1. (10 points) Let \(f : \mathbb{R}^n \to \mathbb{R} \) be a continuous function. Prove that its set of zeros \(\{ x : f(x) = 0 \} \) is always a closed set.

Solution: Let \(\{ x_k \} \) be a sequence in \(\{ x : f(x) = 0 \} \) (i.e., \(f(x_k) = 0 \) for all \(k \)) such that \(\lim_{k \to \infty} x_k = x \).

We need to show that \(f(x) = 0 \). However, \(f \) is continuous implies that

\[
f(x) = f\left(\lim_{k \to \infty} x_k \right) = \lim_{k \to \infty} f(x_k) = \lim_{k \to \infty} 0 = 0.
\]

\(\square \)

2. (20 points) Prove that the sequence defined recursively by

\[
x_{k+1} = \frac{x_k}{2} + \frac{2}{x_k}
\]

converges to 2 for every \(x_0 \in [\sqrt{2}, 2\sqrt{2}] \).

Solution: Define a function \(P : \mathbb{R} \to \mathbb{R} \) as

\[
P(x) := \frac{x}{2} + \frac{2}{x},
\]

a set \(S := [\sqrt{2}, 2\sqrt{2}] \), and consider applying the contracting mapping theorem. We need to show the following properties:

1. \(P(S) \subset S \), which follows from

\[
x \in S \quad \Rightarrow \quad \frac{\sqrt{2}}{2} \leq \frac{2}{x} \leq \sqrt{2} \quad \Rightarrow \quad \sqrt{2} \leq \frac{x}{2} + \frac{2}{x} \leq 2\sqrt{2} \quad \Rightarrow \quad P(x) \in S.
\]

2. \(P \) is a contraction. By the Mean Value Theorem [Khalil, p. 651], for all \(x, y \in S \),

\[
|P(x) - P(y)| \leq \max_{z \in S} |P'(z)||x - y| = \max_{z \in S} \left| \frac{1}{2} - \frac{2}{z^2} \right| |x - y| = \frac{1}{2} |x - y|.
\]

\(^1\)For this problem, it is not allowed to use the definitions or properties of continuous functions which were not discussed in class without proof, e.g., the pre-image of a closed set through a continuous function is closed.
3. $x^* = 2$ is a fixed point of P, which is quite obvious:
\[2 = \frac{2}{2} + \frac{2}{2}. \]
By the Contraction Mapping Theorem [Khalil, p. 655], we know that $x^* = 2$ is the unique fixed point of P in S, and the sequence converges to 2 for every $x_0 \in S$. □

3. (20 points) Consider a function $f : \mathbb{R} \to \mathbb{R}$.
 a) If f is locally Lipschitz, does this imply that f is uniformly continuous?
 b) Conversely, if f is uniformly continuous, does this imply that f is locally Lipschitz?

Solution:

(a) Consider $f(x) = x^2$. Since $f'(x) = x$ it is clear the same Lipschitz constant cannot hold over all of \mathbb{R}; but indeed given a $[a, b] \subset \mathbb{R}$ we can find a local Lipschitz constant.
\[
|x^2 - y^2| = |(x + y)(x - y)| = |x + y||x - y| \\
\leq (|x| + |y|)|x - y| \leq 2 \max(|a|, |b|)|x - y|
\]
Now for $f : \mathbb{R} \to \mathbb{R}$ uniform continuity would require that for every $\varepsilon > 0$ there exists $\delta > 0$ (which only depends on ε) such that for all $x, y \in \mathbb{R}$ if $|x - y| < \delta$ then $|f(x) - f(y)| < \varepsilon$. We can show this is not the case. Let $\varepsilon = 2$ and let $\delta > 0$ be arbitrary. Let $n_\delta \in \mathbb{N}$ be such that $\frac{1}{n_\delta} < \delta$. Consider then setting
\[
x := n_\delta + 1/n_\delta, \quad y := n_\delta
\]
We have,
\[
f(x) - f(y) = (n_\delta + 1/n_\delta)^2 - n_\delta^2 = 2 + 1/n_\delta^2 > \varepsilon
\]
(b) No. See Khalil, paragraph before Lemma 3.1, where $f(x) = x^{1/3}$ is given as a counter example. From real analysis, we know the n-th root function defined on the real line is uniformly continuous. But $f(x)$ here is not locally Lipschitz as $f'(x) \to \infty$ as $x \to 0$.

Remark: One could also use $f = \sqrt{x}$ (but strictly speaking that only is defined $\mathbb{R}^+ \to \mathbb{R}^+$) and show work to get credit.

□

4. (20 points) Suppose that $f(t, x)$ is continuous in t and locally Lipschitz in x for each fixed t, and that t takes values in a closed interval $[t_0, t_1]$. Does this imply that f is locally Lipschitz in x uniformly in $t \in [t_0, t_1]$? Prove or give a counterexample.
Solution: No, \(f \) is not necessarily locally Lipschitz in \(x \) uniformly in \(t \in [t_0, t_1] \). To find a counterexample, the idea is to find a function \(f(t, x) \) which is continuous in \(t \) and locally Lipschitz in \(x \) for each fixed \(t \), while \(\frac{\partial}{\partial x} f(t, x) \) is unbounded on \([t_0, t_1] \times \mathbb{R} \). A counterexample is

\[
 f(t, x) = \begin{cases} \sqrt{t}\cos \frac{x}{t}, & t \in (0, 1], \\ 0, & t = 0 \end{cases}
\]

with \([t_0, t_1] = [0, 1]\). (The point is that \(f(t, x) \) is continuous in \(t \) and locally Lipschitz in \(x \) for each fixed \(t \) does not imply that \(\frac{\partial}{\partial x} f(t, x) \) is continuous, so the compactness of \([t_0, t_1]\) doesn’t save us.)

5. (30 points) Suppose that \(f(t, x) \) satisfies all hypotheses of the local existence and uniqueness theorem. Let \(W \) be a compact subset of \(\mathbb{R}^n \). Prove that there exists a \(\delta > 0 \) such that every solution with \(x(t_0) \in W \) can be extended to the interval \([t_0, t_0 + \delta] \).

(Note: \(\delta \) depends just on \(W \) but not on a particular initial condition in \(W \). This fact implies that if it is known that the solution \(x(t) \) remains in \(W \), then it is defined globally—without the need to assume global Lipschitzness.)

Hint: make appropriate modifications to the proof of the existence and uniqueness theorem given in class.

Solution: Consider the same Banach space \(X := C[t_0, t_0 + \delta] = C^0([t_0, t_0 + \delta], \mathbb{R}^n) \) as in the proof of [Khalil, Theorem 3.1]. For an arbitrary fixed \(r > 0 \), let

\[
 U := \{ x : \exists y \in W \text{ s.t. } |x - y| \leq r \}
\]

and

\[
 S := \{ x \in X : x(t) \in U, \forall t \in [t_0, t_0 + \delta] \}.
\]

For any \(x_0 \in W \), define \(P : X \to X \) as

\[
 (Px)(t) = x_0 + \int_{t_0}^{t} f(s, x(s))ds,
\]

and consider applying the contraction mapping theorem. We first show that \(P(S) \subseteq S \). Indeed,

\[
 |(Px)(t) - x_0| = \left| \int_{t_0}^{t} f(s, x(s))ds \right|
 \leq \int_{t_0}^{t} |(f(s, x(s)) - f(s, x_0)) + f(s, x_0)|ds
 \leq \int_{t_0}^{t} (L|x(s) - x_0| + H)ds
 \leq \delta (LR + H),
\]

where
\begin{itemize}
 \item $R := \max_{x,y \in U} |x - y|$;
 \item L is the Lipschitz constant over U, which is independent of x_0; and
 \item $H := \max_{s \in [t_0, t_1], x_0 \in W} |f(s, x_0)|$.
\end{itemize}

Choosing a δ such that $\delta \leq \frac{r}{LR + H}$ ensures that $P(S) \subset S$. (Notice that this upper bound does not depend on x_0, only on W.) The rest of the proof is the same as that of [Khalil, Theorem 3.1]. \hfill \Box

2The existence of such an H can be shown via a generalization of the Weierstrass theorem. However, all we need is that $f(t, x)$ is bounded over $[t_0, t_1] \times W$, that is, $\sup_{s \in [t_0, t_1], x_0 \in W} |f(s, x_0)|$ exists and is finite. But the boundedness is obvious from local Lipschitzness in x uniform over t: consider an arbitrary fixed $y \in W$. Then $|f(t, x) - f(t, y)| \leq L|x - y|$ for all $x \in W$ and all $t \in [t_0, t_1]$, where L is the Lipschitz constant over W. Clearly, $f(t, y)$ is bounded by piecewise continuity in t, and $|x - y|$ is bounded over W, so $f(t, x)$ is bounded.