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A Characterization of Switched Linear Control
Systems With Finite L2-Gain

Yacine Chitour, Paolo Mason, and Mario Sigalotti

Abstract—Motivated by an open problem posed by J. P.
Hespanha, we extend the notion of Barabanov norm and
extremal trajectory to classes of switching signals that
are not closed under concatenation. We use these tools
to prove that the finiteness of the L2-gain is equivalent,
for a large set of switched linear control systems, to the
condition that the generalized spectral radius associated
with any minimal realization of the original switched system
is smaller than one.

Index Terms—L2-gain, switched systems.

I. INTRODUCTION

L ET n,m, p be positive integers and τ be a positive real
number. Consider the switched linear control system

ẋ = Aσx+Bσu, y = Cσx+Dσu (1)

where x ∈ R
n, u ∈ R

m, y ∈ R
p, Aσ, Bσ, Cσ, Dσ are matrices

of appropriate dimensions and σ is in the class Στ of piecewise
constant signals with dwell time τ taking values in a fixed finite
set P of indices. Define the L2-gain as

γ2(τ)=sup

{
‖yu,σ‖2
‖u‖2

|u ∈ L2 ([0,∞),Rm) \ {0}, σ∈Στ

}
where yu,σ is the output corresponding to the trajectory of the
system associated with u and σ starting at the origin at time
t = 0.

In recent years the study of the L2-gain for switched linear
control systems with minimum dwell time has attracted a
significant interest, especially from a computational point of
view. The research has been mainly focused on the estimation
and on the actual computation of the L2-gain.

This is a challenging problem, as the L2-gain of a switched
linear control system is not just a function of the L2-gain of
modes, not even for an arbitrarily large dwell time. It is well
known, indeed, that in general limτ→∞ γ2(τ) > maxp∈P γp

2 ,
where γp

2 denotes the L2-gain of the time-invariant control
system where σ(·) ≡ p. One of the first references dealing with
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this problem is [1], where an algorithm for the computation of
the L2-gain in the case of a single switching (or, equivalently,
for the computation of limτ→∞ γ2(τ)) is illustrated. A gener-
alization of this method is introduced in [2], where it is shown
that γ2(τ) < γ if certain linear matrix inequalities, depending
on the parameters τ and γ, admit a solution. (For a discrete-
time counterpart, see [3].) A further characterization of the
L2-gain (on bounded time intervals) is given in [4] in terms of
a variational principle. In the one-dimensional case, this result
allows one to compute γ2(τ) by a simple bisection algorithm.
Note that in all the above-mentioned results it is assumed that
each operating mode of the switched control system satisfies
a minimal realization assumption. Moreover the corresponding
numerical methods are all related to the study of suitable Riccati
equations or inequalities.

The aim of this paper is rather different with respect to the
above-cited works. The motivation comes from[5,Problem 4.1],
where J. P. Hespanha asks the following questions: 1) under
which conditions is the function τ �→ γ2(τ) bounded over
(0, ∞)? 2) when γ2 is not a bounded function over (0, ∞),
how to compute τmin, the infimum of the dwell-times τ > 0 for
which γ2(τ) is finite? 3) how regular is γ2?

To address these questions, a rather natural idea is to reduce
the issue of verifying the boundedness of the L2-gain for (1)
to the stability problem for the related uncontrolled switched
system ẋ = Aσx (without providing any explicit estimate of
the L2-gain). Indeed, in the unswitched case, the finiteness of
the L2-gain for ẋ = Ax+Bu, y = Cx is equivalent of the
stability of ẋ = Ax once (A,B,C) is under minimal realiza-
tion. In the switched framework, it has been suggested, without
being formalized (see e.g., [2] and [4]), that this equivalence
still holds true at least whenever each mode of the switched
control system satisfies a minimal realization assumption. Note
that in [6] (see also [7]) a nonconservative numerical method
is obtained in order to check the stability of switched systems
with minimum dwell time. Therefore, if the specific questions
posed by Hespanha could be reduced to a stability problem for a
switched system with minimum dwell time, then the algorithm
proposed in [6] could be directly applied in order to compute
the value τmin. Notice that the numerical methods developed
in [2] can also be used for providing upper bounds of τmin.
However, even though numerically appealing, these methods
are more conservative than those of [6]. In the discrete-time
case, the relation between finiteness of the L2-gain and stability
of the uncontrolled switched system has been recently explored
in [8], in the fully observed arbitrarily switching case.

The problem of checking the finiteness of the L2-gain and the
link between this problem and the stability of a corresponding
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switched system are of interest also for other classes of switch-
ing signals than Στ , for instance signals with average dwell
time constraints [9] or signals satisfying a condition of per-
sistent excitation [10], [11]. For this reason we develop in this
paper an abstract framework by introducing axiomatic require-
ments on the family of signals. These assumptions are satisfied
by many meaningful families of switching signals, as listed in
Section II-B. Our main result, Theorem 25, states that, assum-
ing without loss of generality that the switched system is in
minimal realization, the finiteness of the L2-gain is equivalent
to the global asymptotic stability of the uncontrolled switched
system under a suitable uniform observability assumption. An
important aspect of our result is that such a uniform observabil-
ity assumption is not merely technical, since the equivalence
fails in general, as illustrated in Example 31. Note that the
uniform observability assumption is less restrictive compared
with the hypothesis that each operating mode is in minimal
realization.

One of the key ingredients in the proof of our main result
is the use of switching laws expressing the “most unstable”
behavior of the uncontrolled switched system. In the case of
arbitrary switching the most unstable behavior of the system is
well represented by the notion of extremal trajectory (see e.g.,
[12]). For the families Στ , or for other families of switching sig-
nals considered in Section II-B, this notion cannot be trivially
generalized, essentially due to the fact that these classes are not
closed under concatenation. To bypass this issue, our technique
consists in identifying a subset of the switching signals that
is large enough to encompass the asymptotic properties of
the original uncontrolled switched linear system, and well-
behaved with respect to concatenation. The associated flows
define a semigroup of matrices, whose analysis allows us to
describe the asymptotic most unstable behavior of the original
switched system. Note that for the class of switching signals
with minimum dwell time and that of uniformly Lipschitz
signals a somehow similar characterization of the most unstable
behavior for switched systems may be found in [13], although in
that paper the approach is much more intricate and less flexible,
as our assumptions include a larger number of relevant classes
of switching signals.

The paper is organized as follows. In Section II we introduce
the notations used in the paper and we list some relevant
classes of switching laws that are included in our framework. In
Section III we prove the existence of a “most unstable behav-
iour” by developing the notion of quasi-Barabanov semigroup.
Section IV contains the main result of the paper, Theorem 25
and the proof, through Example 31, that the uniform observabil-
ity assumption cannot just be removed. Finally, in Section IV-C,
we show a result establishing the right-continuity of the map
τ �→ γ2(τ). This provides a partial answer to Question i) and to
Question iii) in [5, Problem 4.1].

II. PRELIMINARIES

A. Notations

If n,m are positive integers, the set of n×m matrices
with real entries is denoted Mn,m(R) and simply Mn(R) if

n = m. We use Idn to denote the n× n identity matrix. A
norm on R

n is denoted ‖ · ‖ and similarly for the induced
operator norm on Mn(R). A subset M of Mn(R) is said to
be irreducible if the only subspaces which are invariant for
each element of M are {0} or Rn. For every s, t ≥ 0 and A ∈
L∞([s, s+ t],Mn(R)), denote by ΦA(s+ t, s) ∈ Mn(R) the
flow (or fundamental matrix) of ẋ(τ) = A(τ)x(τ) from time
s to time s+ t. Given two signals Aj : [0, tj] → M , j = 1, 2,
we denote by A1 ∗A2 : [0, t1 + t2] → M the concatenation of
A1(·) and A2(·), i.e., the signal coinciding with A1(·) on [0, t1]
and with A2(· − t1) on (t1, t1 + t2]. Similarly, if A and B are
two subsets of signals, we use A ∗ B to denote the set of signals
obtained by concatenation of a signal of A and a signal of B.

Let n, p, and m be positive integers. Consider a switched
linear control system of the type

ẋ(t) = A(t)x(t) +B(t)u(t), y(t) = C(t)x(t) +D(t)u(t)
(2)

where x ∈ R
n, u ∈ R

m, y ∈ R
p, (A,B,C,D) belongs to

a class T of measurable switching laws taking values in
a bounded set of quadruples of matrices M ⊂ Mn(R)×
Mn,m(R)×Mp,n(R)×Mp,m(R).

For t ≥ 0 and a switching law (A,B,C,D) ∈ T , the con-
trollability and observability Gramians in time t are defined
respectively as

t∫
0

ΦA(0, s)B(s)B(s)TΦA(0, s)
T ds

t∫
0

ΦA(s, 0)
TC(s)TC(s)ΦA(s, 0)ds.

For T > 0, let L2(0, T ) be the Hilbert space of measurable
functions u : [0, T ) → R

m with finite L2-norm, i.e., such that

‖u‖2,T := (
∫ T

0 ‖u(t)‖2dt)
1/2

is finite. If T = ∞, we simply
use L2 and ‖u‖2 to denote respectively the corresponding
Hilbert space and L2-norm.

For u ∈ L2 and σ = (A,B,C,D) ∈ T , let yu,σ be the cor-
responding output of (2) and define the L2-gain associated
with T by

γ2(T ) := sup

{
‖yu,σ‖2
‖u‖2

|u ∈ L2 \ {0}, σ ∈ T
}
.

In this paper, we investigate qualitative properties of γ2(T ) and
in particular we are interested in finding conditions ensuring its
finiteness. We will therefore assume from now on with no loss
of generality that D(·) ≡ 0.

B. Classes of Switching Functions

We introduce in this section several classes of switching
signals contained in L∞([0,∞),M ), for some subset M of
a finite-dimensional vector space.

• Sarb(M ) is the class of arbitrarily switching signals, i.e.,
Sarb(M ) = L∞([0,∞),M );

• Spc(M ) is the class of piecewise constant signals (i.e.,
signals whose restriction to every finite time-interval
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admits a finite number of discontinuities and takes finitely
many values);

• Sd,τ (M ) is the class of piecewise constant signals with
dwell-time τ > 0, i.e., such that the distance between two
switching times is at least τ (notice that Spc(M ) can be
identified with Sd,0(M ));

• Sav−d,τ,N0(M ) is the class of piecewise constant signals
which satisfy the (τ,N0) average dwell-time condition
with τ > 0 and N0 a positive integer: for every s, t ≥ 0,
the number of switching times in [s, s+ t] is bounded
from above by N0 + t/τ ;

• for M of the type {Mδ=(1−δ)M0 + δM1 | δ ∈ [0, 1]}

Spe,T,μ(M ) =

⎧⎨
⎩Mα|α ∈ L∞ ([0,∞), [0, 1]) ,

t+T∫
t

α(s)ds ≥ μ∀ t ≥ 0

⎫⎬
⎭

is the class of (T, μ)-persistently exciting signals with
0 < μ ≤ T ;

• Slip,L(M ) is the class of Lipschitz signals with Lipschitz
constant L > 0;

• SBV,T,ν(M ) is the class of (T, ν)-BV signals, i.e., the
signals whose restriction to every interval of length T has
total variation at most ν, that is, M ∈ SBV,T,ν(M ) if and
only if

sup
t≥0,k∈N

t=t0≤t1≤···≤tk=t+T

k∑
i=1

‖M(ti)−M(ti−1)‖ ≤ ν.

Most of these classes have been already considered in [9]. For
the class of persistently exciting signals, see for instance [10],
[11], [14] and references therein. Notice that all the classes in
the above list are shift-invariant.

Rather than addressing the issues at stake for each class of
switching signal given above, we develop a unifying framework
which can also be applied to other classes. For that purpose,
we adopt an axiomatic approach which singles out and exploits
some useful common properties satisfied by the classes above.

III. ADAPTED NORMS FOR SWITCHED LINEAR SYSTEMS

WITH CONCATENABLE SUBFAMILIES

We consider in this section a switched linear system

ẋ(t) = A(t)x(t) (3)

where A belongs to a class S of measurable switching laws
taking values in a bounded nonempty set of matrices M ⊂
Mn(R).

A useful assumption on the family S that we are going to use
in the following (which is satisfied by all the classes introduced
in the previous section) concerns its invariance by time-shift.

A0 (shift-invariance) For every A(·) ∈ S and every t ≥ 0,
the signal A(t+ ·) is in S.

Under Assumption A0 a convenient measure of the asymp-
totic behavior of (3) is the generalized spectral radius (see,
e.g., [15])

ρ(S) = lim sup
t→+∞

sup
A∈S

‖ΦA(t, 0)‖1/t . (4)

Notice that, since M is bounded then ρ(S) is finite.
As mentioned in introduction, our approach aims at extend-

ing the Barabanov norm construction (cf. [15]) beyond the
class of signals with arbitrary switching. The main difficulty
to do so lies in the fact that the set of all flows ΦA(s+ t, s),
for A ∈ S and s, t ≥ 0, does not form a semigroup, since in
general signals in S cannot be concatenated arbitrarily within
S. A key object in what follows is then the identification of a
subclass F∞ of S, constructed by concatenating in an arbitrary
way some signals defined on finite intervals. We then attach
to F∞ a semigroup of fundamental matrices that captures the
asymptotic behaviour of S if F∞ is large enough.

A. Concatenable Subfamilies

Consider a set F = ∪t≥0Ft with Ft ⊂ L∞([0, t],M ), t ∈
[0,∞). Define

F∞ =

{
A1 ∗A2 ∗ · · · ∗Ak ∗ · · · |Ak

∈ Ftk for k ∈ N,
∑
k∈N

tk = ∞
}

(5)

and Φ(F) = ∪t≥0Φ(Ft), where, for every t ≥ 0

Φ(Ft) = {ΦA(t, 0)|A ∈ Ft} .

Let, moreover

μ(F) = lim sup
t→+∞

(
sup
{
‖Rt‖1/t|Rt ∈ Φ(Ft)

})

with the convention that the quantity inside the parenthesis is
equal to 0 if Ft is empty. Notice that μ(F) ≤ ρ(F∞), but the
converse is in general not guaranteed since the computation of
ρ(F∞) takes into account all intermediate instants between two
concatenation times, unlike the one of μ(F).

We list below some useful assumptions on the pair (S,F)
that will be exploited in the sequel.

A1 (concatenability) Fs ∗ Ft ⊂ Fs+t for every s, t ≥ 0.
A2 (irreducibility) Φ(F) is irreducible.
A3 (fatness) F∞ ⊂ S and there exist two constants C,Δ ≥
0 and a compact subset K of GL(n) such that for every
t ≥ 0 and A ∈ S, there exist K ∈ K , t̂ ∈ [t, t+Δ], and
R ∈ Φ(Ft̂) such that∥∥ΦA(t, 0),KR−1

∥∥ ≤ C. (6)

Moreover, if A ∈ F∞, one can take K = Idn in (6).

Remark 1: As a consequence of the definition of F∞, if A ∈
F andB∈F∞, thenA ∗B∈F∞. Moreover, by Assumption A1,
one has that Φ(Fs)Φ(Ft) ⊂ Φ(Fs+t) for every s, t ≥ 0.
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Hence Φ(F) is a semigroup and Assumption A2 above is
equivalent to

∀x ∈ R
n \ {0}, the linear span of Φ(F)x is equal to R

n.

As in [15], one then says that Φ(F) is an irreducible semi-
group. Note that [15] considers special classes of irreducible
semigroups which satisfy the additional assumption.

(Decomposability) Fs+t = Fs ∗ Ft for every s, t ≥ 0.
The decomposability assumption trivially implies that
Φ(Fs)Φ(Ft) = Φ(Fs+t) for every s, t ≥ 0.

Remark 2: Recall that the map L∞([0, t],M ) � A �→
ΦA(t, 0) ∈ Mn(R) is continuous with respect to the weak-	
topology in L∞([0, t],M ) (see, for instance, [14, Proposition
21]). In particular if A3 holds true for S then it also holds true
for the weak-	 closure of S.

Lemma 3: If A3 holds true then ρ(S) = μ(F). If moreover
A0 and A1 hold true then the family F satisfies the following
version of Fenichel’s uniformity lemma: assume that there
exists m > 0 such that, for every sequenceRj ∈ Φ(Ftj ) with tj
tending to infinity, one has limj→∞m−tjRj=0. Thenμ(F)<m.

Proof: The inequality ρ(S) ≥ μ(F) is immediate. The
opposite one readily comes from Assumption A3 and the
definitions of ρ(S) and μ(F). As regard the second part of
the lemma, we can assume that m = 1 by replacing if necessary
M by the set M − log(m)Idn. Let S� be the closure of S with
respect to the weak-	 topology induced by L∞([0,∞),M ).
We first show that every trajectory associated with a switching
signal in S� tends to zero. Assume by contradiction that there
exist A ∈ S�, x ∈ R

n, ε > 0 and a sequence tj tending to
infinity such that ‖ΦA(tj , 0)x‖ ≥ ε. By Remark 2, Assumption
A3 actually extends to any switching signal in S�. Hence, for
every j ≥ 0 applying Assumption A3 to the switching signal
A and the time tj yields the inequality ‖R̂jK

−1
j x‖ ≥ ε/C for

some R̂j ∈ Φ(Ft̂j
), with t̂j ∈ [tj , tj +Δ], and Kj belonging

to a given compact of GL(n). According to the hypotheses of
the lemma, the left-hand side of the above inequality tends to 0
as j goes to infinity, which is a contradiction.

Since the switching laws of S take values in the bounded set
M , one has that the class S� is weak-	 compact. Recalling that
S is shift-invariant by A0, we notice that all the assumptions of
Fenichel’s uniformity lemma are satisfied by the standard linear
flow defined on R

n × S� (cf. [16]). Therefore the convergence
of trajectories of S to 0 is uniformly exponential, i.e., ρ(S) < 1.
By the first part of the lemma we deduce that μ(F) < 1. �

We associate with each class of switching signals considered
in the previous section a corresponding concatenable subfamily
as listed below:

• Farb(M ): arbitrarily switching signals on finite intervals;
• Fpc(M ): piecewise constant signals on finite intervals;
• Fd,τ (M ): piecewise constant signals on finite intervals

with dwell-time τ and such that the first and last subinter-
vals on which the signal is constant have length at least τ
(notice that Fd,τ

t (M ) = ∅ for t < τ );
• Fav−d,τ,N0(M ): piecewise constant signals on finite in-

tervals satisfying the (τ,N0) average dwell-time condi-
tion and such that the first and last subintervals on which
the signal is constant have length at least N0τ ;

• Fpe,T,μ(M ): (T, μ)-persistently exciting signals on finite
intervals [0, t] for which t ≥ T − μ and the signal is
constantly equal to M1 on [t− T + μ, t], where we recall
that M = {Mδ = (1− δ)M0 + δM1 | δ ∈ [0, 1]}.

For the classes S lip,L(M ) and SBV,T,μ(M ) we fix some M ∈
M and we define

• F lip,L(M ): Lipschitz signals on finite interval starting
and ending at M ;

• FBV,T,μ(M ): (T, ν)-BV signals on finite intervals [0, t],
t≥T , starting and ending at M and constant on [t− T, t].

With these choices of F Assumption A1 is automatically
satisfied. To address the validity of Assumption A2 for the
previous classes of signals, we further introduce the following
assumption on the set F , which essentially says that the flow
corresponding to any element in Fpc(M ) can be approached
in a suitable sense by an analytic deformation of flows corre-
sponding to elements in F .

A4 (Analytic propagation) For every t, ε > 0 and A ∈
Fpc

t (M ), there exists a path (0, 1] � λ �→ (tλ, Aλ) ∈
(0,∞)×Farb

tλ (M ) such that

— λ �→ ΦAλ
(tλ, 0) is analytic;

— ‖ΦA1
(t1, 0)− ΦA(t, 0)‖ ≤ ε;

— the set {λ ∈ (0, 1] | Aλ ∈ F} has nonempty interior.

The relation between Assumptions A2 and A4 is clarified in
the following proposition.

Proposition 4: Let M be irreducible. Then Assumption A4
implies Assumption A2.

Proof: Let x, z ∈ R
n \ {0}. We have to prove that there

exists R ∈ Φ(F) such that zTRx �= 0. Since M is irreducible,
it follows from [15, Lemma 3.1] that there exist t > 0 and
A in Fpc

t (M ) such that zTΦA(t, 0)x �= 0. Consider the path
λ �→ Aλ provided by Assumption A4. The function λ �→
zTΦAλ

(tλ, 0)x is analytic and not identically equal to zero. It
therefore vanishes at isolated values of λ, whence the conclu-
sion with R of the type ΦAλ

(tλ, 0). �
In the following proposition we establish the validity of

Assumptions A0, A1, A3, and A4 for the classes of switching
signals introduced in Section II-B and their corresponding
concatenable subfamilies.

Proposition 5: Let S be one of the classes introduced in
Section II-B with correspondingF as above. If S = S lip,L(M )
or S = SBV,T,ν(M ), assume moreover that M is star-shaped,
that is, there exists M̂ ∈ M such that for any other M ∈ M
the segment between M̂ and M is contained in M . Then
Assumptions A0, A1, A3, and A4 hold true.

Proof: As already noticed, Assumptions A0 and A1 are
satisfied.

Concerning Assumption A3, notice that every restriction
A|[0,t] of a signal in one of the classes S introduced in
Section II-B can be extended to a signal A1 ∗A|[0,t] ∗A2 in
the corresponding class F , with Aj : [0, tj] → M , j = 1, 2,
and t1, t2 ≤ t∗ for some t∗ uniform with respect to A ∈ S and
t ≥ 0. Moreover, if A ∈ F∞ then t1 can be taken equal to zero.

Let us now prove Assumption A4. Take t, ε > 0 and A ∈
Fpc

t (M ). For the cases S=Sd,τ (M ) and S=Sav−d,τ,N0(M )
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one can find the path λ �→ Aλ as follows. For every δ > 0,
consider the time-reparameterized signal A(δ ·) ∈ Fpc

t/δ(M ).
Then A(δ ·) ∈ F for δ small enough and the function δ �→
ΦA(δ ·)(t/δ, 0) is analytic. Indeed, the function (0,∞) � δ �→
ΦA(δ ·)(t0/δ, 0) = ΦA(·)/δ(t0, 0) is analytic, since the Volterra
series associated with this flow define an analytic function of δ.

We conclude by taking Aλ(·) = A(λ ·). For the cases S =
Spe,T,μ(M ) and S = SBV,T,μ(M ), the previous construction
can be modified as follows. First notice that, up to adding some
short intervals on which A is constant we can assume that

• Case S = Spe,T,μ(M ): the value of A on the last interval
on which it is constant is M1.

• Case S = SBV,T,ν(M ): the distance between two subse-
quent values of A is smaller than ν, and the first and last
values of A are both equal to M .

The modification of A can be taken so that the corresponding
variation of ΦA(t, 0) is smaller than ε. The argument now
works as before in the case S = SBV,T,ν(M ). In the case
S = Spe,T,μ(M ) one can take Aλ(s) = A(s/λ) on [0, λt0] and
Aλ(s) = M1 on [λt0, t], where t0 is such that A|[t0,t] ≡ M1.

We are left to discuss the case S = S lip,L(M ). Similarly
to what is done above, we can first assume that A is equal to
M on the first and last interval on which it is constant. Then
we modify A by adding, at each switching time, a Lipschitz
continuous arc defined on a small time interval and bridging the
discontinuity (one may take a Lipschitz continuous arc whose
graph is the union of two segments joining at M̂ ). These modi-
fications can be done while keeping the corresponding variation
of ΦA(t, 0) smaller than ε. By a time-reparameterization λ �→
A(λ ·) we can lower the Lipschitz constant and complete the
proof as above. �

Remark 6: In Proposition 5, the hypothesis on the star-
shapedness of M can be replaced by some weaker one. For
instance we could assume the following:

• if S = S lip,L(M ) then there exists C > 0 such that every
two distinct points of M can be connected by a Lipschitz-
continuous curve lying in M of length smaller than C;

• if S = SBV,T,ν(M ) then for every M0,M1 ∈ M , there
exists a finite sequence of points in M whose first and
last elements are M0 and M1, respectively, and such that
the distance between two subsequent elements is smaller
than ν.

B. Quasi-Barabanov Semigroups

The main goal of the section is to prove the result below.
Theorem 7: Let (S,F) satisfy Assumptions A0–A3. Then

there exists a constant C ≥ 1 such that for any x0 ∈ R
n \ {0}

there exists a trajectory x : t �→ ΦA(t, 0)x0 with A belonging
to the weak-	 closure of F∞ such that, for every t ≥ 0

1

C
ρ(S)t‖x0‖ ≤ ‖x(t)‖ ≤ Cρ(S)t‖x0‖.

For that purpose, we first need the following definitions.
Definition 8: Let M , F , F∞, and Φ(F) be as in the previous

section. We say that Φ(F) is a quasi-extremal semigroup if

there exists Cqe > 0 such that, for every t ≥ 0 and R ∈ Φ(Ft),
one has

‖R‖ ≤ Cqeμ(F)t. (7)

Moreover, a quasi-extremal semigroup Φ(F) is said to be
extremal if there exists a norm w on R

n such that the induced
matrix norm ‖ · ‖w satisfies, for every t ≥ 0 and R ∈ Φ(Ft)

‖R‖w ≤ μ(F)t. (8)

A norm w satisfying (8) is said to be extremal for Φ(F). A
quasi-extremal semigroup Φ(F) is said to be quasi-Barabanov
if there exists Cqb > 0 such that for every x ∈ R

n and t ≥ 0
there exist t′ ≥ t and R ∈ Φ(Ft′) such that

‖Rx‖ ≥ Cqbμ(F)t
′‖x‖. (9)

Let Φ(F) be a quasi-extremal semigroup. A trajectory x : t �→
ΦA(t, 0)x0 with x0 �= 0 and A belonging to the weak-	 closure
of F∞ is said to be quasi-extremal with constant Cqx ≥ 1 if for
every t ≥ 0

1

Cqx
μ(F)t‖x0‖ ≤ ‖x(t)‖ ≤ Cqxμ(F)t‖x0‖.

The notion of generalized spectral radius for a quasi-
Barabanov semigroup Φ(F) is actually equivalent to the fol-
lowing adaptation of the definition of maximal Lyapunov
exponent:

λ(F) = sup

{
lim sup
k→∞

log ‖Rtk · · ·Rt1‖
t1 + · · ·+ tk

|Rtk

∈ Φ (Ftk) for k ∈ N,
∑
k∈N

tk = ∞
}

as stated below.
Proposition 9: Let F be a family of switching laws satisfy-

ing the concatenability condition A1 and assume that Φ(F) is
a quasi-Barabanov semigroup. Then μ(F) = eλ(F).

Proof: The inequality μ(F) ≥ eλ(F) easily comes from
(7). In order to show the opposite inequality one observes that,
by (9), for any x0 ∈ R

n and i ∈ N, there exist ti ≥ i and Rti ∈
Φ(Fti) such that

‖Rtk · · ·Rt1x0‖ ≥ (Cqb)
kμ(F)t1+···+tk‖x0‖.

In particular

lim sup
k→∞

log ‖Rtk · · ·Rt1‖
t1 + · · ·+ tk

≥ − lim
k→∞

2 |log(Cqb)|
k + 1

+log (μ(F))

= log (μ(F))

which concludes the proof. �
Lemma 10: Let Assumptions A0, A1, and A3 be satisfied. If

Φ(F) is a quasi-Barabanov semigroup then there exists Cqx ≥
1 such that any nonzero point of Rn is the initial condition of a
quasi-extremal trajectory with constant Cqx.

Proof: Let Cqe, Cqb be as in (7), (9) and C, K as in A3.
Let κ ≥ 1 satisfy ‖K‖, ‖K−1‖ ≤ κ for every K ∈ K .
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Fix x0 �= 0. There exists an increasing sequence of times tk
going to infinity and signals Ak in Ftk such that ‖Rkx0‖ ≥
Cqbμ(F)tk‖x0‖, where Rk = ΦAk

(tk, 0).
We now claim that, for every k ∈ N and every s ∈ [0, tk],

one has

‖ΦAk
(s, 0)x0‖ ≥ 1

C0
μ(F)s‖x0‖ (10)

for some constant C0 > 0 independent of x0 and s. Indeed,
because of Assumption A0 and applying (6) one gets that
ΦAk

(tk, s) = MRK−1 with ‖M‖ ≤ C, K ∈ K , and R in
Φ(Ftk−s+δ), for some δ ∈ [0,Δ]. One can therefore write
Rk = MRK−1ΦAk

(s, 0). It follows that:

‖Rkx0‖ ≤ ‖M‖
∥∥RK−1ΦAk

(s, 0)x0

∥∥
≤CCqeμ(F)tk−s+δ

∥∥K−1ΦAk
(s, 0)x0

∥∥
≤ κCCqeμ(F)tk−s+δ ‖ΦAk

(s, 0)x0‖ .

On the other hand ‖Rkx0‖ ≥ Cqbμ(F)tk‖x0‖, which proves
(10) with

C0 =
κCCqe max

(
1, μ(F)Δ

)
Cqb

.

Notice that each Ak is the restriction on [0, tk] of a signal
Bk in F∞. Up to a subsequence we can assume that Bk weak-	
converges to some B� in the weak-	 closure of F∞. Passing to
the limit in (10) we deduce that for every s ≥ 0

‖ΦB�
(s, 0)x0‖ ≥ 1

C0
μ(F)s‖x0‖. (11)

We next prove that there exists C1 > 0 such that for every
s ≥ 0, x0 ∈ R

n and B in the weak-	 closure of F∞, it holds

‖ΦB(s, 0)x0‖ ≤ C1μ(F)s‖x0‖. (12)

For that purpose, consider a sequence Bk in F∞ weak-	
converging to B. Applying (6), Remark 2 and a compactness
argument, we get that ΦB(s, 0) = MRK−1 with ‖M‖ ≤ C,
K ∈ K and R in the closure of ∪δ∈[0,Δ]Φ(Fs+δ). It follows
that:

‖ΦB(s, 0)x0‖ ≤ ‖M‖‖RK−1x0‖ ≤ C1μ(F)s‖x0‖

where C1 = κCCqe max(1, μ(F)Δ), proving (12). Together
with (11), this concludes the proof of the lemma with Cqx =
max(C0, C1). �

Set

R∞=
{
R|∃tk→∞, Rk∈Φ(Ftk) such thatμ(F)−tkRk→R

}
.

The following result is the counterpart of [15, Proposition 3.2]
in our setting.

Proposition 11: Let (S,F) satisfy Assumptions A0–A3 and
define R∞ as above. Then

i) R∞ is compact and nonempty, R∞ �= {0};
ii) R∞ is a semigroup;

iii) for every t ≥ 0, T ∈ Φ(Ft) and S ∈ R∞, both
μ(F)−tTS and μ(F)−tST belong to R∞;

iv) R∞ is irreducible.

Proof: To prove the proposition one follows exactly the
arguments provided in the proof of [15, Proposition 3.2] except
for the fact that R∞ �= {0}. In our setting this result is easily
proved by using Lemma 3 and the definition of R∞. �

The following result can be proven as in [15, Lemma 3.4].
Proposition 12: Let (S,F) satisfy Assumptions A0–A3 and

define R∞ as above. Let v̂ : Rn → (0,∞) be defined as

v̂(x) = max
R∈R∞

‖Rx‖.

Then v̂ is an extremal norm for Φ(F).
Remark 13: If Assumption A1 is replaced by the stronger

decomposability assumption (see Remark 1), then v̂ is a
Barabanov norm (see e.g., [15]).

We have the following result.
Proposition 14: Let (S,F) satisfy Assumptions A0–A3.

Then Φ(F) is an extremal and quasi-Barabanov semigroup.
Proof: The fact that Φ(F) is an extremal semigroup

readily comes from Proposition 12. In order to show the second
part of the statement, let us consider κ ≥ 1 as in the proof of
Lemma 10. Without loss of generality, let us also assume that
κ satisfies

1

κ
‖x‖ ≤ v̂(x) ≤ κ‖x‖ for all x ∈ R

n

and that ‖M‖≤C implies that ‖M‖v̂≤κ, where C is as in A3.
For every x0 ∈ R

n, there exists a sequence (Rk)k∈N
so that Rk ∈ Φ(Ftk) with limk→∞ tk = ∞ and v̂(x0) =
limk→∞ μ(F)−tk‖Rkx0‖. For every k ∈ N, let Ak ∈ Ftk be
such that Rk = ΦAk

(tk, 0).
Fix now s ≥ 0. For every k ∈ N such that tk ≥ s, we

deduce from Assumption A3 that ΦAk
(s, 0) = M

(k)
1 Q

(k)
1 and

ΦAk
(tk, s)=M

(k)
2 Q

(k)
2 (K

(k)
2 )

−1
with ‖M (k)

i ‖≤C, K(k)
2 ∈K ,

Q
(k)
1 ∈Φ(F

s+δ
(k)
1

) and Q
(k)
2 ∈Φ(F

tk−s+δ
(k)
2

), where δ
(k)
i ∈

[0,Δ], for i = 1, 2. One can therefore write Rk =

M
(k)
2 Q

(k)
2 (K

(k)
2 )

−1
M

(k)
1 Q

(k)
1 . Using the extremality of v̂

and the requirements imposed on κ, it follows that:

μ(F)−tk‖Rkx0‖ ≤ κμ(F)−tk v̂(Rkx0)

≤ κ6μ(F)−s+δ
(k)
2 v̂

(
Q

(k)
1 x0

)
.

Taking limits as k tends to infinity and up to subsequences,
one gets

v̂(x0) ≤ κ6μ(F)−s+δ2 v̂(Q1x0)

where Q1 is in the closure of ∪δ∈[0,Δ]Φ(Fs+δ), and δ2 belongs

to [0,Δ]. In particular, there exist Q̂ ∈ Φ(Fs+δ̂) for some δ̂ ∈
[0,Δ] such that

v̂(x0) ≤ 2κ6μ(F)−s+δ2 v̂(Q̂x0).

One deduces that v̂(Q̂x0) ≥ C0μ(F)s+δ̂ v̂(x0) with C0 =
min(1, μ(F)−2Δ)/2κ6. �

As a consequence of Lemma 10, we have the following
corollary.
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Corollary 15: Let (S,F) satisfy Assumptions A0–A3.
Then there exists Cqx ≥ 1 such that any nonzero point of
R

n is the initial condition of a quasi-extremal trajectory with
constant Cqx.

Theorem 7 follows directly from Corollary 15 and Lemma 3.
Note that, as a consequence of A3 and the above results,

the right-hand side inequality in the statement of Theorem 7
holds true for any trajectory associated with a signal in S, up to
adapting the constant C.

Remark 16: As a consequence of Proposition 9, Proposition 14
and Lemma 3 one easily deduces that ρ(S) = eλ(S), where

λ(S) = sup
A∈S

lim sup
t→+∞

log ‖ΦA(t, 0)‖
t

is the maximal Lyapunov exponent associated with the family S.
This result was already obtained in [13] if the class S is assumed
to be weak-	 closed.

IV. L2-GAIN FOR SWITCHED LINEAR CONTROL

SYSTEMS

Consider a switched linear control system of the type

ẋ(t) = A(t)x(t) +B(t)u(t), y(t) = C(t)x(t) (13)

where (x, u, y) ∈ R
n × R

m × R
p and (A,B,C) belongs to

a class T of measurable switching laws taking values in a
bounded set of triples of matrices M ⊂ Mn(R)×Mn,m(R)×
Mp,n(R). We denote by πA and πA×B the projections from
Mn(R)×Mn,m(R)×Mp,n(R) to its first and first two factors,
respectively. We set

MA = πA(M ) = {A | ∃(A,B,C) ∈ M }
TA = πA(T ) = {A | ∃(A,B,C) ∈ T }

and we define similarly MB , MC , TB , and TC .
In the sequel, we also assume that T contains a subset G∞

made of concatenations of signals in a family G = ∪t≥0Gt as
in (5). In the sequel, when needed, we will make the following
assumptions on (T ,G):

T1 (TA,GA) satisfies Assumptions A0 and A1, where GA =
πA(G).

T2 (TA,GA) satisfies Assumption A4. Moreover, for
every t∗, ε > 0 and (A,B,C) ∈ Fpc

t (M ), there ex-
ists a path [0, 1] � λ �→ (tλ, Aλ, Bλ, Cλ) ∈ (0,∞)×
Farb

tλ (M ) such that:

— λ �→ (W c
λ(tλ),W

o
λ(tλ)) is analytic, where W c

λ(tλ)
and W o

λ(tλ) denote, respectively, the controllability
and observability Gramians in time tλ associated with
ẋ(t) = Aλ(t)x(t) +Bλ(t)u(t), y(t) = Cλ(t)x(t);

— ‖W c
1 (t1)−W c(t∗)‖≤ε and ‖W o

1 (t1)−W o(t∗)‖ ≤ ε,
where W c(t∗) and W o(t∗) denote, respectively, the
controllability and observability Gramians in time t∗

associated with ẋ(t) = A(t)x(t) +B(t)u(t), y(t) =
C(t)x(t);

— the set {λ ∈ [0, 1] | (Aλ, Bλ, Cλ) ∈ G} has nonempty
interior.

A trivial adaptation of the proof of Proposition 5 yields the
following result.

Lemma 17: Let S be one of the classes introduced in
Section II-B with corresponding F . Assume moreover that if
S = S lip,L(M ) or S = SBV,T,ν(M ) then M is star-shaped.
Then (S,F) satisfies Assumptions T1 and T2.

A. Minimal Realization for Switched Linear Control
Systems

We start by giving the following definitions.
Definition 18:

1) A point x ∈ R
n is G-reachable for the switched linear

control system (13) if there exist t ≥ 0, a switching law
(A,B,C) ∈ Gt and an input u ∈ L2 such that the cor-
responding trajectory xu starting at 0 reaches x in time t.
The reachable set R(G) is the set of all G-reachable
points. System (13) is said to be G-controllable if
R(G) = R

n.
2) A point x ∈ R

n is G-unobservable for the switched linear
control system (13) if for every t ≥ 0 and every switching
law (A,B,C) ∈ Gt the trajectory x0 associated with the
zero input and starting at x gives rise to an output y
satisfying y(t) = 0. The observability space O(G) is
defined as the orthogonal complement in R

n of the space
of all G-unobservable points. System (13) is said to be
G-observable if O(G) = R

n.
It is not immediate from its definition that the reachable

set R(G) is a linear subspace. It has been shown in [17]
that this is the case if T = G∞ = Sarb(M ), where M =
{(A1, B1, C1), . . . , (Ak, Bk, Ck)} with k a positive integer. In
addition, it is proved in the same reference that the state space
admits a direct sum decomposition into a controllable and an
uncontrollable part for the switched linear control system ex-
actly as in the unswitched situation. More precisely, there exists
a direct sum decomposition of the state space Rn = R(G)⊕ E
and an invertible n× n matrix P such that, if r = dimR(G)
and P−1x = (xc xu) with xc ∈ R(G) and xu ∈ E, one has for
1 ≤ i ≤ k

P−1AiP =

(
Ac

i ∗
0 Au

i

)
, P−1Bi=

(
Bc

i

0

)
, CiP =

(
Cc

i ∗
)

where Ac
i and Bc

i belong to Mr(R) and Mr,m(R) respectively.
Moreover, the switched linear control system defined on R

r

associated with Sarb(M c), where

M c = {(Ac
1, B

c
1, C

c
1) , . . . , (A

c
k, B

c
k, C

c
k)}

is Farb(M c)-controllable. Notice that M c = Πc(M ) where

Πc(A,B,C) = (UP−1APUT , UP−1B,CPUT )

with U = (Idr 0r,n−r). Also notice that the output y corre-
sponding to the original system is equal to y = Ccxc and thus
the original switched linear control system has the same L2-
gain as the one reduced to the reachable space.

Similarly, there exists a direct sum decomposition of the state
space R

n = O(G)⊕ F and an invertible n× n matrix Q such
that, if s = dimO(G) and Q−1x = (xo, xu) with xo ∈ O(G)
and xu ∈ F , one has for 1 ≤ i ≤ k

Q−1AiQ=

(
Ao

i 0
∗ Au

i

)
, Q−1Bi=

(
Bo

i

∗

)
,CiQ=

(
Co

i 0
)
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where Ao
i and Co

i belong to Ms(R) and Mp,s(R) respectively.
Moreover, the switched linear control system defined on R

s

associated with Sarb(M o), where

M o = {(Ao
1, B

o
1 , C

o
1 ) , . . . , (A

o
k, B

o
k, C

o
k)}

is Farb(M o)-observable. Notice that M o = Πo(M ) where

Πo(A,B,C) = (V Q−1AQV T , V Q−1B,CQV T )

and V = (Ids 0s,n−s). The corresponding output y being equal
to y = Coxo, one deduces the equality of the L2-gains of the
original switched linear control system and of the one reduced
to the observability space.

From the above, one can proceed as follows. Consider a
switched linear control system (13) associated with Sarb(M ),
where M = {(A1, B1, C1), . . . , (Ak, Bk, Ck)}. One first re-
duces it to its reachable space R(Farb(M )). We thus get
a Farb(Πc(M ))-controllable switched linear control system
with same L2-gain as that of the original system. Then,
one reduces the latter system to its observability space
O(Farb(Πc(M ))) to finally obtain a switched linear con-
trol system associated with Sarb(Mmin) where Mmin =
Πo(Πc(M )). The latter system is finally Farb(Mmin)-
controllable and Farb(Mmin)-observable and

γ2
(
Sarb(Mmin)

)
= γ2

(
Sarb(M )

)
. (14)

We refer to Sarb(Mmin) and the corresponding switched linear
control system as a minimal realization for the linear switched
linear control system associated with Sarb(M ) and (13). We
also say that n′ is the dimension of such a minimal realization.

Remark 19: Note that even though the dimension n′

of O(Farb(Πc(M ))) is uniquely defined by the original
switched linear control system, the minimal realization is
not unique since it depends on the choice of supplemen-
tary spaces to R(Farb(M )) in R

n and to O(Farb(Πc(M )))
in R(Farb(M )). However, one deduces from (14) that
γ2(Sarb(Mmin)) does not depend on a particular choice of a
minimal realization. Moreover, it can be shown that any two
minimal realizations with switching signal value sets Mmin

1

and Mmin
2 are algebraically similar, i.e., there exists an invert-

ible matrix G ∈ GLn′(R) so that

Mmin
2 =

{
(G−1AG,G−1B,CG) | (A,B,C) ∈ Mmin

1

}
.

(15)
All the results presented in this paragraph belong to the theme
of realization theory of switched linear control systems and we
refer to [18] for a thorough presentation of such a theory.

Finally, it must be recalled that [17] also provides a
nice and explicit geometric description of R(Farb(M )) and
O(Farb(M )) in terms of the data of the problem. Let us
recall here the details of such a geometric description for
R(Farb(M )) (the corresponding results for O(Farb(M )) be-
ing standardly derived by duality).

We first need the following notation. If A is an n× n matrix
and B is a subspace of R

n, let ΓAB be the subspace of R
n

given by

ΓAB = B +AB + · · ·+An−1B.

For 1 ≤ i ≤ k, let Dj = Im[Bi AiBi . . . An−1
i Bi]. Moreover

(see [17, Sec. 3.1]), define recursively the sequence of sub-
spaces of Rn denoted Vj , j ≥ 1, by

V1 =D1 + · · ·+Dk

Vj+1 =ΓA1
Vj + · · ·+ ΓAk

Vj

and finally set V(M ) =
∑

j≥1 Vj . From the variation of con-
stants formula, it is not difficult to see that R(Farb(M )) is
included in V(M ). The converse inclusion is also true but
more delicate to establish, cf. [17, Theorem 1] and the proof
of Proposition 20 below. In the subsequent paragraphs, we will
use these results to derive the existence of a minimal realization
associated with (13) and any class T considered in Section II-B
together with its corresponding concatenation of subfamilies of
switching signals introduced in Section III-A.

We now generalize the above construction to a bounded
set M ⊂ Mn(R)×Mn,m(R)×Mp,n(R). We associate a sub-
space V(M ) of Rn as follows. First, consider

V1(M ) = Span
{
Ajbl | 0 ≤ j ≤ n− 1, 1 ≤ l ≤ m,

(A, [b1 . . . bm]) ∈ πA×B(M )
}
.

Then, define recursively for j ≥ 1

Vj+1(M ) = Span
{
Ajv | 0 ≤ j ≤ n− 1,

A ∈ πA(M ), v ∈ Vj(M )
}

and finally set V(M ) =
∑

j≥1 Vj(M ). Taking a (finite) gener-
ating family of V(M ), one can extract a finite subset M finite

of M such that V(M finite) = V(M ). Hence

V(M ) ⊃R
(
Farb(M )

)
⊃ R

(
Farb(M finite)

)
=V(M finite) = V(M ) (16)

where the first inclusion is deduced from the variation of
constants formula. Therefore, all the sets appearing in (16)
coincide.

We thus prove the following proposition.
Proposition 20: Consider a switched linear control system

of the type (13) associated with a class T of measurable
switching laws taking values in a bounded set M ⊂ Mn(R)×
Mn,m(R)×Mp,n(R). Let (T ,G) satisfy Assumption T2. Then
R(G) = R(Farb(M )) = V(M ) and there exist t∗ > 0 and a
switching law (A,B,C) ∈ Gt∗ such that the range of W c(t∗),
the controllability Gramian in time t∗ associated with ẋ(t) =
A(t)x(t) +B(t)u(t), is equal to V(M ).

Proof: First notice that the equality R(Farb(M )) =
V(M ) is contained in (16) and one has the trivial inclusion
R(G) ⊂ V(M ). Let us prove the opposite inclusion.

As done above there exists a finite subset M finite of M
such that V(M finite)=V(M ). It is proved in [17, Theorem 1]
that there exists a piecewise-constant periodic switching law
(A,B,C) taking values in M finite and a time t∗ > 0 such
that the range of W c(t∗), the controllability Gramian in time
t∗ > 0 associated with ẋ(t) = A(t)x(t) +B(t)u(t), is equal
to V(M ). Fix ε > 0 such that if an n× n matrix W satisfies
‖W −W c(t∗)‖ < ε then the rank of W is larger than or equal
to the rank of W c(t∗). Let λ �→ (Aλ, Bλ, Cλ) be the path
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provided by Assumption T2. Then there exists λ∗ ∈ (0, 1] such
that (Aλ∗ , Bλ∗ , Cλ∗) ∈ G and the rank of the corresponding
controllability Gramian W c

λ∗(tλ∗) is larger than or equal to the
rank of W c(t∗), itself equal to dimV(M ). Since the range of
W c

λ∗(tλ∗) is included in R(G) this concludes the proof of the
proposition. �

An analoguous statement is obtained regarding observability
spaces and, following the first part of the section, one finally
derives the subsequent result.

Proposition 21: Consider a switched linear control system
of the type (13) associated with a class T of measurable
switching laws taking values in a bounded set M ⊂ Mn(R)×
Mn,m(R)×Mp,n(R). Let (T ,G) satisfy Assumption T2. Let
n′ be the dimension of any minimal realization of the switched
linear control system associated with Sarb(M ). Pick one such
minimal realization and consider the corresponding surjective
linear mapping Π from Mn(R)×Mn,m(R)×Mp,n(R) to
Mn′(R)×Mn′,m(R)×Mp,n′(R) describing its matrix repre-
sentation. Denote by T min the class

T min = {t �→ Π(A(t), B(t), C(t)) | (A,B,C) ∈ T }

taking values in Mmin = Π(M ). Then the switched linear
control system corresponding to T min is Gmin-controllable and
Gmin-observable in the sense of Definition 18 with Gmin =
Π(G). Moreover, (T min,Gmin) satisfies Assumption T2 and
γ2(T ) = γ2(T min). Finally, if (T ,G) satisfies Assumption T1
then (T min,Gmin) does.

Proof: This proposition is a simple consequence of the
construction of minimal realizations in the case of arbitrary
switching, as described in the first part of the section, and of
Proposition 20. �

For T and T min as in the statement of Proposition 21, we say
that the switched linear control system corresponding to T min

is a minimal realization of the switched linear control system
associated with T . It follows from Remark 19 that any two such
minimal realizations are algebraically similar.

B. Finiteness of the L2-Gain

Consider the switched linear control system (13) and the
corresponding class T of switching laws with values in the
bounded set M of triples of matrices. Let us introduce
the following definition.

Definition 22: We say that (13) is uniformly observable
(or, equivalently, that T is uniformly observable) if there exist
T, γ > 0 such that, for every (A,B,C) ∈ T and every t ≥ 0,
one has W o(t, t+ T ) ≥ γIdn, where W o(t, t+ T ) is the
observability Gramian in time T associated with (A(t + ·),
B(t+ ·), C(t+ ·)).

The following remark will be used in the sequel.
Remark 23: If (13) is uniformly observable and T, γ are

as in Definition 22, the observability Gramian W o(t, t+ T ) in
time T associated with a switching law belonging to the weak-	
closure of T still satisfies W o(t, t+ T ) ≥ γIdn.

Remark 24: Consider the case where T contains all the con-
stant M -valued switching signals. (Notice that this is the case
for all classes of switching signals introduced in Section II-B
except that of persistently exciting signals.) It is then easy to

see that uniform observability implies that (A,C) is observable
for every (A,B,C) ∈ M . In the case where M is compact and
the class of signals under consideration is Sd,τ (M ) for some
τ > 0, one easily shows that the converse is also true, namely,
the observability of each pair (A,C) implies uniform observ-
ability. Let us stress that the uniform observability assumption
is weaker than the minimal realization assumption (every triple
(A,B,C) ∈ M is a minimal realization, i.e., (A,B) is control-
lable and (A,C) is observable) needed in [1] and [4].

We can now state the main result of this section.
Theorem 25: Assume that (13) admits a minimal

realization defined on R
n′

, n′ ≤ n, which is given by
ẋmin(t) = Amin(t)x(t) +Bmin(t)u(t) with output ymin(t) =
Cmin(t)xmin(t) and associated with a class T min of switching
signals taking values in Mmin, and a family Gmin satisfying the
following assumptions:

a) (T min,Gmin) satisfies Assumptions T1 and T2;
b) for every subspace V of Rn′

and every linear projection
PV : Rn′ → V , the class of signals PV Gmin

A P#
V satisfies

Assumption A3, where we use P#
V to denote the dual

map from V to R
n defined by xTPV y = yTP#

V x for
every x ∈ V and y ∈ R

n.

Then γ2(T ) is finite if ρ(T min
A ) < 1 and infinite if either

ρ(T min
A )>1 or ρ(T min

A )=1 and T min is uniformly observable.
Proof: Thanks to Proposition 21, it is enough to treat the

case T = T min.
Assume first that ρ(TA) < 1. Taking into account the de-

finition of ρ(TA) [see (4)] and the boundedness of πA(M ),
one gets the following exponential decay estimate: there exist
K1, λ > 0 such that, for every A ∈ TA and every 0 ≤ s ≤ t,
one has

‖ΦA(t, s)‖ ≤ K1e
−λ(t−s).

As a consequence of the above and the boundedness of M , one
deduces that there exists K2 > 0 such that, for every u ∈ L2,
(A,B,C) ∈ T and t ≥ 0, one has

‖yu(t)‖ ≤ K2

t∫
0

e−λ(t−s) ‖u(s)‖ ds. (17)

If χ[0,+∞) denotes the characteristic function of [0,+∞), the
integral function on the right-hand side of (17) can be inter-
preted as the convolution of

f1(t) = χ[0,+∞)(t)e
−λt, f2(t) = χ[0,+∞)(t) ‖u(t)‖ .

That yields at once that ‖yu‖2 ≤ (K2/λ)‖u‖2, hence the
conclusion.

Assume now that ρ(TA) ≥ 1. It is well-known (see, e.g.,
[19, Proposition 2] for details), that, up to a common linear
change of coordinates, every matrix in A ∈ MA has the upper
triangular block form

A =

⎛
⎜⎜⎜⎜⎜⎝

A11 A12 · · ·
0 A22 A23 · · ·
0 0 A33 A34 · · ·
...

. . .
. . .

. . .
0 · · · · · · 0 Aqq

⎞
⎟⎟⎟⎟⎟⎠
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where, for i = 1, . . . , q, each Aii is in Mni−ni−1
(R), ni ∈ N

and the set Ai := {Aii | A ∈ MA} is irreducible (whenever
MA is irreducible one has q = 1 and A1 = MA). Define the
subsystems of MA as the switched systems corresponding to
the sets Ai and the class of switching signals TA,i := {Aii |
A ∈ TA} and GA,i := {Aii | A ∈ GA}. One can then show that
(TA,1,GA,1), . . . , (TA,q,GA,q) satisfy Assumptions A0–A3. In-
deed, Assumptions A0 and A1 follow from Assumption T1;
Assumption A2 is a consequence of Assumption T2 and
Proposition 4 while Item (b) yields Assumption A3.

Moreover, an induction argument on the number of subsys-
tems and a standard use of the variation of constants formula
yields

ρ(TA) = max
1≤i≤q

ρ(TA,i).

Let ı̄ ≤ q be the largest index such that ρ(TA,ı̄) = ρ(TA). Since
(13) is G-controllable, there exists a time t̄ > 0, a switching law
(A0, B0, C0) ∈ Gt̄ and a measurable control ū defined on [0, t̄]
so that the corresponding trajectory xū starting at 0 reaches
some point x̄ = (0, . . . , 0, x̄ı̄, 0, . . . , 0)

T �= 0 in time t̄.
Since (TA,ı̄,GA,ı̄) satisfies the hypotheses of Theorem 7,

the corresponding semigroup Φ(GA,ı̄) is quasi-Barabanov and
admits a quasi-extremal trajectory xq−ext

ı̄ starting at x̄ı̄ and
corresponding to a signal Aı̄ı̄ belonging to the weak-	 closure
of (GA,ı̄)∞. Let x̄ be a trajectory of ẋ = A(t)x(t) starting at x̄
and corresponding to some signal Ā in the closure of (GA)∞ so
that Āı̄ı̄ = Aı̄ı̄. Notice that x̄ı̄ = xq−ext

ı̄ .
Let E be the signal defined as the concatenation of A0 and Ā

and let A0
ı̄ı̄ and Eı̄ı̄ be the (̄ı, ı̄)-blocks corresponding to A0 and

E respectively. Let (El)l≥0 (and then (El
ı̄ı̄)l≥0) be a sequence

in (GA)∞ ((GA,ı̄)∞ respectively) weak-	 converging to Ā (Āı̄ı̄

respectively). Let (F l, Gl)l≥0 be such that (El, F l, Gl) ∈ G∞
for every l ≥ 0. The sequence (A0 ∗ El)l≥0 ((A

0
ı̄ı̄ ∗ El

ı̄ı̄)l≥0) is
in (GA)∞ ((GA,ı̄)∞ respectively) and weak-	 converges to E
(Eı̄ı̄ respectively). Moreover, for every positive time t ≥ t̄, the
convergence of s �→ ΦEl

(s− t̄, 0) to s �→ ΦE(s, t̄) is uniform
with respect to s ∈ [t̄, t] and similarly for the corresponding
(̄ı, ı̄)-blocks.

Denote by xl the trajectory of (13) starting at the origin and
associated with the control equal to ū on [0, t̄] and zero on
[t̄,+∞), and with the switching signal (A0 ∗ El, B0 ∗ F l, C0 ∗
Gl). Let yl be the corresponding output. Notice that xl(s) =
ΦEl

(s− t̄, 0)x̄ for every s ≥ t̄. For l large enough and for every
s ∈ [t̄, t], one has∥∥xl(s)

∥∥ ≥∥∥ΦEl
ı̄ı̄
(s− t̄, 0)x̄ı̄

∥∥
≥1

2
‖ΦEı̄ı̄

(s, t̄)x̄ı̄‖

≥ 1

2Cqx
ρ(TA)s−t̄‖x̄ı̄‖.

Hence, there exists a positive constant K3 independent of t ≥ t̄
such that, for every l large enough and every s ∈ [t̄, t], one has∥∥xl(s)

∥∥ ≥ K3ρ(TA)s−t̄. (18)

Assume now that ρ(TA) = 1 and T is uniformly observable,
and let T, γ be as in Definition 22. Given two positive integers
l, j, let W o

l,j be the observability Gramian in time T associated

with (El(jT + ·), F l(jT + ·), Gl(jT + ·)). Applying the uni-
form observability assumption to each (El(jT + ·), F l(jT+ ·),
Gl(jT + ·)) and taking into account (18), we get, for J ∈ N and
l large enough

γ2(T ) ≥ ‖yl‖22
‖ū‖22

≥
∫ JT
0

∥∥Gl(t)xl(t̄+ t)
∥∥2 dt

‖ū‖22

=

∑J−1
j=0

∫ (j+1)T

jT

∥∥Gl(t)xl(t̄+ t)
∥∥2 dt

‖ū‖22

=

∑J−1
j=0 x

l(t̄+ jT )TW o
l,jx

l(t̄+ jT )

‖ū‖22

≥ γ

∑J−1
j=0

∥∥xl(t̄+ jT )
∥∥2

‖ū‖22
≥ γJ

K2
3

‖ū‖22
.

This implies that the L2-gain γ2(T ) is infinite.
Let now ρ(TA) > 1. Let ı̄, ū and x̄ be as above. Since the

semigroup Φ(GA,ı̄) is quasi-Barabanov, we can find for every
l ∈ N a time tl ≥ l and a switching law (Êl, F̂ l, Ĝl) ∈ Gtl such
that∥∥ΦÊl(tl, 0)x̄

∥∥ ≥ Cqbρ(TA)tl‖x̄‖ ≥ Cqbρ(TA)l‖x̄‖. (19)

According to T2 and because of the observability counter-
part of Proposition 20, there exist s̃ > 0 and a switching law
(A∗, B∗, C∗) ∈ Gs̃ such that the observability Gramian W o(s̃)
in time s̃ associated with ẋ(t) = A∗(t)x(t) +B∗(t)u(t),
y(t) = C∗(t)x(t), is invertible. Up to a suitable extension on
(s̃,∞), we can assume that (A∗, B∗, C∗) belongs to G∞. For
l ≥ 0, consider the sequence of switching signals

Sl = (A0 ∗ Êl ∗A∗, B
0 ∗ F̂ l ∗B∗, C

0 ∗ Ĝl ∗ C∗) ∈ G∞.

Denote by xl the corresponding trajectory of (13) starting at the
origin and associated with the control equal to ū on [0, t̄] and
zero for t > t̄ and let yl be the corresponding output. Note that
xl(t̄+ tl) = ΦÊl(tl, 0)x̄. It then follows from (19) that there
exists a positive constant K4 independent of l so that:

γ2(T ) ≥
‖yl‖22,tl
‖ū‖22

≥
∫ t̄+tl+s̃

t̄+tl

∥∥C∗(s)x
l(s)
∥∥2 ds

‖ū‖22
=

xl(t̄+ tl)
TW o(s̃)xl(t̄+ tl)

‖ū‖22
≥K4ρ(TA)2l

and the right-hand side clearly tends to infinity as l tends to
infinity. �

Remark 26: Note that the value of ρ(T min
A ) does not depend

on the particular choice of the minimal realization thanks to
(15).

Under the hypotheses of Proposition 5, the classes of switch-
ing signals considered in Section II-B together with the corre-
sponding families of Section III-A satisfy all the hypotheses of
Theorem 25. As a consequence, we can now answer some of
the questions raised by Hespanha in [5].

Theorem 27: Let M be a bounded subset of Mn(R)×
Mn,m(R)×Mp,n(R) with n,m, p positive integers and τ≥0.
Consider the switched linear control system ẋ(t) = A(t)x(t) +
B(t)u(t), y(t)=C(t)x(t), where the switching signal (A,B,C)



CHITOUR et al.: CHARACTERIZATION OF SWITCHED LINEAR CONTROL SYSTEMS WITH FINITE L2-GAIN 1835

belongs to the class Sd,τ (M ) of piecewise constant signals
with dwell-time τ . Let γ2(τ) be the L2-gain associated
with Sd,τ (M ). Consider a minimal realization defined on
R

n′
, n′ ≤ n, given by ẋmin(t) = Amin(t)x(t) +Bmin(t)u(t)

with output ymin(t) = Cmin(t)xmin(t) and associated with
a class Sd,τ (Mmin) where Mmin is a bounded subset of
Mn′(R)×Mn′,m(R)×Mp,n′(R). Assume furthermore that
this minimal realization is uniformly observable.

Then, γ2(τ) is finite if and only if ρ(Sd,τ (Mmin
A )) < 1 and,

if τmin is defined as

τmin = inf {τ > 0 | γ2(τ) is finite}

one has the following characterization: τmin = inf{τ > 0 |
ρ(Sd,τ (Mmin

A )) < 1}.
Remark 28: The theorem still holds true if we replace the

uniformly observability assumption by the hypothesis that there
exists at most one τ > 0 such that ρ(Sd,τ (Mmin

A )) = 1.
Remark 29: One can derive results similar to the previ-

ous theorem when one considers variations of certain param-
eters used in the definition of classes other than Sd,τ (M ).
For instance, one can characterize the set of μ ∈ (0, T )
such that γ2(Spe,T,μ(M )) is finite in terms of the value of
ρ(Spe,T,μ(Mmin

A )).
Remark 30: Recall that the computation of tmin = inf{τ >

0 | ρ(Sd,τ (Mmin
A )) < 1} turns out to be a numerically tractable

task. Indeed, [6] proposes an LMI procedure providing a se-
quence of upper bounds of tmin approximating it arbitrarily
well. Therefore, combining Theorem 27 and the LMI-based al-
gorithm of [6] yields a numerical procedure for estimating τmin.

Theorem 25 shows that, under the assumption of uniform
observability of a minimal realization, the necessary and suf-
ficient condition for finiteness of the L2-gain (i.e., generalized
spectral radius smaller than one) is exactly the same as in
the unswitched framework. We prove below by means of an
example that this is no more the case when the assumption
of uniform observability does not hold. For this purpose, we
next define a switched linear control system satisfying all the
assumptions of Theorem 25 (with TA = T min

A = (Gmin
A )∞) and

for which uniform observability does not hold. We have the
following example.

Example 31: Assume that T (α) = Sarb(M (α)) where
M (α) = {(Ai, bi, ci)}i=1,2,3 ⊂ M3(R)× R

3 × R
3, with

A1 =

⎛
⎝−1 −α 0

α −1 0
0 0 −1

⎞
⎠

A2 =

⎛
⎝−1 −α 0

1
α −1 0
0 0 −1

⎞
⎠

A3 =

⎛
⎝−4 0 1

0 −4 0
1 0 −1

⎞
⎠

b1 = b2 = 0, b3 = c1 = c2 = c3 = (0, 0, 1)T

for α > 0. We use γ2(α) to denote the L2-gain induced by the
switched linear control system given by ẋ = A(t)x + b(t)u(t),
y(t) = cT (t)x(t) and (A, b, c) ∈ T (α). Then we claim that

T (α) = T min(α) for every α > 0 and there exists α∗ (ap-
proximatively equal to 4.5047) such that ρ(TA(α∗)) = 1 and
γ2(α∗) ≤ 4.

Before providing a proof, let us note that the assumption
of uniform observability does not hold since the observability
Gramian in any positive time associated with a switching signal
only activating the first two modes contains b3 in its kernel.

Let us now prove the claim. Using the results in [20], one
determines the value α = α∗ ∼ 4.5047 for which the switched
system associated with M ′

A(α) = {A1, A2} is marginally
stable (and reducible). In this case, starting from every point
(x1, x2, 0), there exists a closed (periodic) C1 trajectory Γx1,x2

of the switched system lying on the plane x3 = 0 which can be
completely determined by explicit computations. In particular,
we can pick such a trajectory so that its support Γ is contained
in the set {(x1, x2, 0) ∈ R

3 | 1 ≤ x2
1 + x2

2 ≤ 3}. We define the
norm v(x1, x2, 0) on the plane {x3=0} by setting v−1(1)=Γ.
Then v is a Barabanov norm for the restriction of M ′

A(α∗)
on the plane {x3 = 0}. We extend v to a function on R

3, still
denoted by v, by setting v(x1, x2, x3) = v(x1, x2, 0) and it fol-
lows by explicit computations that ‖∇v(x)‖ ≤

√
3 and, by ho-

mogeneity, that v(x) = ∇v(x)T (x1, x2, 0)
T for every x ∈ R

3.
Notice, moreover, that

v(x) ≥
√

x2
1 + x2

2

3
, ∀x ∈ R

3.

Let us consider the positive definite function V (x) =
(1/2)(v(x)2 + x2

3) and observe that (d/dt)V (x(t)) ≤ −x3(t)
2

wheneverA(t) = A1 or A(t) = A2. If A(t) = A3, one deduces
from the above properties of v that
d

dt
V (x(t)) =∇V (x(t))T (A3x(t) + u(t)b3)

= v(x(t))
(
∇v(x(t))TA3x(t)+u(t)∇v(x(t))T b3

)
+ x3(t) (−x3(t) + x1(t) + u(t))

= − 4v(x(t))2+v(x(t))∇v(x(t))T (x3(t), 0, 0)
T

+ x3(t) (−x3(t) + x1(t) + u(t))

≤ − 4v (x(t))2 + 2
√
3v (x(t)) |x3(t)| − x3(t)

2

+ u(t)x3(t)

≤ − x3(t)
2/4 + u(t)x3(t).

Hence (d/dt)V (x(t)) ≤ −x3(t)
2/4 + |u(t)x3(t)| along any

trajectory of the switched linear control system. By integrat-
ing the previous inequality, using the fact that x(0) = 0 and
applying Cauchy–Schwarz inequality, we get

0 ≤ lim inf
t→∞

V (x(t))

≤− 1

4
‖x3‖22 +

∞∫
0

|u(s)x3(s)| ds

≤ − 1

4
‖x3‖22 + ‖u‖2‖x3‖2

so that ‖x3‖2 ≤ 4‖u‖2, implying that γ2(α∗) ≤ 4. This con-
cludes the proof of the claim.

C. Right-Continuity and Boundedness of the L2-Gain

In this section, we restrict for simplicity our discussion to the
class of signals Sd,τ (M ). (For more general considerations, see
Remark 34).
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Let M be a bounded subset of Mn(R)×Mn,m(R)×
Mp,n(R) with n,m, p positive integers and τ > 0. Consider the
switched linear control system ẋ(t) = A(t)x(t) +B(t)u(t),
y(t) = C(t)x(t), where the switching law (A,B,C) belongs
to the class Sd,τ (M ). of piecewise constant signals with dwell-
time τ ≥ 0. Let γ2(τ) be the L2-gain associated with Sd,τ (M ).

We can now state our result on the right-continuity of τ �→
γ2(τ), which answers Questions i) and—partially—iii) of [5].

Proposition 32: The function γ2 : [0,∞) → [0,∞] is right-
continuous, i.e., for every τ̄ ∈ [0,∞), limτ↘τ̄ γ2(τ) = γ2(τ̄ ).

Proof: For every T > 0 and every τ ∈ [0,∞), define the
L2-gain in time T as

γ2(τ, T ) := sup

{
‖yu,σ‖2,T
‖u‖2,T

| u ∈ L2 ([0, T ],R
m) \ {0},

σ ∈ Sd,τ (M )

}
.

It is immediate to see that γ2(τ, T ) is finite for every (τ, T ) ∈
[0,∞)×(0,∞) and that the maps τ �→γ2(τ, T ) (for fixedT >0)
and T �→ γ2(τ, T ) (for fixed τ ≥ 0) are non-increasing and
non-decreasing respectively. Also notice that τ �→ γ2(τ) is
non-increasing.

We claim that

i) limT→∞ γ2(τ, T ) = γ2(τ) for every τ ≥ 0;
ii) the map τ �→ γ2(τ, T ) is right-continuous for every

T > 0.

In order to prove property i) of the claim, notice that, given
τ ≥ 0, 0 < T ≤ ∞, any switching signal σ and nonzero control
u ∈ L2, one has

lim
T ′↗T

‖yu,σ‖2,T ′

‖u‖2,T ′
=

‖yu,σ‖2,T
‖u‖2,T

since ‖yu,σ‖2,T ′ and ‖u‖2,T ′ converge to ‖yu,σ‖2,T and ‖u‖2,T
respectively. Property i) then follows from the definition of
γ2(τ) and the monotonicity of T �→ γ2(τ, T ).

Let us now prove point ii) of the claim. With 0 ≤ τ < τ ′,
T > 0, and σ ∈ Sd,τ we associate σ′ ∈ L∞([0,∞),M ) as
follows: σ′(·) := σ(ξ·) where ξ is the largest number in [0,1]
such that the restriction of σ′ to [0, T ] has dwell-time τ ′. Notice
that ξ is larger than or equal to min(τ̄ , τ ′)/τ ′, where τ̄ is the
largest number such that the restriction of σ to [0, T ] has dwell-
time τ̄ . In particular, ξ is always positive and converges to 1
as τ ′ ↘′ τ . Note that σ and σ′ are equal except on a set of
measure upper bounded by C(T, τ̄ )(τ ′ − τ), where C(T, τ̄)
denotes some positive constant only depending on T and τ̄ . As
a consequence, for any u ∈ L2(0, T )

lim
τ ′↘τ

‖yu,σ′‖2,T = ‖yu,σ‖2,T .

One immediately deduces property ii) from the definition of
γ2(τ, T ) and the monotonicity of τ ′ �→ γ2(τ

′, T ).
We can then conclude the proof of the proposition as fol-

lows: given τ ≥ 0 and κ < γ2(τ), let T > 0 be such that
κ < γ2(τ, T ) [T exists by property i)]. Take then a right-
neighbourhood [τ, τ + η) of τ such that κ < γ2(τ

′, T ) for every
τ ′ ∈ [τ, τ + η) [the existence of η > 0 follows by property ii)].

We deduce from the monotonicity of each function T �→
γ2(τ

′, T ) that κ < γ2(τ
′) for every τ ′ ∈ [τ, τ + η). Since κ is

arbitrary, we conclude that lim infτ ′↘τ γ2(τ) ≥ γ2(τ) and the
right-continuity of γ2 is proved thanks to its monotonicity. �

An immediate consequence of the monotonicity of τ �→
γ2(τ) and its right-continuity at τ = 0 is the following result.

Corollary 33: The function γ2 : (0,∞) → [0,∞] is bounded
if and only if γ2(0) < ∞.

Notice that γ2(0) is finite if (and only if in the uniformly ob-
servable case) the generalized spectral radius of a correspond-
ing minimal realization is smaller than one (see Theorem 25).

Remark 34: One can reason similarly for other classes of
switching laws (in particular those introduced Section III-A),
getting similar results to Proposition 32 and Corollary 33. More
precisely, if we deal with a one-parameter family [0, ᾱ) � α �→
Sα(M ) of classes of switching laws, then the corresponding
parameter-dependent L2-gain γ2(α) is right-continuous and
non-increasing with respect to α provided that Sα(M ) ⊃
Sα′

(M ) for α < α′ and that, for T > 0, α ∈ [0, ᾱ), u ∈
L2, σ ∈ Sα(M ), and every sequence αn ↘ α, there exist
a sequence (σn)n with σn ∈ Sαn(M ) for every n ∈ N and
limn→∞ ‖yσn,u‖2,T = ‖yσ,u‖2,T .

V. CONCLUSION

In this paper, we address an open problem proposed by
J. P. Hespanha in [5], which consists of three questions about
the dependence of the L2-gain γ2(τ) of a switched linear
control systems with respect to the dwell-time τ of its switching
laws. We provide some partial answers to these questions. In
particular, we prove that the gain function τ �→ γ2(τ) is right-
continuous. Further results are obtained under the assumption
of uniform observability (see Definition 22) which is equiva-
lent, in the case of finitely many modes, to the observability
of each mode of a minimal realization of the original system.
Under such an assumption, one has that (a) the infimum τmin

of the dwell-times τ such that γ2(τ) is finite coincides with the
largest dwell-time τ for which the generalized spectral radius
ρ(τ) of a corresponding minimal realization is equal to one; (b)
if the gain function γ2 is bounded then the generalized spec-
tral radius of a minimal realization corresponding to arbitrary
switching is proved to be smaller than one (the converse holding
true even without assuming uniform observability).

In order to deduce these results, we are led to building an
abstract framework, allowing one to address the same L2-gain
issues for many classes of parameter-dependent switching laws.
The main difficulty arises from the fact that most of such
classes (e.g., those of switching laws with positive dwell-time)
are not closed under concatenation. To overcome this obstacle,
we introduce the concepts of quasi-Barabanov semigroup and
quasi-extremal trajectory.

A complete answer to the questions asked by J. P. Hespanha
remains to be achieved: the continuity of the gain function
τ �→ γ2(τ) is still open, as well as a new characterization
of τmin when the uniform observability assumption does not
hold. By the results of the paper and the continuity of the
function τ �→ ρ(τ) (see e.g. [13]), one knows that τmin belongs
to the closed interval I = {τ ≥ 0 | ρ(τ) = 1}. Notice that I
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may be nontrivial, as it is the case for the system considered in
Example 31, for which τmin coincides with the left endpoint
of I , contrarily to the uniformly observable case, where it
is located at its right endpoint. It would be interesting to
understand the exact location of τmin within I in the general
not uniformly observable case.

Another challenging open problem consists in extending the
results of [2] and [4], which provide an algorithmic approach
based on optimal control for the computation of the L2-gain, in
the abstract framework introduced here.
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