ECES17, Fall 2021 PROBLEM SET 2 Solution

1. Consider the class of scalar plants
¥ = ay + bu, a€R, b>0 (1)

In Section 3.1.1 of class notes, it is shown that the controller (19) is a universal regulator for this class of plants
with the help of the Lyapunov function V(y) = y?/2. For the same controller, find a Lyapunov function more
similar to the Lyapunov function (3) used in Example 1 (i.e., one that depends also on a, b, k) such that convergence
of y to 0 in closed loop can be proved by a direct application of Theorem 2.

Solution. The controller is given by eq. (19)
=y
u = —ky.

Then the closed-loop system is in the form

Consider the Lyapunov function ) )
v (k—a/b—1)
V(y k) ==+ —"———.
Its derivative along the solution to the closed-loop system satisfies

V<y,k>:€.g+(k_ﬁ_1);;;

b b
a a

— 7y2 _ky2+ky2 + 7y2 _y2
b b

= —y2

where W (y, k) := 42 is positive semidefinite (nonnegative definite). As V' is radially unbounded, all solutions (y, k)
remain bounded. Hence Theorem 2 implies that W (y(t), k(t)) — 0 as ¢ — 0, that is, all y converge to 0.

2. Consider again the class of scalar plants (1). Show that there doesn’t exist a linear universal regulator for this
class of plants, i.e., a universal regulator of the form (22) from class notes with f and h linear functions. Here the
dimension of z can be arbitrary. (Thus you cannot use the non-existence result for rational controllers proved in
class, because it is restricted to scalar z.)

Solution. A linear regulator is of the form
2= Az + By,
u= Hz+ ky,
where z € R" and v € R (and A, B, H, k are of suitable dimensions). Then the closed-loop system is

(y> - (ﬁl afbk> <y>

A B
F:(bH a+bk>'

We will show that, for any A, B, H, k, there exists a € R and b > 0 such that F' is not Hurwitz. Indeed, recall
that the trace of a matrix is the sum of its eigenvalues. Hence a necessary condition for F' to be Hurwitz is that

Let



tr(F) = tr(A) + a + bk < 0. However, for any A € R™*™ and k € R, there are sufficiently large a € R and
sufficiently small b > 0 such that tr(F) = a+ bk +tr(A) > 0 (e.g., b=1and a = | tr(A)|+ |k| + 1). Hence there
doesn’t exist a linear universal regulator for this class of plants.

3. Design a universal regulator for the class of scalar plants
v = ap(y) + bu, acR, b>0
where ¢(-) is a fixed known function. Justify rigorously that it works.

Solution. Consider the candidate Lyapunov function

2 — a/b)?
V(y,k)::gb—l—(k Q/b).

Its derivative along the state trajectory is

V(y,k):%er (k—%)k

- %(y¢(y) — k) + kk + yu.

Hence we select the regulator

k= yo(y),
u=—y—ko(y),

which gives V (y, k) = —y> = =W (y, k) < 0, where W (y, k) := 3 is positive semidefinite (nonnegative definite).
Since V is radially unbounded, all solutions (y, k) remain bounded. Hence Theorem 2 implies that W (y(¢), k(t)) —
0 as t — 0, that is, all y converge to 0.

4. Consider a linear system
i = Az + Bu

and assume that A is Hurwitz, so that we have [e|| < ce=*! for some ¢, Ao > 0. Prove the following:
a) If u € Ly or u is bounded, then = is bounded. (Hint: use the variation-of-constants formula and the Cauchy-
Schwartz and Hélder’s inequalities.)
b) If u € Ly or u — 0, then x — 0. (Hint: use part a).)

Solution.

a) By the variation-of-constants formula, we have

¢
z(t) = ez (0) +/ A=) Bu(s)ds
0

t
/ A% Bu(s)ds
0

t
< HeAtle(O)IH/O e IBIl[u(s)ds

for all ¢ € [0, 00). Hence

t
lz(t)|| = ||e*2(0) + / eA=%) Bu(s)ds||
0

< et a(0)]| +

2

t
< ce” ! |z(0)]] +/ ce | B|l||u(s)||ds,
0
If w € Lo, then there exists M7 > 0 such that

/ lu(s)|2ds < M.
0



Hence applying the Cauchy-Schwartz inequality to (2) gives that

t
lz(®)]] < ce™"|lz(0)]] +/ ce | Bl|Ju(s)||ds

ce 20 !+cHBH\/ 2l )(/ Jus |2ds)
e (0)] +c||B||\/ R

M,y
< cllz(0) +C”B”V2T0’
that is, x is bounded.

On the other hand, if u is bounded, then there exists M5 > 0 such that

Ju(s)|| < My Vs €[0,00).

Hence (2) implies that

t
lz(®)]] < ce™*|l2(0)]] +/0 ce | B]l|Ju(s)||ds

¢
< ce’)‘“tHx(O)H + cHB||M2/ e Mo(t=s)qg
0

(1 — e )| B|| My
Ao

= ce” ! [(0)| +

c||B[| M2
< ez + T2,
0
that is, x is bounded.
b) Consider an arbitrary € > 0. If uw € Lo, the Cauchy’s convergence test shows that there exists 77 > 0 such that

T A
2 0€”
[u(s)[I"ds <
T, 2B
As the system of interest is time-invariant, the variation-of-constants formula implies that for all ¢t > T}, we
have

VTZTl.

t
z(t) = AT (Ty) —I—/ M=% Bu(s)ds,
Ty
and thus

[ =

t
eA(t_Tl)x(Tl)—i—/ e Bu(s)ds||
Ty
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Moreover, from a) we see that

My
[z(T)]| < ellz(0)]| + ¢l Bll{/ 57— =t E1.
20
Hence for all
In(2¢FE
Loy | ImeE /)]
Ao

we have ||z(t)|| < e. As e > 0 is arbitrary, we get  — 0.
On the other hand, if © — 0. Then there exists 75 > 0 such that

Ao€
u(s) < Vs> Th.
2¢||B]|
Again, by the time-invariance property of the system and the variation-of-constants formula, for all ¢ > T5 we
get .
z(t) = A2 1 (Ty) —l—/ eA=%) Bu(s)ds,

T

and thus

t
[z = eA(t_Tz)l‘(Tz)*/ e Bu(s)ds|

T

t
< cem M) |2 (Ty)| +CHB||/T e 0 u(s) | ds

—Ao(t—T2) L (t—s)
<ce TR (Th)|| + — [ e ds
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ot €
< ce M) || 4(Ty) || + 2

Moreover, from a) we see that

B M-
le(T)|| < cllz(0)] + ”A(‘)Z B,
Hence for all
t> T+ [In(2cEr/e)|
> el

we have ||z(t)|| < e. As e > 0 is arbitrary, we get  — 0.
We cannot use Barbalat’s lemma to conclude that u € Lo implies v — 0, since u is not necessarily continuous.

5. Simulate the control systems described in Examples 13.16 and 13.17 in Khalil’s Nonlinear Systems book (3rd
edition, pp. 532-534) and confirm the unstable behavior of closed-loop solutions.

Solution.

1) In Examples 13.16, we consider the second-order system
0=+,
£=v,

and the linear feedback control
v = —k¢, k> 0.

The origin is (locally) exponentially stable, and the region of attraction is {n¢ < 14 k}. The Simulink diagram
and the simulation result can be found in Fig. 1.
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Fig. 1: Problem 5.1)

2) In Examples 13.17, we consider the third-order system

=50+ &)
& =&,
&=,
and the linear feedback control
v=—k* — 2k&, k> 0.

If n3 > 1, the system will have a finite escape time if k is chosen large enough. The Simulink diagram and
the simulation result can be found in Fig. 2.
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