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a b s t r a c t 

In this paper, a novel method for the design of a robust estimator for a class of switched linear systems 

subject to unknown inputs is presented. To consider a more general case compared to the literature, the 

switching sequence is assumed to be minimum average-dwell time but not available for measurement. 

To deal with this issue, the proposed estimator structure is divided into two blocks: mode-estimator and 

continuous-estimator. Based on this structure, a bank of robust estimators is designed for each block 

that is able to simultaneously estimate the active mode of the switched system and states. Using a com- 

mon Lyapunov function, a sufficient condition in terms of linear matrix inequalities is derived, which 

guarantees the exponential stability of the estimation error dynamics. Simulation results illustrate the 

performance of the proposed robust estimator. 

© 2018 European Control Association. Published by Elsevier Ltd. All rights reserved. 
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1. Introduction 

Estimator design for linear systems subject to unknown inputs

referred to as Unknown Input Observers (UIO) is one of the inter-

esting topics in system theory that has been studied during the last

two decades. Briefly, unknown inputs can contain any modelling

errors, plant variations, and disturbances and thus they have a sig-

nificant impact on the behaviour of the plant and control system.

It should be noted that, in case of unknown inputs, typical estima-

tor designs usually fail and consequently the desired control per-

formance cannot be achieved. Regarding UIO and robust estimators

in general, we recommend our readers to see [2,9–11,17,24,25] and

the references therein, which are some of the recent works in the

literature focusing on robust estimator design for both linear and

nonlinear systems. But to where the current literature takes us in

the field of robust estimator design for switched systems? 

The stability and stabilization problems of switched linear sys-

tems, as a special class of hybrid systems, have been studied ex-

tensively and quite comprehensive results are now available in the

literature. See for instance [16,19–22,29] . However, and unlike the

stabilization problems via different control techniques, the estima-
∗ Corresponding author. 
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or design problem for switched systems has not been fully inves-

igated. Some of the key references in this area are listed below. 

The study of the fundamental properties of switched linear sys-

ems has received a great deal of attention during the last decade.

n particular, the observability of switched linear systems has been

horoughly analysed depending on whether the switching signal

s known or unknown [6] . A detailed characterization of the ob-

ervability and an observer design method for switched linear sys-

ems with state jumps followed by some modifications on relaxing

he constraint of the observers have been reported in [27,28] . Un-

oubtedly, [3] and [4] are two well-known articles in the field of

stimator design for hybrid systems where the authors propose a

eneral estimator structure for hybrid systems. The proposed esti-

ator in either reference is composed of a mode-estimator and a

ontinuous-estimator performing together to reconstruct the states

nder dwell-time constraint on the switching signal. It should be

oted that none of the aforementioned works consider unknown

nputs in the plant realisation; thus, their design is not robust

ith respect to unknown inputs. Particularly, for the switched sys-

em, the controllability and observability of switched linear sys-

ems without unknown inputs are addressed in [26] . In [1] , the

uthors proposed a switched Luenberger estimator and a sufficient

ondition for stability of the error dynamics. They used a common

yapunov function and a Linear Matrix Inequality (LMI) approach

o obtain a sufficient condition for stability. 
rved. 

https://doi.org/10.1016/j.ejcon.2018.09.003
http://www.ScienceDirect.com
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On the other hand from the robust estimator design point of

iew, there are not so many research studies reported for switched

ystems in the literature. In [8] , a systematic LMI-based procedure

or design of a UIO for switched linear discrete-time systems has

een proposed. The authors have assumed that the switching sig-

al is available in real time and also there is no jump in the con-

inuous state once a switch takes place. A similar work has been

eported in [7] , where the authors proposed sufficient conditions

n terms of LMIs for the existence of both full-order and reduced-

rder UIOs. It is worth noting that they also considered a known

witching signal and the case that the state does not jump at

he switching instants. In [18] , robust estimator design for a class

f switched nonlinear discrete-time descriptor systems has been

tudied. However, they also assumed a real-time accessible switch-

ng time sequence and no jump in the continuous state. The lat-

er assumption, i.e. having no jump in state, has been removed in

5] . Although they considered a jump in the continuous state and

esigned an estimator for switched linear systems subject to un-

nown inputs, they assumed that switching signal is available for

eal-time measurement. 

To the best of authors’ knowledge, none of the aforemen-

ioned works have addressed the problem of estimator design for

witched systems subject to unknown inputs, when the switch-

ng signal is also unknown. In this paper, the assumption on the

witching signal being real-time measurable is relaxed and our ob-

ective is to propose a robust estimator that reconstructs both the

ctive mode of the switched system and the complete continuous

tates via the knowledge of the switched plant inputs and outputs.

ufficient conditions in terms of LMIs are provided. The feasibility

f the LMI conditions guarantees the exponential convergence of

he estimation error dynamics in the presence of unknown inputs. 

The rest of this paper is organized as follows. In Section 2 , we

ntroduce the class of switched systems subject to unknown inputs.

n Section 3 , a new method for the design of a robust estimator

or the class of the switched systems under study is proposed. By

sing a common Lyapunov function, we propose a sufficient condi-

ion in terms of nonlinear matrix inequalities in order to make the

rror dynamics exponentially stable. The obtained inequalities are

hen reformulated as a set of LMIs. The effectiveness of the pro-

osed estimator is evaluated through a numerical example. Simu-

ation results are shown in Section 4 . Finally, the paper ends with

oncluding remarks in Section 5 . 

. Preliminaries and problem statement 

Consider the following class of switched linear systems: 

ys. : 

{ 

˙ x (t) = A λ(t) x (t) + B λ(t) u (t) + E λ(t) ν(t) 
y (t) = C λ(t) x (t) 
x (t + 

i 
) = �x (t −

i 
) ; i = 1 , 2 , . . . 

(1) 

here x ∈ R n , u ∈ R m , ν ∈ R h and y ∈ R p are the state vector, known

nputs, unknown inputs, and measured outputs, respectively. The

arameter λ( t ) is a piecewise-constant discrete state function that

akes values on the discrete set { 1 , . . . , N} , where N is the num-

er of “modes” that composes the overall switched dynamics. q ∈
 1 , . . . , N} is the “active mode” at time t if λ(t) = q, correspond-

ng to the tuple ( A q , B q , C q , E q ) with appropriate dimensions. The

equence { t 1 , t 2 , . . . } denotes the switching times at which the sys-

em mode changes (i.e., λ(t + 
i 
) � = λ(t −

i 
) ). The value of the state

ump is defined by the matrix �, which is assumed to be known

t each switching time. To specify the class of linear systems under

tudy, it is assumed that for q = { 1 , 2 , . . . , N} the following prop-

rties hold. 

Assumption 1. All pairs ( A q , C q ) are observable. 

Assumption 2. rank (C q E q ) = rank (E q ) = h . 
The aim is to design a robust estimator working under an av-

rage dwell-time constraint such that it estimates the state vector

 ( t ) in presence of unknown inputs ν( t ). 

Definition 1. [15] Let N λ( t f , t 0 ) be the number of discontinuities

f the switching signal λ( t ) on the interval ( t 0 , t f ). We say that λ( t )

as an average dwell time τ a if there exists a positive number N 0 

uch that 

 λ(t f , t 0 ) = N 0 + 

t f − t 0 

τa 
∀ 0 ≤ t 0 ≤ t f (2)

y definition N λ(t) = N λ(t, 0) , that is N λ( t ) is the number of dis-

ontinuities of the switching function λ( t ) from the initial time in-

tant t = 0 until the current time t . 

. Estimator design 

The structure of the proposed estimator is illustrated in Fig. 1 .

t is composed of two blocks: a mode-estimator and a continuous-

stimator. The mode estimator receives the plant inputs u and out-

uts y and it provides the estimate ˆ q of the discrete mode q of

he switched plant at the current time. This information is used by

he continuous-estimator to construct an estimate ˆ x of the plant’s

ontinuous state that exponentially converges to real state x . Now

he question is how to design these estimators? Here the idea is

o design a bank of estimators such that each one corresponds to

 particular mode. These observers are then used to generate the

esiduals r ˆ q for ˆ q = { 1 , . . . , N} . The computed residuals are then

ompared with a threshold R 0 , which is a design parameter. For a

ode estimator, if r ˆ q ≤ R 0 , then ˆ q = q . The continuous estimator

orresponding to mode q is chosen to obtain the correct estima-

ion of the state x . Here and similar to the case in field of fault

etection, the residual is designed to be either zero or small in a

ealistic case where the process is subject to noise and model un-

ertainty, in the UI-free case and deviate significantly from zero

hen a UI occurs [12,13] . But for the remainder of this paper it

s assumed, without loss of generality, that a residual is 0 in the

ctive-mode case. Inspired by this discussion, the following esti-

ator structure is constructed: 

st. : 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

˙ ξ ˆ q (t) = H ˆ q ξ ˆ q (t) + G ˆ q u (t) + L ˆ q y (t) 

ˆ x ˆ q (t) = ξ ˆ q (t) − J ˆ q y (t) 

r ˆ q = ‖ C ˆ q ̂  x ˆ q (t) − y (t) ‖ 

ˆ x (t + 
i 
) = � ˆ x (t −

i 
) ; i = 1 , 2 , . . . 

(3) 

here vector ξ ∈ R n and ˆ x is the estimation of x . The matrices H ˆ q ,

G ˆ q , L ˆ q , and J ˆ q for ˆ q = { 1 , . . . , N} must be determined such that

he error dynamics e q ̂ q = x q − ˆ x ˆ q exponentially converge to zero.

y defining the state estimation error as, 

 q ̂ q = x q − ˆ x ˆ q = x q − ξ ˆ q + J ˆ q y 

= (I + J ˆ q C q ) x q − ξ ˆ q (4) 

he error dynamics satisfy, 

˙ 
 q ̂ q = H ˆ q e q ̂ q + 

(
−H ˆ q (I + J ˆ q C q ) + (I + J ˆ q C q ) A q − L ˆ q C q 

)
x q 

+ 

(
(I + J ˆ q C q ) B q − G ˆ q 

)
u + (I + J ˆ q C q ) E q ν (5) 

n order to identify the “active mode”, each estimator “ ˆ q ” primarily

eeds to be designed such that it is sensitive to one real mode

q ” and insensitive to others [12–14] . Considering (5) and assuming

stimator sensitive to mode “q ”, i.e. ˆ q = q, and defining M ˆ q = I +
 ˆ q C ˆ q if, 

 ˆ q = M ˆ q B ˆ q , M ˆ q E ˆ q = 0 , H ˆ q M ˆ q = M ˆ q A ˆ q − L ˆ q C ˆ q (6)

hen the error dynamics (5) satisfy, 

˙ 
 q ̂ q = H ˆ q e q ̂ q (7) 
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Fig. 1. Overview of estimator structure. 
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By using the equation M ˆ q = I + J ˆ q C ˆ q and substitution in (6) , 

H ˆ q = M ˆ q A ˆ q − K ˆ q C ˆ q 

L ˆ q = K ˆ q (I + C ˆ q J ˆ q ) − M ˆ q A ˆ q J ˆ q (8)

where K ˆ q = L ˆ q + H ˆ q J ˆ q . More discussions on how to find the estima-

tor gains will be provided in the sequel. The following theorem

gives sufficient conditions for stability of the error dynamics e q ̂ q (t) .

Theorem 1. Consider the system given in (1) fulfilling Assumptions

1 and 2. For any given scalars α > 0 and β > 1, if there exist matri-

ces H 1 , H 2 , . . . , H N and a positive-definite matrix P > 0 such that the

following inequalities hold 

H 

T 
ˆ q P + P H ˆ q + 2 αP < 0 

�P � − βP ≤ 0 (9)

∀ ̂  q ∈ { 1 , . . . , N} , then the state estimation error (7) is exponen-

tially stable. Moreover, ˆ x (t) tends exponentially to x ( t ) with an α-

decaying rate in the presence of the unknown input ν( t ) provided

that the switching sequence fulfils the average dwell-time constraint

in (2) with N 0 being an arbitrary positive number and τ a sufficiently

large according to 

τa > 

ln (β) 

α
(10)

Proof. Consider a Lyapunov function as V (t) = e T Pe with P > 0 .

By taking the derivative of V ( t ) along the trajectory of (7) , 

˙ 
 = 

˙ e T P e + e T P ˙ e 

= e T H 

T 
ˆ q P e + e T P H ˆ q e 

= e T 
(
H 

T 
ˆ q P + P H ˆ q 

)
e (11)

Therefore, to achieve the globally exponential stability of the error

dynamics, the following inequality guaranties ˙ V < −2 αV : 

H 

T 
ˆ q P + P H ˆ q + 2 αP < 0 (12)
here α is the decay rate of V . It should be noted that in each

nterval [ t i , t i +1 ) the time derivative of V along the trajectories of

he switched system (1) fulfils the following chain of inequalities:

˙ 
 (t) ≤ −2 αV (t) ⇒ V (t) ≤ e −α(t i +1 −t i ) V (t + 

i 
) (13)

n the other hand, we assume that there exists a positive constant

> 1 such that: 

 (t + 
i 
) ≤ βV ( t −

i 
) (14)

hich is equivalent to 

 (t + 
i 
) − βV (t −

i 
) ≤ 0 

 

T (t + 
i 
) P e (t + 

i 
) − βe T (t −

i 
) P e T (t −

i 
) ≤ 0 

 

T (t −
i 
)�P �e (t −

i 
) − βe T (t −

i 
) P e T (t −

i 
) ≤ 0 

 

T (t −
i 
)(�P � − βP ) e T (t −

i 
) ≤ 0 (15)

hich would be implied by 

P � − βP ≤ 0 (16)

herefore, the feasibility of (16) implies that V (t + 
i 
) ≤ βV ( t −

i 
) 

olds. Combining (13) and (16) , we conclude that 

 (t + 
i +1 

) ≤ βe (−α(t i +1 −t i )) V (t + 
i 
) (17)

y iterating (17) from i = 0 to i = N λ(t) − 1 , the following in-

quality is obtained: 

 (t −) ≤ V (t N λ(t) ) ≤ βN λ(t) e −αt V (0) (18)

r equivalently, 

 (t −) ≤ βN 0 e ( 
lnβ
τa 

−α) t V (0) (19)

herefore, we conclude that if τ a satisfies the bound (10) , then

19) exponentially converges to zero as t tends to infinity, which

n turns implies that e ( t ) exponentially converges to zero. �

To design the estimator, it is necessary to find matrices J ˆ q , K ˆ q ,

and P > 0 such that the inequalities given in (9) are satisfied. To
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ackle this problem, (9) is converted to a standard LMI problem

nd get a feasible solution through. From (6) , M ˆ q E ˆ q = 0 leads to 

 ˆ q C ˆ q E ˆ q = −E ˆ q (20)

 general solution of J ˆ q is as follows, 

 ˆ q = −E ˆ q (C ˆ q E ˆ q ) 
+ + Y ˆ q (I − (C ˆ q E ˆ q )(C ˆ q E ˆ q ) 

+ ) (21)

here Y ˆ q is an arbitrary matrix of appropriate dimensions and [ . ] + 

represents generalized inverse operator satisfying [ . ][ . ] + [ . ] = [ . ] .

or notational convenience, (21) is rewritten as 

 ˆ q = U ˆ q + Y ˆ q V ˆ q (22)

here 

 ˆ q = −E ˆ q (C ˆ q E ˆ q ) 
+ , V ˆ q = I − (C ˆ q E ˆ q )(C ˆ q E ˆ q ) 

+ (23)

he following theorem is a consequence of the above discussion. 

heorem 2. Consider system (1) fulfilling Assumptions 1 and 2. For

ny given scalars α > 0 and β > 1, if there exist real matrices K̄ ˆ q , Ȳ ˆ q , 

nd P with appropriate dimensions such that the following LMIs hold 

A ˆ q + A 

T 
ˆ q P + P U ˆ q A ˆ q + A 

T 
ˆ q U 

T 
ˆ q P + Ȳ ˆ q V ˆ q A ˆ q + A 

T 
ˆ q V 

T 
ˆ q Ȳ 

T 
ˆ q 

− P K̄ ˆ q C ˆ q − C T ˆ q K̄ 

T 
ˆ q + 2 αP < 0 , 

�P � − βP ≤ 0 (24) 

 ̂  q ∈ { 1 , . . . , N} where K ˆ q = P −1 K̄ ˆ q and Y ˆ q = P −1 Ȳ ˆ q , then the state

stimation error (7) is exponentially stable for the correct mode and
ˆ  (t) tends exponentially to x ( t ) with an α-decaying rate in the pres-

nce of unknown input ν( t ) provided that the switching sequence ful-

ls the average dwell-time constraint in (2) with N 0 being an arbi-

rary positive number and τ a sufficiently large according to 

a > 

ln (β) 

α
(25) 

urthermore, the observer gains in (3) are obtained from 

J ˆ q = U ˆ q + Y ˆ q V ˆ q 

 ˆ q = I + J ˆ q C ˆ q 

H ˆ q = M ˆ q A ˆ q − K ˆ q C ˆ q 

L ˆ q = K ˆ q (I + C ˆ q J ˆ q ) − M ˆ q A ˆ q J ˆ q (26) 

roof. By substituting (22) in (9) , we obtain 

 

T 
ˆ q P + P H ˆ q + 2 αP = (A ˆ q + U ˆ q A ˆ q + Y ˆ q V ˆ q A ˆ q − K ˆ q C ˆ q ) 

T 

+ P (A ˆ q + U ˆ q A ˆ q + Y ˆ q V ˆ q A ˆ q − K ˆ q C ˆ q ) + 2 αP 

= A 

T 
ˆ q P + A 

T 
ˆ q U 

T 
ˆ q P + A 

T 
ˆ q V 

T 
ˆ q Y 

T 
ˆ q P − C T ˆ q K 

T 
ˆ q P 

+ PA ˆ q + P U ˆ q A ˆ q + P Y ˆ q V ˆ q A ˆ q − P K ˆ q C ˆ q + 2 αP (27) 

ince the matrices K ˆ q , Y ˆ q , and P in the inequality above are

nknown, it is not yet an LMI with respect to K ˆ q , Y ˆ q , and P .

chur complement and the new variable definitions K ˆ q = P −1 K̄ ˆ q 

nd Y ˆ q = P −1 Ȳ ˆ q help us to sort this out; thus, (24) is obtained. �

emark 3.1. In order to improve the performance of the designed

stimator, it is suggested to have two parallel and similar estima-

ors but with different α-decaying rate; one fast (mode-estimator)
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r m, 1 = ‖ C 1 ̂  x m, 1 (t) − y (t) ‖ 
and the other one smooth (continuous-estimator). High value of α-

decaying rate in mode-estimator makes it capable to identify the

correct active mode quickly. As a result, the designed estimator is

able to deal with switched systems with small average-dwell time.

However, reconstructing the continuous states using this estima-

tor lead to a peaking phenomenon. To tackle this issue, a similar

structure with a smaller value of α is used to reconstruct the con-

tinuous states using the identified mode obtained from the mode-

estimator. In the next section, the peaking phenomenon is shown

to emphasize why a smooth continuous-estimator is required. In

summary, the estimator design algorithm is itemized as follows: 

• Check Assumptions 1 and 2. 

• Compute U and V by (23) for ˆ q = 1 , . . . ..., N. 

• Solve a set of LMIs defined in (24) for Ȳ ˆ q , K̄ ˆ q, and P. 

• Compute Y ˆ q = P −1 Ȳ ˆ q and K ˆ q = P −1 K̄ ˆ q . 

• Using Y ˆ q and K ˆ q , compute the observer gains as (26) . 

4. Illustrative example 

In this section, the proposed robust estimator design is illus-
trated via a simulation example. Consider the following two-mode
switched system: 

1 st Mode : 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

˙ x (t) = 

[ −1 2 2 
0 −2 1 

−1 0 −3 

] 

x (t) + 

[ 

0 
0 
1 

] 

u (t) + 

[ 

0 
1 
0 

] 

ν(t) 

y (t) = 

[ 
1 0 0 
0 1 0 

] 
x (t) 
 nd Mode : 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

˙ x (t) = 

[ −2 1 0 
−3 −1 1 
1 −2 −1 

] 

x (t) + 

[ 

1 
0 
0 

] 

u (t) + 

[ −1 
0 
0 

] 

ν(t) 

y (t) = 

[ 
1 1 0 
1 0 1 

] 
x (t) 

here, 

= 

[ 

2 0 0 

0 2 0 

0 0 2 

] 

(28)

t can be easily shown that both Assumptions 1 and 2 are satis-

ed. The provided LMIs in Theorem 2 have been solved using the

ALMIP toolbox [23] (SDPT3 solver) resulting in a feasible solution;

herefore, the following estimators are constructed: 

• Mode-estimator 1: ( α = 10 0 0 , β = 5 ) ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

˙ ξm, 1 (t) = 

[ −538 . 1 0 . 57 45 . 9 

2 . 4 −540 . 6 −88 . 9 

−50 . 1 98 . 5 −535 . 2 

] 

ξm, 1 (t) 

+ 

[ 

0 

0 

1 

] 

u (t) + 

[ 

24540 50 

−47720 −90 

−136610 −530 

] 

y (t) 

ˆ x m, 1 (t) = ξm, 1 (t) −
[ 

21 . 9 0 

−44 . 5 −1 

−266 . 1 0 

] 

y (t) 
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Fig. 4. Peaking phenomenon due to high gain mode-estimator. 
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• Mode-estimator 2: ( α = 10 0 0 , β = 5 ) 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

˙ ξm, 2 (t) = 

[ −535 . 5 −22 . 9 −21 . 7 

23 . 5 −537 . 8 15 . 3 

21 . 2 −13 . 9 −537 . 6 

] 

ξm, 2 (t) 

+ 

[ 

0 

0 

0 

] 

u (t) + 

[ 

33783 −34063 

−42113 42424 

−46316 46642 

] 

y (t) 

ˆ x 2 (t) = ξm, 2 (t) −
[ 

69 . 6 −70 . 6 

−78 . 4 78 . 5 

−81 . 3 81 . 3 

] 

y (t) 

r m, 2 = ‖ C 2 ̂  x m, 2 (t) − y (t) ‖ 

• Continuous-estimator 1: ( α = 2 , β = 5 ) 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

˙ ξc, 1 (t) = 

[ −2 . 5 0 . 6 1 . 7 

−0 . 6 −2 . 5 −0 . 9 

−1 . 7 0 . 9 −2 . 5 

] 

ξc, 1 (t) + 

[ 

0 

0 

1 

] 

u (t) 

+ 

[ 

1 . 1 1 . 7 

0 . 1 −0 . 9 

1 . 2 0 . 5 

] 

y (t) 

ˆ x c, 1 (t) = ξc, 1 (t) −
[ −0 . 1 0 

−0 . 4 −1 

] 

y (t) 

0 . 3 0 

t

• Continuous-estimator 2: ( α = 10 0 0 , β = 5 ) 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

˙ ξc, 2 (t) = 

[ −2 . 5 0 . 6 1 . 7 

−0 . 6 −2 . 5 −0 . 9 

−1 . 7 0 . 9 −2 . 5 

] 

ξc, 2 (t) + 

[ 

0 

0 

1 

] 

u (t) 

+ 

[ 

1 . 1 1 . 7 

0 . 1 −0 . 9 

1 . 2 0 . 5 

] 

y (t) 

ˆ x c, 2 (t) = ξc, 2 (t) −
[ −0 . 1 0 

−0 . 4 −1 

0 . 3 0 

] 

y (t) 

In order to simulate the designed robust estimator, initial val-

es of x (0) = [1 , 1 , 1] T and z(0) = [3 , 3 , 3] T are assumed. For u ( t )

eing a step signal with amplitude 0.5 and ν(t) = sin (t) , simula-

ion results are depicted in Figs. 2 –4 . Fig. 2 shows the real and es-

imated switching sequence together with the states for the given

nitial conditions. Based on the figures, one can see that the esti-

ator performs as expected. 

Analysis 1: For a different switching sequence which does not

ulfil the average dwell time constraint τ a > 0.8, the estimator does

ot perform well as shown in Fig. 3 that clearly shows the diver-

ence of the error dynamics. It is worth to note that even in this

ase, the mode-estimator shows a satisfactory result. 

Analysis 2: As was discussed in Remark 3.1 , reconstructing the

ontinuous states using a single high speed estimator results in

eaking phenomenon. Fig. 4 shows the peaking phenomenon due

o high gain of the designed estimator. 
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5. Conclusions and future works 

We considered a novel method to design a robust estimator for

a class of switched linear systems subject to unknown inputs. In

the class of systems under study, the switching time is unknown

and the proposed estimator is able to identify the active mode of

the switched system together with the state variables, simultane-

ously. By assuming an average dwell-time for every switching se-

quence and using a common Lyapunov function, a sufficient condi-

tion is derived which guarantees exponential stability for the error

dynamics. This sufficient condition is based on the feasibility of a

certain set of LMIs. Simulation results illustrate the performance of

the proposed estimator. An interesting direction for future research

is extending the method to a reduced-order observer design. More-

over, relaxing Assumption 2, which is a typical constraint in UIO

design, would be another potential future path to be considered. 
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