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ECE517, Fall 2021 PROBLEM SET 2 Solution

1. Consider the class of scalar plants

ẏ = ay + bu, a ∈ R, b > 0 (1)

In Section 3.1.1 of class notes, it is shown that the controller (19) is a universal regulator for this class of plants
with the help of the Lyapunov function V (y) = y2/2. For the same controller, find a Lyapunov function more
similar to the Lyapunov function (3) used in Example 1 (i.e., one that depends also on a, b, k) such that convergence
of y to 0 in closed loop can be proved by a direct application of Theorem 2.

Solution. The controller is given by eq. (19)

k̇ = y2,

u = −ky.
Then the closed-loop system is in the form

ẏ = (a− bk)y,
k̇ = y2.

Consider the Lyapunov function

V (y, k) :=
y2

2b
+

(k − a/b− 1)2

2
.

Its derivative along the solution to the closed-loop system satisfies

V̇ (y, k) =
y

b
· ẏ +

(
k − a

b
− 1
)
k̇

=
a

b
y2 − ky2 + ky2 +

a

b
y2 − y2

= −y2

= −W (y, k) ≤ 0,

where W (y, k) := y2 is positive semidefinite (nonnegative definite). As V is radially unbounded, all solutions (y, k)
remain bounded. Hence Theorem 2 implies that W (y(t), k(t))→ 0 as t→ 0, that is, all y converge to 0.

2. Consider again the class of scalar plants (1). Show that there doesn’t exist a linear universal regulator for this
class of plants, i.e., a universal regulator of the form (22) from class notes with f and h linear functions. Here the
dimension of z can be arbitrary. (Thus you cannot use the non-existence result for rational controllers proved in
class, because it is restricted to scalar z.)

Solution. A linear regulator is of the form

ż = Az +By,

u = Hz + ky,

where z ∈ Rn and u ∈ R (and A,B,H, k are of suitable dimensions). Then the closed-loop system is(
ż
ẏ

)
=

(
A B
bH a+ bk

)(
z
y

)
.

Let
F =

(
A B
bH a+ bk

)
.

We will show that, for any A,B,H, k, there exists a ∈ R and b > 0 such that F is not Hurwitz. Indeed, recall
that the trace of a matrix is the sum of its eigenvalues. Hence a necessary condition for F to be Hurwitz is that
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tr(F ) = tr(A) + a + bk < 0. However, for any A ∈ Rn×n and k ∈ R, there are sufficiently large a ∈ R and
sufficiently small b > 0 such that tr(F ) = a+ bk+ tr(A) > 0 (e.g., b = 1 and a = | tr(A)|+ |k|+1). Hence there
doesn’t exist a linear universal regulator for this class of plants.

3. Design a universal regulator for the class of scalar plants

ẏ = aϕ(y) + bu, a ∈ R, b > 0

where ϕ(·) is a fixed known function. Justify rigorously that it works.

Solution. Consider the candidate Lyapunov function

V (y, k) :=
y2

2b
+

(k − a/b)2

2
.

Its derivative along the state trajectory is

V̇ (y, k) =
y

b
ẏ +

(
k − a

b

)
k̇

=
a

b
(yφ(y)− k̇) + kk̇ + yu.

Hence we select the regulator

k̇ = yϕ(y),

u = −y − kϕ(y),

which gives V̇ (y, k) = −y2 = −W (y, k) ≤ 0, where W (y, k) := y2 is positive semidefinite (nonnegative definite).
Since V is radially unbounded, all solutions (y, k) remain bounded. Hence Theorem 2 implies that W (y(t), k(t))→
0 as t→ 0, that is, all y converge to 0.

4. Consider a linear system
ẋ = Ax+Bu

and assume that A is Hurwitz, so that we have ‖eAt‖ ≤ ce−λ0t for some c, λ0 > 0. Prove the following:
a) If u ∈ L2 or u is bounded, then x is bounded. (Hint: use the variation-of-constants formula and the Cauchy-

Schwartz and Hölder’s inequalities.)
b) If u ∈ L2 or u→ 0, then x→ 0. (Hint: use part a).)

Solution.

a) By the variation-of-constants formula, we have

x(t) = eAtx(0) +

∫ t

0
eA(t−s)Bu(s)ds

for all t ∈ [0,∞). Hence

‖x(t)‖ =
∥∥∥∥eAtx(0) + ∫ t

0
eA(t−s)Bu(s)ds‖

∥∥∥∥
≤ ‖eAtx(0)‖+

∥∥∥∥∫ t

0
eA(t−s)Bu(s)ds

∥∥∥∥
≤ ‖eAt‖‖x(0)‖+

∫ t

0
‖eA(t−s)‖‖B‖‖u(s)‖ds

≤ ce−λ0t‖x(0)‖+
∫ t

0
ce−λ0(t−s)‖B‖‖u(s)‖ds.

(2)

If u ∈ L2, then there exists M1 > 0 such that∫ ∞
0
‖u(s)‖2ds ≤M1.
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Hence applying the Cauchy-Schwartz inequality to (2) gives that

‖x(t)‖ ≤ ce−λ0t‖x(0)‖+
∫ t

0
ce−λ0(t−s)‖B‖‖u(s)‖ds

≤ ce−λ0t‖x(0)‖+ c‖B‖

√(∫ t

0
e−2λ0(t−s)ds

)(∫ t

0
‖u(s)‖2ds

)

≤ ce−λ0t‖x(0)‖+ c‖B‖

√
(1− e−2λ0t)M1

2λ0

≤ c‖x(0)‖+ c‖B‖
√
M1

2λ0
,

that is, x is bounded.
On the other hand, if u is bounded, then there exists M2 > 0 such that

‖u(s)‖ ≤M2 ∀ s ∈ [0,∞).

Hence (2) implies that

‖x(t)‖ ≤ ce−λ0t‖x(0)‖+
∫ t

0
ce−λ0(t−s)‖B‖‖u(s)‖ds

≤ ce−λ0t‖x(0)‖+ c‖B‖M2

∫ t

0
e−λ0(t−s)ds

= ce−λ0t‖x(0)‖+ (1− e−λ0t)c‖B‖M2

λ0

≤ c‖x(0)‖+ c‖B‖M2

λ0
,

that is, x is bounded.
b) Consider an arbitrary ε > 0. If u ∈ L2, the Cauchy’s convergence test shows that there exists T1 > 0 such that∫ τ

T1

‖u(s)‖2ds ≤ λ0ε
2

2c2‖B‖2
∀ τ ≥ T1.

As the system of interest is time-invariant, the variation-of-constants formula implies that for all t ≥ T1, we
have

x(t) = eA(t−T1)x(T1) +

∫ t

T1

eA(t−s)Bu(s)ds,

and thus

‖x(t)‖ =
∥∥∥∥eA(t−T1)x(T1) +

∫ t

T1

eA(t−s)Bu(s)ds‖
∥∥∥∥

≤ ce−λ0(t−T1)‖x(T1)‖+ c‖B‖
∫ t

T1

e−λ0(t−s)‖u(s)‖ds

≤ ce−λ0(t−T1)‖x(T1)‖+ c‖B‖

√(∫ t

T1

e−2λ0(t−s)ds

)(∫ t

T1

‖u(s)‖2ds
)

= ce−λ0(t−T1)‖x(T1)‖+ c‖B‖

√
1− e−2(t−T1)

2λ0

λ0ε
2

2c2‖B‖2

≤ ce−λ0(t−T1)‖x(T1)‖+ c‖B‖

√
1

2λ0

λ0ε
2

2c2‖B‖2

= ce−λ0(t−T1)‖x(T1)‖+
ε

2
.
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Moreover, from a) we see that

‖x(T1)‖ ≤ c‖x(0)‖+ c‖B‖
√
M1

2λ0
=: E1.

Hence for all
t ≥ T1 +

| ln(2cE1/ε)|
λ0

,

we have ‖x(t)‖ ≤ ε. As ε > 0 is arbitrary, we get x→ 0.
On the other hand, if u→ 0. Then there exists T2 > 0 such that

u(s) ≤ λ0ε

2c‖B‖
∀ s ≥ T2.

Again, by the time-invariance property of the system and the variation-of-constants formula, for all t ≥ T2 we
get

x(t) = eA(t−T2)x(T2) +

∫ t

T2

eA(t−s)Bu(s)ds,

and thus

‖x(t)‖ =
∥∥∥∥eA(t−T2)x(T2) +

∫ t

T2

eA(t−s)Bu(s)ds‖
∥∥∥∥

≤ ce−λ0(t−T2)‖x(T2)‖+ c‖B‖
∫ t

T2

e−λ0(t−s)‖u(s)‖ds

≤ ce−λ0(t−T2)‖x(T2)‖+
λ0ε

2

∫ t

T2

e−λ0(t−s)ds

= ce−λ0(t−T2)‖x(T2)‖+
λ0ε

2

1− e−λ0(t−T2)

λ0

≤ ce−λ0(t−T2)‖x(T2)‖+
ε

2
.

Moreover, from a) we see that

‖x(T2)‖ ≤ c‖x(0)‖+
c‖B‖M2

λ0
=: E2.

Hence for all
t ≥ T2 +

| ln(2cE2/ε)|
λ0

,

we have ‖x(t)‖ ≤ ε. As ε > 0 is arbitrary, we get x→ 0.
We cannot use Barbalat’s lemma to conclude that u ∈ L2 implies u→ 0, since u is not necessarily continuous.

5. Simulate the control systems described in Examples 13.16 and 13.17 in Khalil’s Nonlinear Systems book (3rd
edition, pp. 532–534) and confirm the unstable behavior of closed-loop solutions.

Solution.

1) In Examples 13.16, we consider the second-order system

η̇ = −η + η2ξ,

ξ̇ = v,

and the linear feedback control
v = −kξ, k > 0.

The origin is (locally) exponentially stable, and the region of attraction is {ηξ < 1+k}. The Simulink diagram
and the simulation result can be found in Fig. 1.
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Fig. 1: Problem 5.1)

2) In Examples 13.17, we consider the third-order system

η̇ = −1

2
(1 + ξ2)η

3,

ξ̇1 = ξ2,

ξ̇2 = v,

and the linear feedback control
v = −k2ξ1 − 2kξ2, k > 0.

If η20 > 1, the system will have a finite escape time if k is chosen large enough. The Simulink diagram and
the simulation result can be found in Fig. 2.
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Fig. 2: Problem 5.2)




