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Abstract— This paper considers the design of encrypted
control systems to secure data privacy when the control systems
operate over a network. In particular, we propose to combine
Paillier cryptosystem with a quantizer whose sensitivity changes
with the evolution of the system. This allows the encrypted
control system to balance between the cipher strength and
processing time. Such an ability is essential for control systems
that are expected to run real-time. It also allows the closed-loop
system to achieve the asymptotic stability for linear systems.
Extensions to event-triggered control and nonlinear control
systems are also discussed.

I. INTRODUCTION

Networked control systems are ubiquitous [1]–[4]. The use
of networks has not only reduced the deployment cost and
increased the flexibility of control systems, but also allowed
the systems to outsource computations of control inputs to
a cloud controller when a plant does not have sufficient
computational resources [5], [6]. However, this raises new
privacy and security concerns; plants may want to protect
the privacy of the sampled data because the cloud controller
is not trustworthy, and communication networks may be
vulnerable to cyber-attacks [1].

One approach to protect privacy is to use “differential
privacy” [7]. Differential privacy adds noise to the data so
that the contribution of a specific agent is hidden without
changing the solution to the problem significantly. Although
differential privacy is a relatively new notion, it has found
applications in a variety of networked systems including
systems and controls [8]–[10].

Another approach is to use “encryptions”. “Encrypted con-
trol system” is a control architecture in which the controller
computes the control input using encrypted sampled data
without decrypting them. As the controller does not require a
private key for decryption, encrypted control systems can not
only protect the privacy of the plant data from the controller,
but also enhance the cyber-security. The idea of encrypted
control system was first proposed based on public-key RSA
[11] and ElGamal [12] cryptosystems in [13]. Subsequently,
an encrypted control system with Paillier cryptosystem [14]
was considered in [15], and a solution approach to quadratic
optimization with Paillier cryptosystem was proposed in [16].

This paper proposes encrypted control architectures using
Paillier cryptosystem [14] combined with quantizers. As in
[13], the proposed architectures do not require the controller
to have private keys to compute the control inputs. The main
contribution of this paper is to propose the augmentation
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of quantizers whose sensitivity changes while the system
evolves. The quantizers are applied to real-valued sampled
data and map to integers in [−qsat, qsat] for a fixed saturation
value qsat. Thus, the plaintext space (key length) may be kept
small by choosing a small qsat, which allows us to balance
between cipher strength and control performance (sampling
time). This is essential for control systems that require real-
time computation of control inputs. Moreover, the use of
quantizers eliminates the analysis for the fixed-arithmetic
[15] to guarantee stability, and allows the linear system
to achieve asymptotic stability. Other contributions include
extensions to event-triggered control and nonlinear control
systems. In particular, this is the first study to consider the
construction of an encrypted nonlinear control system.

The rest of the paper is organized as follows. Section II
provides the mathematical preliminaries and operation rules
of encrypted data (ciphertext). An encrypted linear state-
feedback control is presented in Section III, which is ex-
tended to event-triggered control in Section IV and nonlinear
control in Section V. Finally, the paper is concluded in
Section VI.

II. PREPARATIONS

A. Notation

The sets of real numbers and integers are denoted by R
and Z, respectively. The set of vectors of length n is denoted
by Rn and the set of matrices of size n by m is denoted by
Rn×m. The greatest common divisor and the least common
multiple of a, b ∈ Z \ {0} are denoted by gcd(a, b) and
lcm(a, b), respectively. We define the sets of integers Zn :=
{z ∈ Z : 0 ≤ z < n} and Z∗n := {z ∈ Zn : gcd(z, n) = 1}.
For a vector v ∈ Rn, the ith element of v is denoted by
vi, and the Euclidean norm is denoted by ‖v‖. For a matrix
M ∈ Rn×n, the i, jth element of M is denoted by mij , and
the induced 2-norm and the Frobenius norm are denoted by
‖M‖ and ‖M‖F , respectively. The maximum and minimum
eigenvalues of a symmetric matrix M = MT are denoted
by λmax(M) and λmin(M), respectively. The floor function
is denoted by bxc := max{k ∈ Z : k < x}.

B. Quantizer

Paillier cryptosystem operates over the message of non-
negative integers (plaintext). However, the control theory
usually deals with the data of real numbers. In order to map
the data to nonnegative integers, we use quantizers.

For a positive integer qsat and a positive real number ∆, a
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quantizer q : R→ Z is given by [17]

q∆(x):=


qsat if x > (qsat + 1/2)∆,

−qsat if x ≤ −(qsat + 1/2)∆,⌊
x

∆
+

1

2

⌋
if−(qsat+1/2)∆<x≤ (qsat+1/2)∆,

(1)

where ∆ is the sensitivity of the quantizer and qsat is the
saturation value of the quantizer.

For the shorthand notation, we define

xq := q∆(x), x̄ := xq∆, x̃ := x− x̄, (2)

then

x̄−∆/2 ≤ x < x̄+ ∆/2, |x̃| ≤ ∆/2. (3)

With an abuse of notation, we write vq := q∆(v) ∈ Rn and
Mq := q∆(M) ∈ Rn×m to denote element-wise quantization
with ∆ for a vector v and a matrix M , and define v̄, ṽ, M̄
and M̃ similarly to (2). Then,

‖ṽ‖ ≤ ∆
√
n/2, ‖M̃‖ ≤ ‖M̃‖F ≤ ∆

√
nm/2. (4)

C. Paillier cryptosystem

An overview of Paillier cryptosystem [14] is given below.
1) Encryption scheme:

• Key generation:
– Choose two large prime numbers p and q ran-

domly and independently of each other such that
gcd(pq, (p− 1)(q − 1)) = 1

– Generate public key: N = pq, and g ∈ Z∗N2 such
that the order of g is a multiple of N

– Generate private key: λ = lcm(p− 1, q − 1)

• Encryption (P-encryptor): Given a message m ∈ ZN ,
– Compute ciphertext: c = gm · rNmodN2 with a

random integer r ∈ Z∗N
• Decryption (P-decryptor): Given a ciphertext c < N2,

– Compute the message: m =
L(cλmodN2)/L(gλmodN2)modN , where
L(x) = (x− 1)/N

We denote the Paillier encryption of the message m by
EP (m), and the decryption of ciphertext c by DP (c).

2) Encryption properties: Paillier cryptosystem allows us
to add two encrypted values with the addition operator ⊕ and
to multiply by a plaintext with the multiplication operator ⊗.
Namely, for m,mi ∈ ZN , it holds that

DP
(
EP (m1)⊕ EP (m2) mod N2

)
=m1 +m2 mod N,

DP
(
a⊗ EP (m) mod N2

)
= am mod N,

(5)

therefore,

DP

(⊕
i

ai ⊗ EP (mi) mod N2

)
=
∑
i

aimi mod N. (6)

D. Multiplicative blinding using a random number (r-
encryptor/r-decryptor)

To perform some computations that can not be performed
on Paillier encrypted values EP (m), we must offload such
computations. To avoid direct access, as is often done, we
“obfuscate” the message m by multiplying a random number
r ∈ Zrmax

for some rmax ∈ Z/{0} to obtain Er(m) :=
rm (multiplicative blinding [18]). The inverse operation is
denoted by Dr(c) := c/r.

E. Matrix-vector multiplication

The element-wise encryptions for a vector v and a matrix
M are denoted by EP (v) and EP (M), respectively, and
the corresponding element-wise decryptions are denoted by
DP (v) and DP (M), respectively. The element-wise multi-
plicative blinding for a vector v and a matrix M are denoted
by Er(v) := rv and Er(M) := rM , respectively, and
the corresponding element-wise decryptions are denoted by
Dr(v) := (1/r)v and Dr(M) := (1/r)M , respectively.

With these notation, for bi ∈ ZN , observe that

DP
(
Er(a)⊗ EP (b) mod N2

)
= Er(a)b mod N,

DP

(⊕
i

Er(ai)⊗ EP (bi) mod N2

)
=
∑
i

Er(ai)⊗bi mod N.

(7)

Therefore, for Er(A) with a matrix A ∈ Zn×n and EP (b)
with a vector b ∈ Zn such that bi ∈ ZN , it holds that

DP
(
(Er(A)⊗EP (b))i mod N2

)
=
∑
j

Er(aij)bj mod N, (8)

thus

DP
(
Er(A)⊗ EP (b) mod N2

)
= Er(Ab) mod N. (9)

If r ∈ ZN and each element of rAb is in ZN , we have

Dr
(
DP (EP (Er(A)b mod N) mod N2)

)
= Ab. (10)

F. Remarks between quantizer and encryptor

After mapping a real number to an integer using the
quantizer, we need to convert this integer to an element in
ZN . As Paillier arithmetic uses modulo N , we may take
the convention that a number x < N/3 is positive, and
that a number x > 2N/3 is negative. The range N/3 <
x < 2N/3 allows for overflow detection [19]. We include
this mapping from an integer to a nonnegative integer in the
steps of encryption, i.e., we use EP (x) to denote the Paillier
encryption of x mod N . Similarly, we use DP (x) to denote
the Paillier decryption of x followed by subtraction of N if
the Paillier decryption yields the value greater than N/2.

III. ENCRYPTED STATE-FEEDBACK CONTROL

In this section, we present an encrypted linear state-
feedback control system that achieves asymptotic stability.

Consider the discrete-time linear system

x[t+ 1] = Ax[t] +Bu[t], t = 0, 1, 2, · · · , (11)



where x[t] ∈ Rnx is the system state, and u[t] ∈ Rnu is
the control input. Suppose that (A,B) is controllable, and
K ∈ Rnu×nx is found such that A − BK is Schur, i.e., all
the eigenvalues of A−BK are inside the unit circle in the
complex plane. Then, the system (11) is stabilized by the
state-feedback control

u[t] = −Kx[t]. (12)

Problem: Design an encrypted control system for (11)-
(12) that achieves the asymptotic stability while protect-
ing the privacy of the sampled data x[t] and the controller
gain K from the controller.

In the following subsections, the overall control design is
presented, followed by the analysis and design of quantizers.

A. Overview of encryption architecture

The proposed architecture consists of the plant node and
controller node between which no information from which
the values of xq[t] and Kq can be identified is exchanged
(Figure 1). In order to encrypt the sampled data x[t] and the
gain K, there are two quantizers in the system: one for x[t]
has the time-varying sensitivity ∆[t] and one for K has the
constant sensitivity ∆g , and both quantizers are designed not
to saturate.

controller node

plant node

P-encryptorP-decryptor

quantizerr-decryptor

r-encryptor

controller

plant

quantizer

scaling

Fig. 1: Proposed encrypted control architecture. Dashed lines
indicate the flow of encrypted data and solid lines indicate
the flow of plaintext data.

The role of each node is summarized below (P and C
denote the plant and controller nodes, respectively):
P: Quantizes the gain K to Kq , obfuscates Kq to Er(Kq),

and then sends Er(Kq) to the controller node.
P: Quantizes the sampled state x[t] of the plant to xq[t],

encrypts xq[t] to EP (xq[t]), and then sends EP (xq[t])
to the controller node at every sampling time after
some time t0. Sends EP (0) to the controller node at
every sampling time before t0. (The time instance t0 is
determined in III-B.2.)

C: Upon receiving the obfuscated/encrypted scaled data
Er(Kq) and EP (xq[t]), computes the encrypted scaled
control inputs EP (Er(uq[t])) for uq[t] = Kqxq[t], and
sends EP (Er(uq[t])) to the plant node.

P: Upon receiving the encrypted scaled control inputs
EP (Er(uq[t])), decrypts EP (Er(uq[t])) to Er(uq[t]) then
to uq[t].

P: Scales uq[t] to obtain u[t] = uq[t]∆g∆[t] using the
sensitivities ∆g and ∆[t] and applies it to the plant.

Note that the controller uses the encrypted data of the
quantizer output (scaled approximations). This means that
the data sent and received among the three node is encryp-
tions of integers between −qsat and qsat. Thus, there are no
fractional bits, which renders multiplication easy [15].

This architecture preserves the privacy of the plant state
x[t] (xq[t]) and the controller gain K (Kq) from the con-
troller node because the controller does not know the private
key and the value of r. Thus, if quantizers are designed such
that the closed-loop achieves the asymptotic stability, then
the overall encrypted control system achieves asymptotic
stability while protecting the privacy of x[t] and K in the
sense that the controller node can access only the encrypted
data of x[t] and K.

Remark 1:

• When generating the public key, p and q are chosen
such that N for the cryptosystem satisfies N > 3(qsat +
1/2)(qsat,g + 1/2)nxrmax, where qsat and qsat,g are the
saturation values of the quantizers for the states and
the controller gain, respectively, and determined in the
next subsection. This guarantees that the elements of
rKqxq mod N are uniquely determined for each rKqxq
and vice versa. Recalling the notation for EP and DP
in Section II-F and (10), for

EP (Er(uq)) = Er(Kq)⊗ EP (xq) = EP (rKqxq) ,

we have

Dr(DP (EP (Er(uq))))=
1

r
(DP (EP (rKqxq)))=Kqxq.

Similar assumptions on N are posed on later sections.
• The sensitivity of the quantizer for K can be time-

varying. For example, it can be synchronized with the
sensitivity of the quantizer in the plant node as long as
(16) is satisfied.

• The quantization and encryption of K are required
only once, but can be repeated using different random
number at every sampling time.

Remark 2: Strictly speaking, the quantization and en-
cryption of the state x[t] is performed at sensor, which
differs from where the quantization and encryption of the
gain K is performed. Similarly, decryptions and scaling to
obtain the control input u[t] is performed at actuator. Those
are combined in the plant node to indicate that they have
common keys and quantizers.

B. Quantizer design

To analyze the effect of quantization in the design of
quantizers, consider the system in Fig. 1 without encryptors
and decryptors. The quantized closed-loop system for (11)-
(12) is

x[t+ 1] =Ax[t] +Bu[t] = Ax[t]−BK̄x̄[t]. (13)



1) Quantizer for the gain: Let us first determine the
sensitivity ∆g of the quantizer for the gain K.

As A − BK is Schur, for any given Q = QT > 0, there
exists P = PT > 0 such that

(A−BK)TP (A−BK)− P +Q = 0. (14)

It is guaranteed that A−BK̄ is Schur if

(A−BK̄)TP (A−BK̄)− P
=(A−BK +BK̃)TP (A−BK +BK̃)− P
≤−Q+ (A−BK)TPBK̃ + K̃TBTP (A−BK)

+ K̃TBTPBK̃ ≤ −εI, ε > 0.

(15)

Therefore, after some computations using (4), the sensi-
tivity ∆g is chosen to satisfy

∆g ≤ ε′ +
2

√
nxnu‖BTPB‖

(
−‖(A−BK)TPB‖

+
√
‖(A−BK)TPB‖2 + λmin(Q)‖BTPB‖

)
,

(16)

for any Q = QT > 0 of the designer’s choice and the
corresponding P satisfying (14) with ε′ > 0.

Once the sensitivity is determined, the saturation value
qsat,g is selected such that the elements of K are not
truncated, i.e.,

max
i

max
j
|Kij | ≤ (qsat,g − 1/2)∆g. (17)

To simplify the notation, once the quantizer is determined
and the gain is quantized to K̄ = Kq∆g , we choose Q̄ =
Q̄T > 0 and find P̄ = P̄T > 0 that solves

(A−BK̄)T P̄ (A−BK̄)− P̄ + Q̄ = 0. (18)

We use this P̄ and Q̄ to design the quantizer for the states.
2) Quantizer for the states: The design of quantizer

for the states follows the approach proposed in [17]. Due
to space limitation, we only present the summary of the
quantizer and interested readers are referred to the cited
reference.

The employed quantizer uses a constant saturation level
qsat and a time-varying sensitivity given by

∆[t] =

{
‖A‖2t, 0 ≤ t < t0

∆i := Ωi∆0, t0 ≤ ti ≤ t < ti+1,
(19)

where ∆0 = ‖A‖2t0 , Ω is a scaling factor and ti are the
time instances of sensitivity updates. Thus, the sensitivity
decreases by the factor of Ω at every time of updates.

The scaling factor is given by

Ω := Ω′

√
λmax(P̄ )

λmin(P̄ )

(
qsat −

1

2

)−1

, (20)

where

Ω′ := (Θ
√
nx + ε)

√
λmax(P̄ )

λmin(P̄ )
+
√
nx, (21)

Θ :=
1

2λmin(Q̄)

(
‖(A−BK̄)T P̄BK̄‖

+
√
‖(A−BK̄)T P̄BK̄‖2+λmin(Q̄)‖K̄TBT P̄BK̄‖

)
,

(22)

and parameters ε > 0 and qsat ≥ 1 are chosen such that
Ω ∈ (0, 1).

The time instances ti are given by

t0 := min
{
t ≥ 1 :

∥∥q∆[t](x[t])
∥∥

≤
(
qsat −

1

2

)√
λmax(P̄ )

λmin(P̄ )
−
√
nx
2

}
,

ti+1 := min

{
t ≥ ti + 1 : ‖q∆i(x[t])‖ ≤Ω′−

√
nx
2

}
.

(23)

By construction, it holds that

‖x[t0]‖ ≤ ∆0

(
qsat −

1

2

)√
λmin(P̄ )

λmax(P̄ )
,

‖x[ti]‖ ≤ ∆iΩ
′, i = 1, 2, · · · .

(24)

and this quantizer guarantees that

x[t]∈Ri+1 :=
{
x :xT P̄ x ≤ λmin(P̄ )∆2

i (qsat − 1/2)
2
}

(25)

for t ∈ [ti, ti+1).
These quantizers lead to asymptotic stability of the closed-

loop system because the rule for sensitivity updates (19)
implies ∆[t] → 0 as t → ∞, and (25) implies that x[t]
approaches to 0 as ∆[t]→ 0.

IV. EXTENSION TO EVENT-TRIGGERED CONTROL

This section presents how to augment an event-triggered
control scheme to the encrypted control law developed in
Section III to save communications and actuator updates.
Event-triggered control takes samples of the plant state at
every time instance and updates the control input only when
specified conditions are satisfied [20].

Problem: Design an event-triggered encrypted control
system for (11)-(12) that achieves the asymptotic stability
while protecting the privacy of the sampled data x[t] and
the controller gain K from the controller.

We propose to augment an event-trigger architecture to the
plant node. More specifically, we implement the event-trigger
mechanism between the plant and the quantizer in the plant
node. This way, the sampled data is quantized, encrypted and
sent to the controller only when an event-trigger condition is
met. In the following, the event-trigger condition is designed.

The event-triggered control system is given by

x[t+ 1] = Ax[t] +Bu[t],

u[t] = −K̄x̄[t(i)], t(i) ≤ t < t(i+1).
(26)



where t(i) for i = 1, 2, · · · , are the time instances of the
control updates, and x̄[t(i)] := xq[t

(i)]∆[t(i)].
Using a Lyapunov function V [t] = xT [t]P̄ x[t],

V [t+ 1]− V [t] ≤ −λmin(Q̄)‖x‖2

+ 2‖(A−BK̄)T P̄BK̄‖‖x‖‖e‖+ ‖K̄TBT P̄BK̄‖‖e‖2,

where e[t] = x[t] − x̄[t(i)]. This Lyapunov function is
negative outside the ball {x : ‖x‖ ≤ 2Θ‖e‖}, where Θ is in
(22).

Thus, an event-trigger condition can be set as

t(i+1) = min
{
t ≥ t(i) : ‖x[t]‖ ≤ 2Θ‖e[t]‖

}
. (27)

When the event-trigger condition is satisfied, check if
the quantizer needs to be updated or not, and update if
necessary using (23). The rest of the analysis is the same as
in Section III and [17]. This is because the aforementioned
event-trigger condition (27) guarantees the decrease of the
Lyapunov function, based on which the analysis is developed.

This is a straightforward extension of well-known results,
because the plant node knows both x[t(i)] and x[t].

Remark 3: It is also possible to augment an event-trigger
architecture to the controller node rather than the plant node.
However, in order to do this, it is needed to add another
node that communicates with the controller and checks the
satisfaction of the event-triggered condition.

V. EXTENSION TO NONLINEAR SYSTEMS

This section extends the approach in Section III to a simple
nonlinear system using feedback linearization [21].

Consider the scalar nonlinear system

x[t+ 1] = ax[t] + b(u[t]− α(x[t])), t = 0, 1, 2, · · · , (28)

where x[t] ∈ R is the system state, and u[t] ∈ R is the
control input. Assume that ab 6= 0.

The feedback linearization uses the control input u[t] =
α(x[t])− v[t], yielding

x[t+ 1] = ax[t]− bv[t]. (29)

If k ∈ R such that |a− bk| < 1 is selected, then, the system
(29) is stabilized by v[t] = kx[t], and (28) is stabilized by

u[t] = α(x[t])− kx[t]. (30)

Problem: Design an encrypted control system for (28)
using (30) that achieves the practical stability while
protecting the privacy of the sampled data x[t] on a
bounded set X := [xmin, xmax] from the controller.

The system is said to be practically stable if |x[0]| < c1,
then |x[t]| < c2 for t ≥ t̄ for some t̄ > 0 for given c1
and c2 such that 0 < c1 < c2 [22]. The reason for requiring
practical stability instead of asymptotic stability will become
clear in the rest of this section.

A. Function approximation

In order to compute the control input using encrypted data
for x[t], we first approximate the nonlinear function α(x[t])
using the quantized values. From Weierstrass approximation
theorem [23], for any ε′1 > 0 there exist p and cj such that
αp(x) :=

∑p
j=0 cjx

j satisfies

|αp(x)− α(x)| ≤ ε′1, ∀x ∈ X . (31)

With a quantizer of sensitivity ∆, define

ᾱp(x̄) :=

p∑
j=0

c̄j x̄
(j) = cTq xq∆

2, (32)

where cj,q=q∆(cj), xjq=q∆(xj) as usual, and

c̄j :=cj,q∆, x̄
(j) :=xjq∆,

c :=
[
c0 c1 · · · cp

]T
, x :=

[
1 x · · · xp

]T
,

cq := q∆(c), xq := q∆(x), x̄ = xq∆.

(33)

Then with some constant ε2, it holds that

|ᾱp(x̄)− αp(x)| ≤
p∑
j=0

|c̄j − cj ||x̄(j)|

+ |cj − c̄j ||x̄(j) − xj |+ |c̄j ||x̄(j) − xj | ≤ ε2∆/2.

(34)

With ε1 = 2ε′1/∆, (31) and (34) imply that

|ᾱp(x̄)− α(x)| ≤M∆/2, M := ε1 + ε2. (35)

B. Overview of encryption architecture

As before, the proposed architecture consists of two nodes
between which only encrypted data is exchanged (Figure 2).
However, two quantizers maintain the same sensitivity ∆[t].

controller node

plant node

P-encryptorP-decryptor

quantizerr-decryptor

r-encryptor

controller

plant

quantizer

scaling

Fig. 2: Proposed encrypted control architecture. Dashed lines
indicate the flow of encrypted data and solid lines indicate
the flow of plaintext data.

The role of each node is summarized below (P and C
denote the plant and controller nodes, respectively):
P: Quantizes the gain k and the coefficients cj to kq and

cj,q , respectively, and constructs a vector kq = cq −
kqe2, where e2 is the second column of the identity
matrix of size p + 1. Then, obfuscates kq to Er(kq),
and then sends Er(kq) to the controller node (at every
time the sensitivity changes).

P: Quantizes the polynomial basis of the sampled state x[t]
to xq[t], and encrypts xq[t] to EP (xq[t]), and then sends



EP (xq[t]) to the controller node (at every sampling
time).

C: Upon receiving the obfuscated/encrypted data, com-
putes the scaled encrypted control inputs EP (Er(uq[t]))
for uq[t] = kq

Txq .
P: Upon receiving the encrypted scaled control inputs
EP (Er(uq[t])), decrypts EP (Er(uq[t])) to Er(uq[t]) and
then uq[t].

P: Scales uq[t] to obtain the control input u[t] = uq[t]∆
2[t]

and applies it to the plant.

C. Quantizer analysis and design

As before, we analyze the effect of quantization in the
design of quantizers by considering the system in Fig. 2
without encryptors and decryptors.

With the quantized control input

u[t] = ᾱp(x̄[t])− k̄x̄[t], (36)

the quantized closed-loop system is

x[t+ 1] = ax[t]− bk̄x̄[t] + b(α(x[t])− ᾱp(x̄[t])). (37)

With a Lyapunov function V = (x[t])2, (37) implies that

V [t+ 1]− V [t]

= (ax[t]− bk̄x̄[t] + b(α(x[t])− α(x̄[t])))2 − x2[t]

≤ ((a− bk̄)2 − 1)x2[t] + 2(a− bk̄)y[t]x[t] + y2[t],

(38)

where y[t] = b(k̄ +M)∆[t]/2.
The expression (38) is negative outside the ball {x : |x| ≤

Θ∆}, where Θ = (b(k̄ +M))/(1− (a− bk̄)).
This time, consider using a modified version of the quan-

tizer in Section III, i.e.,

∆[t] = ∆i := Ωi∆0, t0 = 0 ≤ ti ≤ t < ti+1, (39)

where Ω is a scaling factor and ti are the time instances of
sensitivity updates.

Unlike Section III, the quantizer is initialized with the
sensitivity ∆0 and the saturation level qsat such that satisfy

|x[0]|≤∆0

(
qsat −

1

2

)
, Ω=(Θ + ε+ 1)

(
qsat −

1

2

)−1

<1,

(40)

with some ε > 0. Then, we have Θ < qsat − 1/2.
In order to avoid truncating k and cj , make sure that qsat

is large enough satisfying

|k| ≤ (qsat − 1/2)∆0, |cj | ≤ (qsat − 1/2)∆0, ∀j. (41)

Also in order to guarantee |a− bk̄| < 1, make sure that

∆0 ≤ ε′ +
2 (1− |a− bk|)

b
, ε′ > 0. (42)

Choosing the time instances of sensitivity updates

ti+1 =min {t ≥ ti + 1 :‖q∆i
(x[t])‖ ≤ Θ + ε+ 1/2}, (43)

it holds that

|x[ti]| ≤ ∆i (Θ + ε+ 1) , i = 1, 2, · · · . (44)

The existence of ti is guaranteed using the similar analysis
in [17] while k and cj are not truncated.

This quantizer guarantees that

x[t] ∈ Ri+1 := {x : |x| ≤ ∆i |qsat − 1/2|} (45)

for t ∈ [ti, ti+1) as long as k and cj are not truncated, i.e.,

|k| ≤ (qsat − 1/2)∆[t], |cj | ≤ (qsat − 1/2)∆[t], ∀j. (46)

However, as ∆[t] approaches to zero, two problems occur:
• the quantized values of k and cj will be truncated no

matter how large qsat is chosen, and
• the required upper bound ε′1 for the function approxi-

mation (31) approaches to zero, which possibly leads to
an infinitely large p.

Therefore, asymptotic stability cannot be guaranteed. On the
other hand, we may hold the sensitivity ∆[t] constant once it
becomes sufficiently small to avoid the above two problems.
In other words, using the quantizer in the form of

∆[t]=

{
∆i :=Ωi∆0, t0 ≤ ti ≤ t < ti+1, i = 1, · · · , f
∆f :=Ωf∆0, tf ≤ t,

(47)

we can guarantee the practical stability of the system with

x[t] ∈ Rf+1 := {x : |x| ≤ ∆f |qsat − 1/2|} , t ≥ tf , (48)

without incurring the problem.
We may also choose to use a time-invariant quantizer in

the gain node to guarantee the practical stability, in which
case, the region that x[t] will stay depends on the sensitivity
of the quantizer in the gain node.

VI. CONCLUSIONS

In this paper, the control systems combined with quantiz-
ers and encryptors/decryptors are proposed and investigated.
It is shown that encrypted control systems can be constructed
that achieve asymptotic stability for linear systems, and
practical stability for some nonlinear systems with the aid
of function approximations using Weierstrass approximation
theorem. Since the combination with quantizers allows us
to choose short key length, the processing time for en-
cryption/decryption may be reduced for the sake of cipher
strength.

ACKNOWLEDGMENT
This research was supported by the grant from Okawa

Foundation for Information and Telecommunications.
The author would like to thank Prof. Kiminao Kogiso at

the University of Electro-Communications for his comments
on the manuscript.

REFERENCES

[1] H. Sandberg, S. Amin, and K. H. Johansson, “Cyberphysical security
in networked control systems: An introduction to the issue,” IEEE
Control Systems Magazine, vol. 35, no. 1, pp. 20–23, 2015.

[2] L. Zhang, H. Gao, and O. Kaynak, “Network-induced constraints
in networked control systems – a survey,” IEEE Transactions on
Industrial Informatics, vol. 9, no. 1, pp. 403–416, 2013.

[3] F. Bullo, J. Cortés, and S. Martı́nez, Distributed Control of Robotic
Networks, ser. Applied Mathematics Series. Princeton University
Press, 2009, electronically available at http://coordinationbook.info.



[4] P. Antsaklis and J. Baillieul, “Special issue on technology of networked
control systems,” Proc. of the IEEE, vol. 95, no. 1, pp. 5–8, 2007.

[5] T. Tanaka, M. Skoglund, H. Sandberg, and K. H. Johansson, “Directed
information and privacy loss in cloud-based control,” in American
Control Conferenc, 2017, pp. 1666–1672.

[6] F. Farokhi, I. Shames, and N. Batterham, “Secure and private
cloud-based control using semi-homomorphic encryption,” IFAC-
PapersOnLine, vol. 49, no. 22, pp. 163 – 168, 2016.

[7] C. Dwork, “Differential privacy,” in Automata, Languages and Pro-
gramming, M. Bugliesi, B. Preneel, V. Sassone, and I. Wegener, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 1–12.

[8] Z. Huang, S. Mitra, and G. Dullerud, “Differentially private iterative
synchronous consensus,” in ACM Workshop on Privacy in the Elec-
tronic Society. New York, NY, USA: ACM, 2012, pp. 81–90.

[9] J. Cortés, G. E. Dullerud, S. Han, J. L. Ny, S. Mitra, and G. J.
Pappas, “Differential privacy in control and network systems,” in IEEE
Conference on Decision and Control, 2016, pp. 4252–4272.

[10] Y. Mo and R. M. Murray, “Privacy preserving average consensus,”
IEEE Transactions on Automatic Control, vol. 62, no. 2, pp. 753–765,
2017.

[11] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining
digital signatures and public-key cryptosystems,” Commun. ACM,
vol. 21, no. 2, pp. 120–126, 1978.

[12] T. Elgamal, “A public key cryptosystem and a signature scheme based
on discrete logarithms,” IEEE Transactions on Information Theory,
vol. 31, no. 4, pp. 469–472, 1985.

[13] K. Kogiso and T. Fujita, “Cyber-security enhancement of networked

control systems using homomorphic encryption,” in IEEE Conference
on Decision and Control, 2015, pp. 6836–6843.

[14] P. Paillier, Public-Key Cryptosystems Based on Composite Degree
Residuosity Classes. Berlin, Heidelberg: Springer Berlin Heidelberg,
1999, pp. 223–238.

[15] F. Farokhi, I. Shames, and N. Batterham, “Secure and private control
using semi-homomorphic encryption,” Control Engineering Practice,
vol. 67, no. Supplement C, pp. 13 – 20, 2017.

[16] Y. Shoukry, K. Gatsis, A. Alanwar, G. J. Pappas, S. A. Seshia,
M. Srivastava, and P. Tabuada, “Privacy-aware quadratic optimization
using partially homomorphic encryption,” in IEEE Conference on
Decision and Control, 2016, pp. 5053–5058.

[17] R. W. Brockett and D. Liberzon, “Quantized feedback stabilization
of linear systems,” IEEE Transactions on Automatic Control, vol. 45,
no. 7, pp. 1279–1289, 2000.

[18] F. Kerschbaum, “Secure and sustainable benchmarking in clouds,”
Business & Information Systems Engineering, vol. 3, no. 3, pp. 135–
143, Jun 2011.

[19] Http://python-paillier.readthedocs.io/en/latest/index.html.
[20] W. Heemels, K. Johansson, and P. Tabuada, “An introduction to event-

triggered and self-triggered control,” in IEEE Conference on Decision
and Control, 2012, pp. 3270–3285.

[21] H. K. Khalil, Nonlinear systems. Upper Saddle River, NJ: Prentice
Hall, 2001.

[22] V. Lakshmikantham, S. Leela, and A. A. Martynyuk, Practical Sta-
bility of Nonlinear Systems. Teaneck, NJ: World Scientific, 1990.

[23] D. Estep, Practical Analysis in One Variable. New York, NY:
Springer-Verlag New York, 2002.


	I Introduction
	II Preparations
	II-A Notation
	II-B Quantizer
	II-C Paillier cryptosystem
	II-C.1 Encryption scheme
	II-C.2 Encryption properties

	II-D Multiplicative blinding using a random number (r-encryptor/r-decryptor)
	II-E Matrix-vector multiplication
	II-F Remarks between quantizer and encryptor

	III Encrypted State-feedback Control
	III-A Overview of encryption architecture
	III-B Quantizer design
	III-B.1 Quantizer for the gain
	III-B.2 Quantizer for the states


	IV Extension to Event-triggered Control
	V Extension to Nonlinear Systems
	V-A Function approximation
	V-B Overview of encryption architecture
	V-C Quantizer analysis and design

	VI Conclusions
	References

