(t, j))

)
d(t, j)

)
∈ C ∪D ∀(t, j) ∈ dom x

}
.

By the definition of Ĥ, Claim 1, the pre-iISS assumption of H and the fact that
max{γ1 ◦ ϕ(s), γ2 ◦ ϕ(s)} ≤ α(s) for all s ∈ R≥0, for each solution xϕ to Ĥ, there
exists a solution pair (xϕ, ϕ(ω(xϕ))d) to H with d ∈M such that the following hold

α(ω(xϕ(t, j, ξ))) ≤ β̃(ω(ξ), t, j)+
∫ t

0
γ1(|d(s, i(s))|ϕ(ω(xϕ(s, i(s), ξ))))ds

+
∑

(t ′, j ′) ∈ Γ (xϕ),

(0, 0) � (t ′, j ′) ≺ (t, j)

γ2(
∣∣d(t ′, j ′)

∣∣ϕ(ω(xϕ(t ′, j ′, ξ))))

≤ β̃0(ω(ξ))+
∫ t

0
α(ω(xϕ(s, i(s), ξ)))ds

+
∑

(t ′, j ′) ∈ Γ (xϕ),

(0, 0) � (t ′, j ′) ≺ (t, j)

α(ω(xϕ(t ′, j ′, ξ)))

where β̃0(·) := β̃(·, 0, 0). It follows with [20, Proposition 1] that

α(ω(xϕ(t, j, ξ))) ≤ β̃0(ω(ξ))et+ j ∀(t, j) ∈ dom x .

Therefore, the maximal solution x is bounded if the corresponding hybrid domain is
compact. It shows that every maximal solution of x is either bounded or complete. ��
The following hybrid inclusion is defined by

Ĥσ :=
{
ẋ ∈ F̂σ (x) x ∈ Ĉσ

x+ ∈ Ĝσ (x) x ∈ D̂σ

where

F̂σ (x) := {ν ∈ R
n : ν ∈ fσ (x, u) , u ∈ U ∩ ϕ(ω(x))B and (x, u) ∈ Cσ

}
,

Ĝσ (x) := {ν ∈ X : ν ∈ gσ (x, u) , u ∈ U ∩ ϕ(ω(x))B and (x, u) ∈ Dσ

}
,

Ĉσ :=
{
x ∈ X : ∃u ∈ U ∩ ϕ(ω(x)) such that (x, u) ∈ Cσ

}
,

D̂σ :=
{
x ∈ X : ∃u ∈ U ∩ ϕ(ω(x)) such that (x, u) ∈ Dσ

}
.

that is extended from Ĥ. We denote Ĥσ by (F̂σ , Ĝσ , Ĉσ , D̂σ ,X ). Since σ is an admis-
sible perturbation radius, Ĉσ ∪ D̂σ = Ĉ ∪ D̂. A maximal solution to Ĥσ starting from

123



 13 Page 14 of 37 Math. Control Signals Syst.  (2017) 29:13 

ξ is denoted by xϕ(·, ·, ξ). Let 	̂σ (ξ) denote the set of all maximal solution to Ĥσ

starting from ξ ∈ X . It is straightforward to see the combination of Lemma 1 and
Theorem 2 ensures that Ĥσ is pre-forward complete.

Corollary 2 Pre-iISS of Hσ implies that there exists ϕ ∈ K∞ such that Ĥσ is pre-
forward complete.

It should be pointed out that, by [7, Proposition 3.1], Ĥσ satisfies the Standing Assump-
tions as long as Ĥ satisfies the same conditions and σ is an admissible perturbation
radius.

4.3.3 The preliminary function V0

We start constructing the smooth converse iISS Lyapunov function with giving a
possibly non-smooth function V0. Before proceeding to the main result of this sub-
section, we define the following set. Consider a hybrid signal d : dom d → B with
dom d = dom x such that d ∈M, where

M := {d ∈ B : (x(t, j), ϕ(ω(x(t, j)))d(t, j)) ∈ Cσ ∪Dσ ∀(t, j) ∈ dom x
}
.

Lemma 2 Let A ⊂ X be a compact set. Also, let σ : X → R≥0 be an admissible
perturbation radius that is positive on X \A. Let ω be a proper indicator on X forA.
Assume thatHσ is pre-iISS with respect toA satisfying (2) with suitable functions α ∈
K∞, β ∈ KLL, γ 1, γ 2 ∈ K. Let ϕ ∈ K∞ such that max{γ 1 ◦ϕ(s), γ 2 ◦ϕ(s)} ≤ α(s)
for all s ∈ R≥0. Then there exists a function V0 : X → R≥0 defined by

V0(ξ) = sup
{
z(t, j, ξ, d) : (t, j) ∈ dom xϕ , d ∈M

}
(29)

where for each ξ ∈ X and d ∈M, z(·, ·, ξ, d) is defined by

z(t, j, ξ, d) :=α(ω(xϕ(t, j, ξ)))−
∫ t

0
γ 1(|d(s, i(s))| ϕ(ω(xϕ(s, i(s), ξ))))ds

−
∑

(t ′, j ′) ∈ Γ (xϕ),

(0, 0) � (t ′, j ′) ≺ (t, j)

γ 2(
∣∣d(t ′, j ′)

∣∣ϕ(ω(xϕ(t ′, j ′, ξ)))) (30)

such that

α(ω(ξ)) ≤ V0(ξ) ≤ β0(ω(ξ)) ∀ξ ∈ X , and β0(·) := β(·, 0, 0), (31)

V0(xϕ(h, 0, ξ))− V0(ξ) ≤
∫ h

0
γ 1(|μ| ϕ(ω(xϕ(s, 0, ξ))))ds

∀ξ ∈ Ĉ\A, |μ| ≤ 1, xϕ ∈ 	̂σ (ξ) with (h, 0) ∈ dom xϕ, (32)

V0(g)− V0(ξ) ≤ γ 2(|μ|ϕ(ω(ξ))) ∀ξ ∈ D̂, g ∈ Ĝ(ξ), |μ| ≤ 1. (33)
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The proof of the lemma is not presented due to space constraints. However, it follows
the same arguments given in the proof of 2 ⇒ 1 in [4, Theorem 1] and the proof of [1,
Theorem 1]. We refer the reader to [19] for more details.

4.3.4 Initial smoothing

Here we construct a partially smooth function on X from V0.

Lemma 3 Let A ⊂ X be a compact set. Also, let σ : X → R≥0 be an admissible
perturbation radius that is positive on X \A. Let ω be a proper indicator on X for
A. Assume that Hσ is pre-iISS with respect to A. Then for any ξ ∈ X and |μ| ≤ 1,
there exist αs, αs, γ̃1, γ̃2 ∈ K∞, and a continuous function Vs : X → R≥0, smooth
on X \A, such that

αs(ω(ξ)) ≤ Vs(ξ) ≤ αs(ω(ξ)) ∀ξ ∈ X ,

max
f ∈F̂(ξ)

〈∇Vs(ξ), f 〉 ≤ γ̃1(|μ|ϕ(ω(ξ))) ∀ξ ∈ Ĉ\A,

max
g∈Ĝ(ξ)

Vs(g)− Vs(ξ) ≤ γ̃2(|μ|ϕ(ω(ξ))) ∀ξ ∈ D̂.

Proof Let the functions V0, α, β, γ 1, γ 2 and ϕ come from Lemma 2. We begin with
giving the following property of V0 whose proof follows from the similar arguments
as those in [7, Proposition 7.1] with essential modifications.

Proposition 1 The function V0 is upper semi-continuous on X .

To prove the lemma, we follow the same approach as the one in [7, Section VI.B] to
construct a partially smooth function Vs from V0. Let ψ : Rn → [0, 1] be a smooth
function which vanishes outside of B satisfying

∫
ψ(ξ)dξ = 1 where the integration

(throughout this subsection) is over Rn . We find a partially smooth and sufficiently
small function σ̃ : X \A→ R>0 and define the function Vs : X → R≥0 by

Vs(ξ) :=
{

0 for ξ ∈ A,∫
V0(ξ + σ̃ (ξ)η)ψ(η)dη for ξ ∈ X \A.

(34)

so that some desired properties [cf. items (a), (b) and (c) below] are met. In other
words, we find an appropriate σ̃ such that the following are obtained

(a) The function Vs is well-defined, continuous on X , smooth and positive on X \A;
(b) as much as possible for some αs, αs ∈ K∞ the following conditions hold

Vs(ξ)|ξ∈A = 0, (35)

αs(ω(ξ)) ≤ Vs(ξ) ≤ αs(ω(ξ)) ∀ξ ∈ X ; (36)
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(c) for some γ̃1, γ̃2 ∈ K∞, it holds that

max
f ∈F̂(ξ)

〈∇Vs(ξ), f 〉 ≤ γ̃1(|μ|ϕ(ω(ξ))) ∀ξ ∈ Ĉ\A, (37)

max
g∈Ĝ(ξ)

Vs(g)− Vs(ξ) ≤ γ̃2(|μ|ϕ(ω(ξ))) ∀ξ ∈ D̂. (38)

Regarding (a), we appeal to [13, Theorem 3.1] to achieve the desired properties. This
theorem requires that V0(ξ)|ξ∈A = 0, which is shown in the previous subsection, V0 is
upper semi-continuous on X , which is established by Proposition 1, and the openness
of X \A, which is guaranteed by [7, Lemma 7.5].

Regarding (b), the property (35) follows from the definition of Vs , the upper semi-
continuity of V0, and the openness of X \A. Also, it follows from [7, Lemma 7.7] that
we can pick the function σ̃ sufficiently small such that for any μ1, μ2 ∈ K∞ satisfying

μ1(s) < s < μ2(s) ∀s ∈ R>0, (39)

the following hold

α(μ1(ω(ξ))) < Vs(ξ) < β0(μ2(ω(ξ))) ∀ξ ∈ X . (40)

So the inequalities (36) are obtained, as well.
Regarding (c), let σ2 be a continuous function that is positive on X \A and that

satisfies σ2(ξ) ≤ σ(ξ) for all ξ ∈ X . We first construct functions σ2 and σ̃ so that
for each ξ ∈ X \A, for each xϕ ∈ 	̂σ2(ξ), for each η ∈ B and (t, j) ∈ dom xϕ such
that xϕ(t, j, ξ) ∈ X \A, the function defined on (t, j) ∈ dom xϕ ∩ [0, t] × {0, . . . , j}
given by (τ, k) �→ xϕ(τ, k)+ σ̃ (xϕ(τ, k))η can be extended to a complete solution of
Ĥσ . Now, pick a maximal solution xϕ(h,m, ξ) to Ĥσ2 . First, let m = 0. So according
to the definition of Vs , Lemma 7.2 in [7], (32) and the fact ψ : Rn → [0, 1] that we
get for any |μ| ≤ 1 and for any xϕ ∈ 	̂σ2(ξ) so that ξ ∈ Ĉ\A

Vs(xϕ(h, 0, ξ)) ≤ Vs(ξ)+
∫ { ∫ h

0
γ 1(|μ|ϕ(ω(xϕ(s, 0, ξ)+ σ̃ (xϕ(s, 0, ξ))η)))ds

}

× ψ(η)dη. (41)

It follows from [7, Claim 6.3] that for any ξ ∈ Ĉ\A and f ∈ F̂(ξ), there exists a
solution xϕ ∈ 	̂σ2(ξ) such that for small enough h > 0, we get that (h, 0) ∈ dom xϕ

and xϕ = ξ + h f . So it follows with smoothness of Vs on X \A, Claim 6.3 in [7], the
inequality (41) and the mean value theorem that

〈∇Vs, f 〉 = lim
h→0+

Vs(ξ + h f )− Vs(ξ)

h

≤ lim
h→0+

∫
γ 1(|μ|ϕ(ω(z + σ̃ (z)η)))ψ(η)dη.
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where z lies in the line segment joining ξ to ξ+h f . It follows from uniform continuity
of ω with respect to η on B that for any ξ ∈ Ĉ\A and f ∈ F̂(ξ)

〈∇Vs, f 〉 ≤
∫

γ 1(|μ|ϕ(ω(ξ + σ̃ (ξ)η)))ψ(η)dη

≤ sup
z∈ξ+σ̃ (ξ)B

γ 1(|μ|ϕ(ω(z))).

From Claim 7.6 and Lemma 7.7 in [7], there exists some σu(·) with σ̃ (ξ) ≤ σu(ξ) for
all ξ ∈ X \A so that we get for all ξ ∈ Ĉ\A and f ∈ F̂(ξ)

〈∇Vs, f 〉 ≤ sup
z∈ξ+σu(ξ)B

γ 1(|μ|ϕ(ω(z)))

≤ γ 1(|μ|ϕ(μ2(ω(ξ)))). (42)

Therefore, it is easy to see that for any γ 1, ϕ, μ ∈ K∞ with μ2 > id and any |μ| ≤ 1
the exists γ̃1 ∈ K∞ such that (37) holds.

Now let (h,m) = (0, 1). So it follows with the definition of Vs , Lemma 7.2 in [7],
the growth condition (33), and the fact that ψ : Rn → [0, 1] that for any |μ| ≤ 1 and
each ξ ∈ D̂ and g ∈ Ĝ(ξ)

Vs(xϕ(0, 1, ξ)) ≤ Vs(ξ)+
∫

γ 2(|μ|ϕ(ω(ξ + σ̃ (ξ)η)))ψ(η)dη

≤ Vs(ξ)+ sup
z∈ξ+σ̃ (ξ)B

γ 2(|μ|ϕ(ω(z))).

From [7, Claim 7.6] and [7, Lemma 7.7], there exists σu with σ̃ (ξ) ≤ σu(ξ) for all
ξ ∈ X \A so that we have for all ξ ∈ D\A and g ∈ Ĝ(ξ)

Vs(g) ≤ Vs(ξ)+ sup
z∈ξ+σ̃ (ξ)B

γ 2(|μ|ϕ(ω(z)))

≤ Vs(ξ)+ sup
z∈ξ+σu(ξ)B

γ 2(|μ|ϕ(ω(z)))

≤ Vs(ξ)+ γ 2(|μ|ϕ(μ2(ω(ξ)))). (43)

With the same arguments as those for flows, there exists γ̃2 ∈ K∞ such that the
following hold

Vs(g) ≤ Vs(ξ)+ γ̃2(|μ|ϕ(ω(ξ))).

Moreover, if ξ ∈ D̂ and g ∈ A then 0 = Vs(g) ≤ Vs(ξ) + γ̃2(|μ|ϕ(ω(ξ))). So the
growth condition (38) holds. ��

4.3.5 Final smoothing

The next lemma is to do with smoothing Vs on A.
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Lemma 4 LetH be pre-iISS. Also, let Vs , γ̃1, γ̃2 and ϕ come from Lemma 3. For any
ξ ∈ X and |μ| ≤ 1, there exist α, α ∈ K∞, and aK∞-function p, smooth on (0,+∞)

such that V1 : X → R≥0 is defined by

V1(ξ) := p(Vs(ξ)) ∀ξ ∈ X (44)

where Vs, coming from Lemma 3, is smooth on X and the following hold

α(ω(ξ)) ≤ V1(ξ) ≤ α(ω(ξ)) ∀ξ ∈ X , (45)

max
f ∈F̂(ξ)

〈∇V1(ξ), f 〉 ≤ γ̃1(|μ|ϕ(ω(ξ))) ∀ξ ∈ Ĉ, (46)

max
g∈Ĝ(ξ)

V1(g)− V1(ξ) ≤ γ̃2(|μ|ϕ(ω(ξ))) ∀ξ ∈ D̂. (47)

Proof With Lemma 4.3 in [14], there exists a smooth function p ∈ K∞ such that
p′(s) > 0 for all s > 0 where p′(·) := dp

ds (·) and p(Vs(ξ)) is smooth for all ξ ∈ X .
Without loss of generality, one can assume that p′(s) ≤ 1 for all s > 0 (cf. Page 1090
of [4] for more details). Using the definition of V1 and (40), we have

p ◦ α ◦ μ1(ω(ξ)) ≤ V1(ξ) ≤ p ◦ β0 ◦ μ2(ω(ξ)) ∀ξ ∈ X . (48)

Therefore, (45) holds.
It follows from, in succession, the definition of V1, (37) and the fact that 0 <

p′(s) ≤ 1 for all s > 0 that for all ξ ∈ Ĉ\A
max
f ∈F̂(ξ)

〈∇V1(ξ), f 〉 ≤ p′(V2)γ̃1(|μ|ϕ(ω(ξ))) ≤ γ̃1(|μ|ϕ(ω(ξ))).

It follows with the fact that ∇V1(ξ) = 0 and ω(ξ) = 0 for all ξ ∈ A, and γ̃ and ϕ are
zero at zero that

max
f ∈F̂(ξ)

〈∇V1(ξ), f 〉 ≤ γ̃1(|μ|ϕ(ω(ξ))) ∀ξ ∈ Ĉ.

It follows with, in succession, the definition of V1, the mean value theorem, the last
inequality of (43), the fact that 0 < p′(s) ≤ 1 for all s > 0 that for all ξ ∈ D̂

V1(g)− V1(ξ) = p′(z)(Vs(g)− Vs(ξ)) ≤ γ̃2(|μ|ϕ(ω(ξ)))

where z lies on the segment joining Vs(ξ) to Vs(g). ��

4.3.6 Return toH

The following lemma is immediately obtained from Lemma 4 and (28).

Lemma 5 LetH be pre-iISS. Let ϕ, γ̃1, γ̃2 ∈ K∞ be generated by Lemma 3. Also, let
α, α ∈ K∞ and V1 : X → R≥0 come from Lemma 4. Then the following hold
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α(ω(ξ)) ≤ V1(ξ) ≤ ᾱ(ω(ξ)) ∀ξ ∈ X ,

for any (ξ, u) ∈ C with |u| ≤ ϕ(ω(ξ))

〈∇V1(ξ), f (ξ, u)〉 ≤ γ̃1(|u|),
for any (ξ, u) ∈ D with |u| ≤ ϕ(ω(ξ))

V1(g(ξ, u))− V1(ξ) ≤ γ̃2(|u|).
4.3.7 A characterization of 0-input pre-AS

To continue with the proof, we need a dissipation characterization of 0-input pre-AS,
which is stated in Proposition 2. This proposition is a unification and generalization
of [4, Proposition II.5].

Proposition 2 H is 0-input pre-AS if and only if there exist a smooth semi-proper
function W : X → R≥0, λ ∈ K and a continuous function ρ ∈ PD such that

〈∇W (ξ), f (ξ, u)〉 ≤ −ρ(ω(ξ))+ λ(|u|) ∀(ξ, u) ∈ C, (49)

W (g(ξ, u))−W (ξ) ≤ −ρ(ω(ξ))+ λ(|u|) λ(ξ, u) ∈ D. (50)

Proof Sufficiency is clear. We establish necessity. To this end, the following lemma
is needed.

Lemma 6 H is 0-input pAS if and only if there exist a smooth Lyapunov function
V : X → R≥0 and α1, α2, α3, χ ∈ K∞ and a nonzero smooth function q : R≥0 →
R>0 with the property that q(s) ≡ 1 for all s ∈ [0, 1] such that

α1(ω(ξ)) ≤ V (ξ) ≤ α2(ω(ξ)) ∀ ξ ∈ X , (51)

〈∇V (ξ), f (ξ, q(ω(ξ))Iν)〉 ≤ −α3 (ω(ξ)) ∀(ξ, q(ω(ξ))Iν) ∈ C with ω(ξ) > χ(|ν|),
(52)

V (g(ξ, q(ω(ξ))Iν))− V (ξ) ≤ −α3 (ω(ξ)) ∀(ξ, q(ω(ξ))Iν) ∈ D with ω(ξ) > χ(|ν|).
(53)

where I is the m × m identity matrix.

Proof See Appendix 1. ��
Now we can pursue the proof of Proposition 2. Let H be 0-input pre-AS. Recalling
Lemma 6, there exists a Lyapunov function V with the properties (51)–(53). Using
[26, Remark 2.4], we can show that there exists some α4 ∈ K∞ such that (52) and
(53) are equivalent to

〈∇V (ξ), f (ξ, q(ω(ξ))Iν)〉 ≤ −α3 (ω(ξ))+ α4 (|ν|) ∀(ξ, q(ω(ξ))Iν) ∈ C,

(54)

V (g(ξ, q(ω(ξ))Iν))− V (ξ) ≤ −α3 (ω(ξ))+ α4 (|ν|) ∀(ξ, q(ω(ξ))Iν) ∈ D.

(55)
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Given [4, Corollary IV.5], there exists λ ∈ K such that α4(sr) ≤ λ(s)λ(r) for all
(s, r) ∈ R≥0 × R≥0. So we have

〈∇V (ξ), f (ξ, u)〉 ≤ −α3(ω(ξ))+ λ(1/q(ω(ξ)))λ(|u|) ∀(ξ, u) ∈ C,

V (g(ξ, u))− V (ξ) ≤ −α3(ω(ξ))+ λ(1/q(ω(ξ)))λ(|u|) ∀(ξ, u) ∈ D

where u := q(ω(ξ))Iν. Define π : R≥0 → R≥0 as

π(r) =
∫ r

0

ds

c + θ(s)

where c > 0 and θ ∈ K are defined below. We note that π ∈ K. Let W (r) := π(V (r))
for all r ≥ 0. Taking the time derivative and difference of W (ξ) and recalling (54)
and (55) yield

〈∇W (ξ), f (ξ, u)〉 ≤ 〈∇V (ξ), f (ξ, u)〉
c + θ(V (ξ))

≤ − α3(ω(ξ))

c + θ(V (ξ))
+ λ(1/q(ω(ξ)))λ(|u|)

c + θ(V (ξ))
∀(ξ, u) ∈ C,

W (g(ξ, u))−W (ξ) ≤ V (g(ξ, u))− V (ξ)

c + θ(V (ξ))

≤ − α3(ω(ξ))

c + θ(V (ξ))
+ λ(1/q(ω(ξ)))λ(|u|)

c + θ(V (ξ))
∀(ξ, u) ∈ D.

It follows from (51) that

〈∇W (ξ), f (ξ, u)〉 ≤ − α3(ω(ξ))

c + θ ◦ α2(ω(ξ))
+ λ(1/q(ω(ξ)))λ(|u|)

c + θ ◦ α1(ω(ξ))
∀(ξ, u) ∈ C,

W (g(ξ, u))−W (ξ) ≤ − α3(ω(ξ))

c + θ ◦ α2(ω(ξ))
+ λ(1/q(ω(ξ)))λ(|u|)

c + θ ◦ α1(ω(ξ))
∀(ξ, u) ∈ D.

Let c := λ(g(0)) = λ(1). By the fact that q is smooth everywhere and the definition
of c, one can construct θ ∈ K such that

c + θ ◦ α1(s) ≥ λ(1/q(s)) s ∈ R≥0. (56)

It follows with (56) that

〈∇W (ξ), f (ξ, u)〉 ≤ −ρ(ω(ξ))+ λ(|u|) ∀(ξ, u) ∈ C,

W (g(ξ, u))−W (ξ) ≤ −ρ(ω(ξ))+ λ(|u|) ∀(ξ, u) ∈ D.

where ρ(s) := α3(s)
c+θ◦α2(s)

for all s ≥ 0. This proves the necessity. ��
As pre-iISS implies 0-input pre-AS, it follows from Proposition 2 that there exist

a smooth semi-proper function W , λ ∈ K and ρ ∈ PD such that (49) and (50) hold.
Define V : X → R≥0 by V (ξ) := W (ξ)+ V1(ξ) with V1 coming from Lemma 5. It
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follows from Lemma 5 and Proposition 2 that V is smooth everywhere and there exist
α1, α2 ∈ K∞ such that

α1(ω(ξ)) ≤ V (ξ) ≤ α2(ω(ξ)) ∀ξ ∈ X . (57)

We also have for any (ξ, u) ∈ C with |u| ≤ ϕ(ω(ξ))

〈∇V (ξ), f (ξ, u)〉 ≤ −ρ(ω(ξ))+ η(|u|),

and for any (ξ, u) ∈ D with |u| ≤ ϕ(ω(ξ))

V (g(ξ, u))− V (ξ) ≤ −ρ(ω(ξ))+ η(|u|)

where η(·) := γ̃ (·)+ λ(·) and γ̃ (·) := max{γ̃1(·), γ̃2(·)}. To show that V satisfies (3)
and (4), let χ = ϕ−1 and define

κ̂(r) := max
ω(ξ)≤χ(|u|),|u|≤r,u∈U

{ 〈∇V (ξ), f (ξ, u)〉 + ρ(ω(ξ)), V (g(x, u))− V (ξ)

+ ρ(ω(ξ))
}
.

Then

κ(r) := max{κ̂(r), η(r)}.

It is obvious that κ ∈ K. By considering two cases of u ∈ U in which |u| ≤ ϕ(ω(ξ))

and |u| ≥ ϕ(ω(ξ)), we get

〈∇V (ξ), f (ξ, u)〉 ≤ −ρ(ω(ξ))+ κ(|u|) ∀(ξ, u) ∈ C,

V (g(ξ, u))− V (ξ) ≤ −ρ(ω(ξ))+ κ(|u|) ∀(ξ, u) ∈ D.

These estimates together with (57) show that V is a smooth iISS Lyapunov function
for H. ��

5 iISS for sampled-data systems

A popular approach to design sampled-data systems is the emulation approach. The
idea is to first ignore communication constraints and design a continuous-time con-
troller for a continuous-time plant. Then to provide certain conditions under which
stability of the sampled-data control system in a certain sense is preserved in a digital
implementation. The emulation approach enjoys considerable advantages in terms of
the choice of continuous-time design tools. A central issue in the emulation design is
the choice of the sampling period guaranteeing stability of the sampled-data system
with the emulated controller. In a seminal work, Nešić et al. [17] developed an explicit
formula for a maximum allowable sampling period (MASP) that ensures asymptotic
stability of sampled-data nonlinear systems with emulated controllers.
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Here we show the effectiveness of Theorem 1 by establishing that the MASP devel-
oped in [17] also guarantees iISS for a sampled-data control system. Consider the
following plant model

ẋ p = f p(xp, u, w)

y = gp(xp)
(58)

where xp ∈ R
n p is the plant state, u ∈ R

nu is the control input, w ∈ R
nw is the

disturbance input, and y ∈ R
ny is the plant output. Assume that f p : Rn p × R

nu ×
R
nw → R

n p is locally Lipschitz and f p(0, 0) = 0. Since we follow the emulation
method, we assume that we know a continuous-time controller, which stabilizes the
origin of system (58) in the sense of iISS in the absence of network. We focus on
dynamic controllers of the form

ẋc = fc(xc, y)
u = gc(xc)

(59)

where xc ∈ R
nc is the controller state. Let gc : Rnc → R

nu be continuously differen-
tiable in its argument.

We consider the scenario where the plant and the controller are connected via a
digital channel. In particular, we assume that the plant is between a hold device and a
sampler. Transmissions occur only at some given time instants t j , j ∈ Z>0, such that
ε ≤ t j − t j−1 ≤ τMASP, where ε ∈ (0, τMASP] represents the minimum time between
any two transmission instants. Note that ε can be taken arbitrarily small and it is only
used to prevent Zeno behavior [10]. As in [17], a sampled-data control system with
an emulated controller of the form (59) can be modeled by

ẋ p = f p(xp, û, w) t ∈ [t j−1, t j ]
y = gp(xp)
ẋc = fc(xc, ŷ) t ∈ [t j−1, t j ]
u = gc(xc, ŷ)˙̂y = f̂ p(xp, xc, ŷ, û) t ∈ [t j−1, t j ]˙̂u = f̂c(xp, xc, ŷ, û) t ∈ [t j−1, t j ]

ŷ(t+j ) = y(t j )
û(t+j ) = u(t j )

(60)

where ŷ ∈ R
ny and û ∈ R

nu are, respectively, the vectors of most recently transmitted
plant and controller output values. These two variables are generated by the holding
function f̂ p and f̂c between two successive transmission instants. The use of zero-
order-hold devices leads to f̂ p = 0 and f̂c = 0 for instance. In addition, e :=
(ey, eu) ∈ R

ne denotes the sampling-induced errors where ey := ŷ − y ∈ R
ny and

eu := û − u ∈ R
nu . Given x := (xp, xc) ∈ R

nx , it is more convenient to transform
(60) into a hybrid system as
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ẋ = f (x, e, w)

ė = g(x, e, w)

τ̇ = 1

⎫⎬
⎭ τ ∈ [0, τMASP] (61)

x+ = x
e+ = 0
τ+ = 0

⎫⎬
⎭ τ ∈ [ε, τMASP] (62)

where τ ∈ R≥0 represents a clock and w denotes the disturbance input. We also
have the flow set C := {(x, e, τ, w) : τ ∈ [0, τMASP]} and the jump set D :=
{(x, e, τ, w) : τ ∈ [ε, τMASP]}.

To present our results, we need to make the following assumption.

Assumption 1 There exist locally Lipschitz functions V : Rnx → R≥0, W : Rne →
R≥0, a continuous function H : Rnx → R≥0, αx , αx , αe, αe ∈ K∞, α̃ ∈ PD, σ1, σ2 ∈
K and real numbers L , γ > 0 such that the following hold

αx (|x |) ≤ V (x) ≤ αx (|x |) ∀x ∈ R
nx , (63)

for all almost x ∈ R
nx , for all e ∈ R

ne and all w ∈ R
d

〈∇V (x), f (x, e, w)〉 ≤ −α̃(|x |)− α̃(W (e))− [H(x)]2 + γ 2[W (e)]2 + σ1(|w|)
(64)

moreover,

αe(|e|) ≤ W (e) ≤ αe(|e|) ∀e ∈ R
ne (65)

and for almost all e ∈ R
ne , for all x ∈ R

nx and all w ∈ R
d

〈
∂W (e)

∂e
, g(x, e, w)

〉
≤ LW (e)+ H(x)+ σ2(|w|). (66)

According to (63) and (64), the emulated controller guarantees the iISS property for
subsystem ẋ = f (x, e, w) with W and w as inputs. These properties can be verified
by analysis of robustness of the closed-loop system (58)–(59) with respect to input
and/or output measurement errors in the absence of digital network. Finally, sufficient
conditions under which (66) holds are the function g is globally Lipschitz and there

exists M > 0 such that
∣∣∣ ∂W (κ,e)

∂e

∣∣∣ ≤ M .

The last condition is on the MASP. As in [17], we need to have a system which has
a sufficiently high bandwidth so that the following assumption holds.

Assumption 2 Let τMASP satisfies τMASP < T (γ, L) where

T (γ, L) :=
⎧⎨
⎩

1
Lr tan−1(r) γ > L
1
L L = γ
1
Lr tanh−1(r) γ < L

(67)
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with r :=
√∣∣(γ /L)2 − 1

∣∣.
Now we are ready to give the main result of this section.

Theorem 3 Let Assumptions 1 and 2 hold. Then hybrid system (61) and (62) is iISS
with respect to the compact set A := {(x, e, τ ) : x = 0, e = 0}.
Proof To prove the theorem, we appeal to Theorem 1. In particular, we establish hybrid
system (61) and (62) is smoothly dissipative. On the other hand, hybrid system (61)
and (62) is also 0-input AS under Assumptions 1 and 2, as shown in [17]. Hence, by
the implication (iv) ⇒ (i) of Theorem 1, (69) is iISS. Toward the dissipative property
of (61) and (62), the following two lemmas are required to give the proof.

Lemma 7 Given c > 1 and λ ∈ (0, 1), define

T̃ (c, λ, L , γ ) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1
Lr tan−1

(
r(1−λ)

2
(

λ
λ+1

)(
γ
L

(
c+1

2

)
−1
)
+1+λ

)
L < γ

√
c

1
L

(
1−λ2

λ2+ γ
L (1+c)λ+1

)
L = γ

√
c

1
Lr tanh−1

(
r(1−λ)

2
(

λ
λ+1

)(
γ
L

(
c+1

2

)
−1
)
+1+λ

)
L > γ

√
c

where r :=
√∣∣(γ /L)2 − c

∣∣. Let φ : [0, T̃ ] → R be the solution to

φ̇ = −2Lφ − γ (φ2 + c) φ(0) = λ−1. (68)

Then φ(τ) ∈ [λ, λ−1] for all τ ∈ [0, T̃ ].
Lemma 8 For any fixed γ and L, T̃ (·, ·, γ, L) : (1,+∞)× (0, 1) → R>0 is contin-
uous and strictly decreasing to zero with respect to the first two arguments.

Let τMASP < T (γ, L) be given. For the sake of convenience, denote ξ :=
[x�, e�, τ ]�, F(ξ, w) := [ f (x, e, w)�, g(x, e, w)�, 1]� and G(ξ, w) := [x�, 0�,

0]�. Also, rewrite hybrid system (61) and (62) as

H :=
{

ξ̇ = F(ξ, w) (ξ,w) ∈ C
ξ+ = G(ξ, w) (ξ,w) ∈ D . (69)

It follows from Lemma 8 that there exist c > 1 and λ ∈ (0, 1) such that τMASP =
T̃ (c, λ, γ, L). Let the quadruple (c, λ, γ, L) generate φ via Lemma 7. Also, let

U (ξ) := V (x)+ γφ(τ)[W (e)]2.

By (63), (65) and the fact that φ(τ) ∈ [λ, λ−1] for all τ ∈ [0, τMASP] (cf. Lemma 7),
there exist α, α ∈ K∞ such that the following hold

α(|[x, e]|) ≤ U (ξ) ≤ α(|[x, e]|). (70)
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For any (ξ, w) ∈ C, we have

〈∇U (ξ), F(ξ, w)〉 = 〈V (x), f (x, e, w)〉 + 2γφ(τ)W (e)

〈
∂W

∂e
, g(x, e, w)

〉

+ γ φ̇(τ )[W (e)]2.

It follows from (64), (66) and (68) that

〈∇U (ξ), F(ξ, w)〉 ≤ − α̃(|x |)− α̃(W (e))− [H(x)]2 + γ 2[W (e)]2 + σ1(|w|)
+ 2γφ(τ)W (e)[LW (e)+ H(x)+ σ2(|w|)]
− γ [2Lφ + γ (φ2 + c)][W (e)]2
= −α̃(|x |)− α̃(W (e))− [γφ(τ)W (e)− H(x)]2
− (c − 1)γ 2[W (e)]2
+ σ1(|w|)+ 2γφ(τ)W (e)σ2(|w|)
≤ −α̃(|x |)− α̃(W (e))− (c − 1)γ 2[W (e)]2 + σ1(|w|)
+ 2γφ(τ)W (e)σ2(|w|).

From Young’s inequality, for any ε > 0 we have

〈∇U (ξ), F(ξ, w)〉 ≤ − α̃(|x |)− α̃(W (e))− (c − 1)γ 2[W (e)]2 + σ1(|w|)

+ εγ 2[W (e)]2 + [φ(τ)]2
ε

[σ2(|w|)]2.

It follows from Lemma 7 that

〈∇U (ξ), F(ξ, w)〉 ≤ − α̃(|x |)− α̃(W (e))− (c − ε − 1)γ 2[W (e)]2 + σ1(|w|)
+ 1

λ2ε
[σ2(|w|)]2.

Given σ(·) := σ1(·)+ 1
λ2ε
[σ2(·)]2, we get

〈∇U (ξ), F(ξ, w)〉 ≤ − α̃(|x |)− α̃(W (e))− (c − ε − 1)γ 2[W (e)]2 + σ(|w|)

Picking ε sufficiently small such that c − ε − 1 > 0 gives

〈∇U (ξ), F(ξ, w)〉 ≤ − α̃(|x |)− α̃(W (e))+ σ(|w|).

Then

〈∇U (ξ), F(ξ, w)〉 ≤ σ(|w|). (71)

123



 13 Page 26 of 37 Math. Control Signals Syst.  (2017) 29:13 

Also, for any (ξ, w) ∈ D, we have

U (ξ+) = V (x+)+ γφ(τ+)[W (e+)]2.

It follows from (69) that

U (ξ+) = V (x)+ γφ(0)[W (0)]2.

By the fact that W (0) = 0, we get

U (ξ+) ≤ V (x) ≤ U (ξ).

Thus

U (ξ+)−U (ξ) ≤ 0. (72)

for all (ξ, w) ∈ D. Given (70), (71) and (72), we conclude that (69) is smoothly
dissipative with ρ(ξ) ≡ 0 as in (7) and (8). ��
Remark 5 Variants of Theorem 3 including a (semiglobal) practical iISS property can
be obtained by appropriate modifications to Assumption 1. Moreover, motivated by
the connections between other engineering systems such as networked control systems
and event-triggered control systems with sampled-data systems, we foresee that the
application of our results to sampled-data systems can be useful for the study of the
iISS property for such hybrid systems.

To verify the effectiveness of Theorem 3, we give an illustrative example. Consider
the continuous-time plant with a bounded-input controller

ẋ = sin(x)+ u + w

u = − x

1+ x2 − sin(x)

where x, u, w ∈ R. Ignoring the digital channel, the closed-loop system is not ISS
but iISS. Given the digital communication effects, we write the system into a hybrid
system the same as (61) and (62)

ẋ = − x+ex
1+(x+ex )2 + sin(x)− sin(x + ex )+ eu + w t ∈ [t j−1, t j ]

ėu = 0 t ∈ [t j−1, t j ]
ėx = x+ex

1+(x+ex )2 + sin(x + ex )− eu − w t ∈ [t j−1, t j ]
eu(t

+
j ) = 0

ex (t
+
j ) = 0.

Taking V (x) = |x | ,W (e) = |e|, we have that the requirements in Assumption 1 are
satisfied with L = 3, γ = 10 and H(x) = |x |

1+x2 . The choice of parameters gives
τMASP  0.13.
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6 Conclusions

This paper was primarily concerned with Lyapunov characterizations of pre-iISS for
hybrid systems. In particular, we established that the existence of a smooth iISS Lya-
punov function is equivalent to pre-iISS which unified and extended results in [1,4].
We also related pre-iISS to dissipativity and detectability notions. Robustness of pre-
iISS to vanishing perturbations was investigated, as well. We finally illustrated the
effectiveness of our results by providing a maximum allowable sampling period guar-
anteeing iISS for sampled-data control systems.

Our results can be extended in several directions. In particular, further potential
equivalent characterizations of pre-iISS in terms of time-domain behaviors includ-
ing 0-input pre-AS plus uniform-bounded-energy-bounded-state as well as bounded
energy weakly converging state plus 0-input pre-local stability (cf. [2,5] for the exist-
ing equivalent characterizations for continuous-time systems). Moreover, other related
notions such as strong iISS, integral input-output-to-state stability and integral output-
to-state stability could be investigated.
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Appendix A: A comparison-like Lemma for hybrid systems

The lemma below is a generalization of [4, Lemma IV.2] for hybrid systems. The
proof of the lemma follows from similar lines as in the proof of [4, Corollary IV.3].
For more details, we refer the reader to [19].

Lemma 9 Let ρ ∈ PD with ρ(r) < r for all r > 0, and z : domz → R be a
hybrid arc with z(0, 0) ≥ 0. Consider a hybrid signal v : domv → R≥0 such that
domv = domz and for each j , v(·, j) is continuous. Furthermore, assume that
– for almost all t such that (t, j) ∈ domz\Γ (z)

ż(t, j) ≤ −ρ(max{z(t, j)+ v(t, j), 0});

– for all (t, j) ∈ Γ (z) it holds that

z(t, j + 1)− z(t, j) ≤ −ρ(max{z(t, j)+ v(t, j), 0}).

Then, there exists β ∈ KLL such that

z(t, j) ≤ max{β(z(0, 0), t, j),
∥∥v(t, j)

∥∥∞} ∀(t, j) ∈ dom z.
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Appendix B: Proof of Theorem 2

Before proceeding to the proof, we make the following observation followed by two
new notions.

Remark 6 It should be pointed out that there is no loss of generality in working with
KL functions rather than KLL functions (cf. [7, Lemma 6.1] for more details). More-
over, we note that max{a, b, c} ≤ a + b+ c ≤ max{3a, 3b, 3c} for all a, b, c ∈ R≥0.
Hence, H is pre-iISS with respect to A if and only if there exist α ∈ K∞, γ1, γ2 ∈ K
and β ∈ KL if for all u ∈ Le

γ1,γ2
, all ξ ∈ X , and all (t, j) ∈ domx , each solution pair

(x, u) to H satisfies

α(ω(x(t, j, ξ, u))) ≤max

{
β(ω(ξ), t + j),

∫ t

0
γ1(|u(s, i(s))|)ds,

∑
(t ′, j ′) ∈ Γ (u),

(0, 0) � (t ′, j ′) ≺ (t, j)

γ2(
∣∣u(t ′, j ′)

∣∣)
}
. (73)

For the sake of convenience, here we prefer to use the max-type estimate (73) rather
than (2). The next two notions are required later.

Definition 6 Let A ⊂ X be a compact set, and σ : X → R≥0 be an admissible
perturbation radius that is positive on X \A. Also, let ω be a proper indicator for
A on X . The hybrid system H is said to be semiglobally practically robustly pre-
integral input-to-state stable (SPR-pre-iISS) with respect to A if there exist α ∈ K∞,
β ∈ KL, γ1, γ2 ∈ K such that for each pair of positive real numbers (ε, r), there
exists δ∗ ∈ (0, 1) such that for any δ ∈ (0, δ∗] each solution pair (x, u) to Hδσ , the
δσ -perturbation of H, exists for all u ∈ Le

γ1,γ2
(r), all ξ ∈ X with ω(ξ) ≤ r and all

(t, j) ∈ dom x , and also satisfies

α(ω(x(t, j, ξ , u))) ≤ max

{
β(ω(ξ), t + j),

∫ t

0
γ1(|u(s, i(s))|)ds,

∑
(t ′, j ′) ∈ Γ (u),

(0, 0) � (t ′, j ′) ≺ (t, j)

γ2(
∣∣u(t ′, j ′)

∣∣)
}
+ ε.

Definition 7 Let A ⊂ X be a compact set, and σ : X → R≥0 be an admissible
perturbation radius that is positive on X \A. Also, let ω be a proper indicator for A on
X . The hybrid system H is said to be SPR-pre-iISS with respect to A on finite time
intervals if there exist α ∈ K∞, γ1, γ2 ∈ K and β ∈ KL such that for each triple of
positive real numbers (T, ε, r), there exists δ∗ ∈ (0, 1) such that for any δ ∈ (0, δ∗]
each solution pair (x, u) to Hδσ , the δσ -perturbation of H, exists for all u ∈ Le

γ1,γ2
(r),

all ξ ∈ X with ω(ξ) ≤ r and all (t, j) ∈ dom x with t + j ≤ T , and also satisfies
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α(ω(x(t, j, ξ , u))) ≤ max

{
β(ω(ξ), t + j),

∫ t

0
γ1(|u(s, i(s))|)ds,

∑
(t ′, j ′) ∈ Γ (u),

(0, 0) � (t ′, j ′) ≺ (t, j)

γ2(
∣∣u(t ′, j ′)

∣∣)
}
+ ε.

Here are the steps of the proof: (1) We show that semiglobal practical robust pre-iISS
on compact time intervals is equivalent to semiglobal practical robust pre-iISS on the
semi-infinite interval (cf. Proposition 3 below1); (2) we establish that if solutions of
some inflated system can be made arbitrarily close on arbitrary compact time intervals
to some solution of the original system when the original system is pre-iISS, then
the inflated system is semiglobally practically robustly pre-iISS (cf. Proposition 4
below). (3) we show that semiglobal practical robust pre-iISS implies pre-iISS (cf.
Proposition 5 below). (4) the combination of Propositions 4 and 5 provides what we
need, that is to say, the existence of an inflated hybrid system remaining pre-iISS under
sufficiently small perturbations when the original system is pre-iISS.

The first step provides a link between the last two definitions.

Proposition 3 The following are equivalent

(A) H is SPR-pre-iISS with respect to A on finite time intervals.
(B) H is SPR-pre-iISS with respect to A.

Proof The implication A) ⇒ B) is clear. To establish the implication B) ⇒ A), let
the gain functions α, β, γ1 and γ2 come from Remark 6. Take arbitrary strictly positive
ε, r , and let T > 0 be sufficiently large such that

β
(

max{r, r + ε, α−1(r + ε)}, s
)
≤ ε

2
∀s ∈ [T,∞). (74)

Let δ∗ ∈ (0, 1) come from the assumption of SPR-pre-iISS on finite time intervals,
corresponding to the values (2T, ε

2 , max
{
r, r + ε, α−1(r + ε)

}
). Let δ be fixed but

arbitrary with δ ∈ (0, δ∗]. So for all u ∈ Le
γ1,γ2

(r), for all ξ ∈ X with ω(ξ) ≤
max

{
r, r + ε, α−1(r + ε)

}
and for all (t, j) ∈ dom x with t + j ≤ 2T , each solution

pair (x, u) to Hδσ exists and satisfies

α(ω(x(t, j, ξ , u))) ≤ max

{
β(ω(ξ), t + j),

∫ t

0
γ1(|u(s, i(s))|)ds,

∑
(t ′, j ′) ∈ Γ (u),

(0, 0) � (t ′, j ′) ≺ (t, j)

γ2(
∣∣u(t ′, j ′)

∣∣)
}
+ ε

2
.

1 Without loss of generality, in this proposition, we assume that the length of hybrid time domain of interest
is infinite.
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Let (tkT , jkT ) := (t, j) with t+ j = kT, k = 0, 1, 2, . . . and (t, j) ∈ dom x . It follows
with the fact that ω(ξ) ≤ max

{
r, r + ε, α−1(r + ε)

}
, the fact that u ∈ Le

γ1,γ2
(r), and

the choice of T (cf. (74)) that

α(ω(x(tT , jT , ξ , u))) ≤ max

{
β(ω(ξ), T ),

∫ tT

0
γ1(|u(s, i(s))|)ds,

∑
(t ′, j ′) ∈ Γ (u),

(0, 0) � (t ′, j ′) ≺ (tT , jT )

γ2(
∣∣u(t ′, j ′)

∣∣)
}
+ ε

2

≤ max
{
β(max{r, r + ε, α−1(r + ε)}, T ), r

}
+ ε

2
≤ r + ε. (75)

It follows from (75) that the following hold

ω(x(tT , jT , ξ , u)) ≤ α−1(r + ε) ≤ max
{
r, r + ε, α−1(r + ε)

}
(76)

Exploiting the semigroup property of solutions, (76) and the fact that u ∈ Le
γ1,γ2

(r),

and the choice of δ, the solution pair (x, u) to Hδσ with the initial value x(tT , jT , ξ , u)

exists for all (t, j) ∈ dom x with T ≤ t + j ≤ 3T and it also satisfies

α(ω(x(t, j, x(tT , jT , ξ , u), u)))

≤ max

{
β(ω(x(tT , jT , ξ , u)), t + j),

∫ t

tT
γ1(|u(s, i(s))|)ds,

∑
(t ′, j ′) ∈ Γ (u),

(tT , jT ) � (t ′, j ′) ≺ (t, j)

γ2(
∣∣u(t ′, j ′)

∣∣)
}
+ ε

2
.

Again it follows from (76), the fact that u ∈ Le
γ1,γ2

(r), and (74) that

α(ω(x(t2T , j2T , x(tT , jT , ξ , u), u)))

≤ max

{
β(α−1(r + ε), 2T ),

∫ t2T

tT
γ1(|u(s, i(s))|)ds,

∑
(t ′, j ′) ∈ Γ (u),

(tT , jT ) � (t ′, j ′) ≺ (t2T , j2T )

γ2(
∣∣u(t ′, j ′)

∣∣)
}
+ ε

2

≤ max
{
β(max{r, r + ε, α−1(r + ε)}, 2T ), r

}
+ ε

2
≤ r + ε.
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By repeating this procedure, the following hold for all (t, j) ∈ dom x with kT ≤
t + j ≤ (k + 2)T, k = 2, 3, 4, . . .

α(ω(x(t, j, x(tkT , jkT , ξ , u), u)))

≤ max

{
β(ω(x(tkT , jkT , ξ , u)), t + j),

∫ t

tkT
γ1(|u(s, i(s))|)ds,

∑
(t ′, j ′) ∈ Γ (u),

(tkT , jkT ) � (t ′, j ′) ≺ (t, j)

γ2(
∣∣u(t ′, j ′)

∣∣)
}
+ ε

2

≤ max

{∫ t

tkT
γ1(|u(s, i(s))|)ds,

∑
(t ′, j ′) ∈ Γ (u),

(tkT , jkT ) � (t ′, j ′) ≺ (t, j)

γ2(
∣∣u(t ′, j ′)

∣∣)
}
+ ε.

So we have for all ξ ∈ X with ω(ξ) ≤ max
{
r, r + ε, α−1(r + ε)

}
, for all u ∈

Le
γ1,γ2

(r), and for all (t, j) ∈ dom x with t + j ≥ T

α(ω(x(t, j, ξ , u))) ≤ max

{∫ t

0
γ1(|u(s, i(s))|)ds,

∑
(t ′, j ′) ∈ Γ (u),

(0, 0) � (t ′, j ′) ≺ (t, j)

γ2(
∣∣u(t ′, j ′)

∣∣)
}

+ ε. (77)

We also get for all ξ ∈ X with ω(ξ) ≤ max
{
r, r + ε, α−1(r + ε)

}
, for all u ∈

Le
γ1,γ2

(r), and for all (t, j) ∈ domx with 0 ≤ t + j < T

α(ω(x(t, j, ξ , u))) ≤ max

{
β(ω(ξ), t + j),

∫ t

0
γ1(|u(s, i(s))|)ds,

∑
(t ′, j ′) ∈ Γ (u),

(0, 0) � (t ′, j ′) ≺ (t, j)

γ2(
∣∣u(t ′, j ′)

∣∣)
}
+ ε

2
. (78)

Combining (77) and (78) gives

α(ω(x(t, j, ξ , u))) ≤max
{
β(ω(ξ), t + j),

∥∥u(t, j)
∥∥

γ1,γ2

}
+ ε

which completes the proof. ��
The following concepts, borrowed from [10], are required to give Proposition 4.

Definition 8 Two hybrid signals x : dom x → R
n and y : domy → R

n are said to be
(T, ε)-close if

1. for each (t, j) ∈ dom x with t + j ≤ T there exists s such that (s, j) ∈ domy,
with |t − s| ≤ ε and |x(t, j)− y(s, j)| ≤ ε;
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2. for each (t, j) ∈ dom y with t + j ≤ T there exists s such that (s, j) ∈ dom x ,
with |t − s| ≤ ε and |x(t, j)− y(s, j)| ≤ ε.

Definition 9 (Reachable Sets) Given an arbitrary compact set K0 ⊂ X and T ∈ R≥0,
the reachable set from K0 in hybrid time less or equal to T is the set

R≤T (K0) = {x(t, j, ξ, u) : x ∈ 	H(ξ), ξ ∈ K0, t + j ≤ T }.

We now give a result stating that if solutions to H and solutions to Hδσ , the δσ

perturbation of H, are (T, ε)-close when H is pre-iISS, then the system H is SPR-pre-
iISS.

Proposition 4 Let A ⊂ X be a compact set and σ : X → R≥0 be an admissible
perturbation radius that is positive on X \A. Also, let ω be a proper indicator for A
on X . Assume that the following conditions hold

(a) H is pre-iISS with respect to A.
(b) For each triple (T, ε̃, r) of positive real numbers there exists some δ ∈ (0, 1) such

that each solution pair (x, u) toHδσ , the δσ -perturbation ofH, withω(ξ) ≤ r+δ

and u ∈ Le
γ1,γ2

(r) there exist a solution pair (x, w) to H with ω(ξ) ≤ r , and∥∥w(s, j)
∥∥

γ1,γ2
≤ ∥∥u(t, j)

∥∥
γ1,γ2

for all |t − s| ≤ ε̃, (s, j) ∈ dom w and (t, j) ∈
dom u such that x and x are (T, ε̃)-close.

Then H is SPR-pre-iISS with respect to A.

Proof This is proved using steps in the proof of [28, Proposition 3]. From the result
of Proposition 3, we only need to show that H is SPR-pre-iISS with respect to A on
finite time intervals. Assume that σ : X → R≥0 is an admissible perturbation radius
that is positive on ξ ∈ X \A. Let ω be a proper indicator for A on X . Also, let the
functions α ∈ K∞, β ∈ KL and γ1, γ2 ∈ K come from Definition 7. Let the triple of
(T, ε, r) be given. Let K0 := {ξ ∈ X : ω(ξ) ≤ r}. It is clear that K0 is a compact set.
Let R≤T (K0) be the reachable set from K0 for H. It follows from [10, Lemma 6.16]
that the set R≤T (K0) is compact because H is pre-iISS. Using the continuity of ω and
β, and the fact that β(s, l) → 0 as l →+∞, let ε̃1 > 0 be sufficiently small so that

β(s, l − ε̃1)− β(s, l) ≤ ε

4
∀s ≤ r, l ≥ 0.

By convention, l = l − ε̃1 if l − ε̃1 < 0.
Let ε̃2 be small enough such that for all x ∈ R≤T (K0) and x ∈ R≤T (K0 + ε̃2B)

satisfying |x − x | ≤ ε̃2 we have

α(ω(x)) ≤ α(ω(x))+ ε

4
,

β(ω(x), l) ≤ β(ω(x), l)+ ε

4
l ≥ 0.

Let ε̃ := min{ε̃1, ε̃2}. Let the data (T, ε̃, r) generate δ > 0 from the item (b) of
Proposition 4. From this item, for each solution pair (x, u) to Hδσ with ξ ∈ (K0+δB)
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and u ∈ Le
γ1,γ2

(r) there exists some solution pair (x, w) to H with ξ ∈ K0 and∥∥w(s, j)
∥∥

γ1,γ2
≤ ∥∥u(t, j)

∥∥
γ1,γ2

for all |t − s| ≤ ε̃, (s, j) ∈ dom w and (t, j) ∈ dom u
such that x and x are (T, ε̃)-close. It follows from the item (a) of Proposition 4 and
the definition of ε̃ that for all (t, j) ∈ dom x with t + j ≤ T , each solution pair (x, u)

to Hδσ with ξ ∈ (K0 + δB) and u ∈ Le
γ1,γ2

(r) satisfies

α(ω(x(t, j, ξ , u)))

≤ α(ω(x(s, j, ξ, w)))+ ε

4

≤ max

{
β(ω(ξ), t + j − ε̃),

∫ s

0
γ1(|w(τ, i(τ ))|)dτ,

∑
(t ′, j ′) ∈ Γ (w),

(0, 0) � (t ′, j ′) ≺ (s, j)

γ2(
∣∣w(t ′, j ′)

∣∣)
}
+ ε

4

≤ max

{
β(ω(ξ), t + j),

∫ s

0
γ1(|w(τ, i(τ ))|)dτ,

∑
(t ′, j ′) ∈ Γ (w),

(0, 0) � (t ′, j ′) ≺ (s, j)

γ2(
∣∣w(t ′, j ′)

∣∣)
}

+ ε

2

≤ max

{
β(ω(ξ), t + j),

∫ t

0
γ1(|u(τ, i(τ ))|)dτ,

∑
(t ′, j ′) ∈ Γ (u),

(0, 0) � (t ′, j ′) ≺ (t, j)

γ2(
∣∣u(t ′, j ′)

∣∣)
}

+ ε.

This completes the poof. ��
Remark 7 The condition (b) of Proposition 4 is not restrictive. With same augments
as those in proof of [28, Proposition 1], one can provide sufficient conditions under
which the condition (b) of Proposition 4 holds. In particular, pre-iISS together with
the Standing Assumptions is enough to get the desired property.

Now we pass from semiglobal results to global results. The following theorem
shows that semiglobal practical robust pre-iISS implies pre-iISS.

Proposition 5 LetA ⊂ X be a compact set. Assume that the hybrid systemH is SPR-
pre-iISS with respect to A. There exists an admissible perturbation radius σ2 : X →
R≥0 that is positive on X \A such that the hybrid system Hσ2 , the σ2-perturbation of
H, is pre-iISS with respect to A.

Proof Inspired by the proof of [10, Lemma 7.19], we show the conclusion. According
to the SPR-pre-iISS property of H, let ω be a proper indicator for a compact set A
on X . Also, let σ1 : X → R≥0 be an admissible perturbation radius that is positive
on X \A. Moreover, let the gain functions α ∈ K∞, β ∈ KL and γ1, γ2 ∈ K come
from Definition 6. Pick a sequence {rm}m∈Z such that rm+1 ≥ 4β(rm, 0) ≥ 4rm > 0
for each m ∈ Z, limm→−∞ rm = 0 and limm→+∞ rm = +∞. By SPR-pre-iISS with
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respect to A, for each m ∈ Z, there exists some δm ∈ (0, 1) such that each solution
pair (x, u) to Hδmσ1 with u ∈ Le

γ1,γ2
(rm) and ω(ξ) ≤ rm satisfies

α(ω(x(t, j, ξ , u))) ≤β(ω(ξ), t + j)+
∫ t

0
γ1(|u(s, i(s))|)ds

+
∑

(t ′, j ′) ∈ Γ (u),

(0, 0) � (t ′, j ′) ≺ (t, j)

γ2(
∣∣u(t ′, j ′)

∣∣)+ rm−1

2
(79)

for all (t, j) ∈ domx . The following also hold

α(ω(x(t, j, ξ , u))) ≤ rm+1 +
∫ t

0
γ1(|u(s, i(s))|)ds+

∑
(t ′, j ′) ∈ Γ (u),

(0, 0) � (t ′, j ′) ≺ (t, j)

γ2(
∣∣u(t ′, j ′)

∣∣)

for all (t, j) ∈ domx . It follows with the estimate (79) that there exists some τm > 0
such that each solution pair (x, u) with u ∈ Le

γ1,γ2
(rm) and ω(ξ) ≤ rm satisfies

α(ω(x(t, j, ξ , u))) ≤rm−1+
∫ t

0
γ1(|u(s, i(s))|)ds+

∑
(t ′, j ′) ∈ Γ (u),

(0, 0) � (t ′, j ′) ≺ (t, j)

γ2(
∣∣u(t ′, j ′)

∣∣)

for all (t, j) ∈ domx with t + j ≥ τm . Pick any admissible perturbation radius
σ2 : X → R≥0 that is positive on X \A such that σ2(ξ) ≤ min{δm−1, δm, δm+1}σ1(ξ)

for all rm−1 ≤ ω(ξ) ≤ rm . Then, for every m ∈ Z and for each solution pair (x, u) to
Hσ2 with u ∈ Le

γ1,γ2
(rm) and ω(ξ) ≤ rm , the following hold

(i) α(ω(x(t, j, ξ , u))) ≤ rm+1 +
∫ t

0 γ1(|u(s, i(s))|)ds + ∑
(t ′, j ′) ∈ Γ (u),

(0, 0) � (t ′, j ′) ≺ (t, j)

γ2(
∣∣u(t ′, j ′)

∣∣) for all (t, j) ∈ domx .
(ii) There exists some τm > 0 such that

α(ω(x(t, j, ξ , u))) ≤ rm−1 +
∫ t

0
γ1(|u(s, i(s))|)ds

+
∑

(t ′, j ′) ∈ Γ (u),

(0, 0) � (t ′, j ′) ≺ (t, j)

γ2(
∣∣u(t ′, j ′)

∣∣)

∀(t, j) ∈ domx with t + j ≥ τm .

Let β̃ : R≥0 × R≥0 → R≥0 be
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β̃(r, s) = sup

{
α(ω(x(t, j, ξ , u)))−

∫ t

0
γ1(|u(s, i(s))|)ds

−
∑

(t ′, j ′) ∈ Γ (u),

(0, 0) � (t ′, j ′) ≺ (t, j)

γ2(
∣∣u(t ′, j ′)

∣∣) : x ∈ 	Hσ2
(ξ),

u ∈ Le
γ1,γ2

(r), ω(ξ) ≤ r, t + j ≥ s

}
.

By the very definition, r → β̃(r, s) is nondecreasing for each s ≥ 0. We also get
α(r) ≤ β̃(r, 0) for all r ≥ 0. The item (i) implies that β̃(r, 0) is bounded. By the
definition of β̃, s → β̃(r, s) is nonincreasing, and so β̃(r, s) is bounded for all s ≥ 0.
From the item (ii), for each r ≥ 0, we get β̃(r, s) → 0 as s → +∞. So β̃ has all
properties required of a KL function. Consequently, the existence of such a β̃ implies
that for all (t, j) ∈ dom x , each solution pair (x, u) to Hσ2 with u ∈ Le

γ1,γ2
and ξ ∈ X

satisfies

α(ω(x(t, j, ξ , u))) ≤ β̃(ω(ξ), t + j)+
∫ t

0
γ1(|u(s, i(s))|)ds

+
∑

(t ′, j ′) ∈ Γ (u),

(0, 0) � (t ′, j ′) ≺ (t, j)

γ2(
∣∣u(t ′, j ′)

∣∣)

≤ max

{
3β̃(ω(ξ), t + j), 3

∫ t

0
γ1(|u(s, i(s))|)ds,

3
∑

(t ′, j ′) ∈ Γ (u),

(0, 0) � (t ′, j ′) ≺ (t, j)

γ2(
∣∣u(t ′, j ′)

∣∣)
}
.

Setting β(·, ·) := 3β̃(·, ·), γ 1(·) := 3γ1(·) and γ 2(·) := 3γ2(·) completes the proof.
��

As seen, the combination of Proposition 4 and Proposition 5 shows robustness of
pre-iISS in terms of sufficiently small perturbations. This finishes the proof.

Appendix C: Proof of Lemma 6

Sufficiency immediately follows from (52) and (53) with ν = 0. To establish necessity,
by the Converse Lyapunov Theorem [8, Theorem 3.13], there exist a smooth Lyapunov
function V and α1, α2, α3 ∈ K∞ such that

α1(ω(ξ)) ≤ V (ξ) ≤ α2(ω(ξ)) ∀ξ ∈ X ,

〈∇V (ξ), f (ξ, 0)〉 ≤ −α3 (ω(ξ)) ∀ξ ∈ C,

V (g(ξ, 0))− V (ξ) ≤ −α3(ω(ξ)) ∀ξ ∈ D.
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Define the following continuous function δ : R≥0 × R≥0 → R by

δ(s, r) := max
{

max
{ 〈∇V (ξ), f (ξ, μ)〉 + α3(|ξ |) : ω(ξ) = s, |μ| = r

}
,

max
{
V (g(ξ, μ))− V (ξ)+ α3(|ξ |) : ω(ξ) = s, |μ| = r

}}
.

It should be pointed out that δ(s, 0) < 0 for all s > 0 asH is 0-input pre-AS. Applying
Lemma 3.1 in [23] to δ(·, ·) gives that there exist some χ ∈ K∞ and a smooth function
q : R≥0 → R>0 such that

(a) q(s) �= 0 for all s ≥ 0 and q(s) ≡ 1 for all s ∈ [0, 1];
(b) δ(s, p) < 0 for each pair (s, r) ∈ R≥0 × R≥0 for which χ(r) < s, and each

p ≤ q(s)r .

We use these properties to establish that (52) and (53) hold. Let I be the m × m
identity matrix. Assume that ω(ξ) > χ(|ν|) and let s := ω(ξ) and r := |ν|. By the
very definition of δ,

max{〈∇V (ξ), f (ξ, q(ω(ξ))Iν)〉 + α3(|ξ |), V (g(ξ, q(ω(ξ))Iν))− V (ξ)+ α3(|ξ |)}
≤ δ(s, p)

where

p = |q(ω(ξ))Iν| ≤ q(s)r.

It follows from the fact that s > χ(r) and using the item (b) that δ is negative
everywhere. This completes the proof.
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