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Abstract. First order optimization algorithms play a major role in
large scale machine learning. A new class of methods, called adaptive
algorithms, were recently introduced to adjust iteratively the learning
rate for each coordinate. Despite great practical success in deep learn-
ing, their behavior and performance on more general loss functions are
not well understood. In this paper, we derive a non-autonomous system
of differential equations, which is the continuous time limit of adaptive
optimization methods. We prove global well-posedness of the system
and we investigate the numerical time convergence of its forward Euler
approximation. We study, furthermore, the convergence of its trajecto-
ries and give conditions under which the differential system, underlying
all adaptive algorithms, is suitable for optimization. We discuss conver-
gence to a critical point in the non-convex case and give conditions for
the dynamics to avoid saddle points and local maxima. For convex and
deterministic loss function, we introduce a suitable Lyapunov functional
which allow us to study its rate of convergence. Several other properties
of both the continuous and discrete systems are briefly discussed. The
differential system studied in the paper is general enough to encompass
many other classical algorithms (such as Heavy ball and Nesterov’s ac-
celerated method) and allow us to recover several known results for these
algorithms.

1. Introduction

Optimization is at the core of many machine learning problems. Estimat-
ing the model parameters can often be formulated in terms of an uncon-
strained optimization problem of the form

min
θ∈Rd

f(θ) where f : Rd → R is differentiable.

Gradient descent [15], which only depends on the partial derivatives of f , is
the simplest discrete algorithm to address the optimization problem above

(1.1) θk+1 = θk − s∇f(θk).
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Another popular iterative approach to solve the above smooth optimization
is the proximal point algorithm [42,44]

θk+1 = argminu

(
1

2s
‖u− θk‖2 + f(u)

)
(1.2)

These discrete methods can be studied solely from the standpoint of opti-
mization performance. It can be proved that both algorithms converge to a
critical point (∇f(θk)→ 0 as k →∞) [39] but also almost surely to a local
minimizer [32, 33]. For convex functionals with globally Lipschitz gradient,
both algorithms converges at linear rate f(θk)−f(θ?) = O(1/(sk)), where θ?
is a minimal point of f [39,42,44]. These results give important guarantees
on the convergence of each method.

For small and constant learning rate s, gradient descent (1.1) (resp. prox-
imal point algorithm (1.2)) corresponds to the forward (resp. backward)
Euler’s discretization of the gradient flow system

(1.3) θ̇(t) = −∇f(θ(t)), θ0 = θ(0),

under the time scaling t = ks [24,47]. The stable equilibria of this continuous
system are given by the the set of strict (local) minima of the loss function
f and if the level sets of f are bounded (f coercive for example), then
its trajectories asymptotically converge to a critical point in the sense that
∇f(θ(t)) → 0 as t → 0. Moreover for convex functions, a linear rate of
convergence f(θ(t)) − f(θ?) = O(1/t) holds, which is analogue to those
obtained for both gradient descent and proximal point algorithm.

The study of the continuous dynamical system is very useful. The well-
behaved convergence properties of the gradient flow (1.3) allows an impor-
tant number of choices to design an optimization algorithm [47]. It, further-
more, provides valuable intuition to prove convergence of discrete systems:
for example, continuous Lyapunov functional can be often adapted to the
discrete counterparts.

For large scale machine learning, a stochastic version of gradient descent
(SGD) is very popular in practice [10,27,43]

(1.4) θk+1 = θk − s∇f(θk, ξk),

where ∇f(θk, ξk) is an unbiased estimator of the true gradient ∇f(θk). It
is well known that this algorithm does not always converge and theoretical
analysis provide conditions that guarantee convergence to a critical point
[10,37]. In particular, the learning rate should be decreasing and converging
to zero. Under this condition, it feels natural to conjecture that the long time
behavior of SGD is closely related to asymptotic behavior of the trajectories
of equation (1.3). This method, called the ODE method, was introduced by
Ljung [35] and extensively studied after [7, 30]. Even in the stochastic set-
ting, a good understanding of the underlying continuous dynamical system
is important.
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The emergence of deep learning has spawned the recent popularity of
a special class of optimizers: first order adaptive optimization algorithms
(RMSprop [49], Adagrad[18,19], Adadelta [52], Adam [28]) were origi-
nally designed to solve unconstrained optimization problem for a stochastic
cost function (minimizing empirical risk in supervised learning). These op-
timizers became very popular in deep learning for both supervised and un-
supervised learning tasks as it is commonly observed that the value of the
training loss decays faster than for stochastic gradient descent. However,
few positive results can be found in the literature, and limitations have been
found. For example, it has been shown empirically that Adam and RM-
Sprop do do not always converge in the stochastic setting, even for a convex
loss function [46].

1.1. Motivation and main results. Inspired by the history of gradient
descent and stochastic gradient descent, we analyze discrete adaptive op-
timization algorithms by introducing their continuous time counterparts,
with a focus on Adam. The techniques and analysis are similar for the
other algorithms (and include classical accelerated methods).

Adaptive Moment estimation (Adam) [28] is an iterative method generat-
ing a sequence (θk,mk, vk) ∈ Rd×Rd×Rd+. In addition to the parameters θ,
it computes the exponential moving average of the gradient and the squared
gradient. The algorithm can be formulated as follows: for any constants
β1, β2 ∈ (0, 1), ε > 0 and initial vectors θ0 ∈ Rd,m0 = v0 = 0 and for all
k ≥ 1

(1.5)


gk = ∇f(θk−1, ξk−1)

mk = µkmk−1 + (1− µk)gk
vk = νkvk−1 + (1− νk)g2k
θk = θk−1 − s mk/

√
vk + ε.

where the two parameters for the moving average, depending on the itera-
tions, are given by

(1.6)

{
µk = β1(1− βk−11 )/(1− βk1 )

νk = β2(1− βk−12 )/(1− βk2 ).

Because the coefficients depend on k, the underlying dynamical system for
Adam must be non-autonomous. In what follows, we show that Adam
is a discretization of a class of differential equations and the connection is
established in section 3.3. In this work, we address the following questions

(1) Is there a general random continuous dynamical system underlying
adaptive algorithms? Is this system wellposed?

(2) Can adaptive optimization algorithms be formulated as a discretiza-
tion (possibly an Euler discretization) of a continuous system? If
yes, does this numerical approximation converge (as a numerical
method)? With which order of convergence?
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(3) What are the asymptotic behavior of the continuous trajectories for
the deterministic counterpart? What intrinsic property make them
well adapted to the specificity of deep learning landscape?

More precisely, we introduce in section 3 a general continuous dynami-
cal system (3.1) whose forward Euler approximation matches a large class
of first order methods. The connection with adaptive algorithms is made
more precise in section 3.3 and with accelerated methods in section 3.4. Our
analysis is supplemented by several comments about practical use of adap-
tive algorithms (see subsection 3.5). Section 4 contains the assumptions
and the statement of our main results. We provide conditions under which
the random differential equation is well-posed in section 4.1 and we prove
that its forward Euler discretization is convergent in section 4.2. Finally, we
study the asymptotic behavior of the continuous deterministic trajectories
in section 4.3. In the non-convex setting we prove, under mild assumptions,
that the trajectories converge to the critical locus of f (see Theorem 4.4).
This result is supplemented with the analysis of the necessary conditions
in order to avoid convergence to saddle or local maximum points of f (see
Theorem 4.7). For convex functions, we design a Lyapunov functional and
obtain a rate of convergence to a neighborhood of the critical locus (see
Theorem 4.10), which depends on the behavior over time of ∇f, v and θ. In
particular, this indicates that the efficiency of adaptive algorithms is highly
dependant on the problem. In sections 5, we specialize the convergence re-
sults to adaptive algorithms and accelerated methods. Finally, most proofs
supporting the paper are postponed to the Appendix.

This work is intended to serve as a solid foundation for the posterior
study in the discrete and stochastic settings. The deterministic convergence
analysis confirms that the trajectories converge to the critical locus of the
objective function, which leads to natural conjectures on the convergence
in the discrete and stochastic setting. In particular, we believe that the
Lyapunov functional, used in section 4.3, can be adapted to the stochas-
tic discrete methods. We note that, nevertheless, a precise correspondence
between results valid for a continuous ODE and the stochastic discrete coun-
terparts is far from being obvious. Indeed, recall that Adam and RMSprop
are not always converging in the stochastic setting, even for a convex loss
function [46]. This behavior is induced by the stochasticity in the algorithm
and it is important to use the right framework to analyze the convergence
of Adam in the stochastic case. This framework is well understood for the
stochastic gradient descent. For this counterexample [46], stochastic gradi-
ent descent blows up for constant learning rate but converges for decaying
learning rates.
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2. Related work

The rate of convergence for gradient descent is not optimal and depending
on the class of functions f belongs to, more efficient algorithms can be
designed [9, 11, 12, 39, 40]. For smooth convex or strongly convex functions,
Nesterov [39] introduced an accelerated gradient algorithm which was proven
to be optimal (a lower bound matching an upper bound is provided)

vk+1 = θk − s∇f(θk)(2.1)

θk+1 = vk+1 +
k

k + 3
(vk+1 − vk).(2.2)

However, the key mechanism for acceleration is not well understood and have
many interpretations [13, 26, 34]. A particular interesting interpretation of
acceleration is through the lens of a second order differential equation of the
form

(2.3) θ̈ = a(t)θ̇ +∇f(θ), θ(0) = θ0, θ̇(0) = ψ0,

where t 7→ a(t) is a smooth, positive and decreasing function of time, having
possibly a pole at zero. Even if this singularity has important implications
for the choice of the initial velocity ψ0, we are more interested by the long
term behavior of the solution to (2.3) and hence at limt→∞ a(t). This system

is called dissipative because its energy E(t) = 1
2 ||θ̇||

2 + f(θ) decreases over
time. Most accelerated optimization algorithms can be seen as the numerical
integration of equation (2.3). For the Heavy Ball method, the function a is
constant and is called the damping parameter [2,3]. In [1,14,21], conditions
on the rate of decay of a and its limit are given in order for the trajectories of
(2.3) to converge to a critical point of f . This analysis highlights situations
where (2.3) are fit (or not) for optimization. Intuitively, if a decays too
fast to zero (like 1/t2) the system will oscillate and won’t converge to a
critical point. The case a(t) = 3/t was studied more specifically in [48]
and the authors draw interesting connections between (2.3) and Nesterov’s
algorithm (2.1). The convergence rates obtained are O(1/(sk2)) and O(1/t2)
respectively, which match with the discrete algorithms by using the time
identification t =

√
sk [48]. Extension of this work are proposed in [50,

51] in which the authors studied acceleration from a different continuous
equation having theoretically exponential rate of convergence. However,
a näıve discretization looses the nice properties of this continuous system
and current work consists on finding a better one preserving the symplectic
structure of the continuous flow [8].

By nature, first order adaptive algorithms have iterates that are non-linear
functions of the gradient of the objective function. The analysis of conver-
gence is therefore more complex, potentially because the rate of convergence
might depend on the function itself. The first known algorithm Adagrad
[19] consists on multiplying the gradient by a diagonal preconditioning ma-
trix, depending on previous squared gradients. The key property to prove
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the convergence of this algorithm is that the elements of the preconditioning
matrix are positive and non-decreasing. Later on, two new adaptive algo-
rithms RMSprop [49] and Adam [28] were proposed. The preconditioning
matrix is an exponential moving average of the previous squared gradients.
As a consequence, it is no longer non-decreasing. The proof of convergence,
relying on this assumption and given in the form of a regret bound in [28],
is therefore not correct [46]. A new algorithm Amsgrad proposed in [46]
consists on modifying the preconditioning updates to recover this property.
While converging, this algorithm looses the essence of the Adam’s algorithm.
Adam is such a mysterious algorithm that many works have been devoted to
understand its behavior. Variants of Adam have been proposed [53] as well
as convergence analysis towards a critical point [6,16]. However, conditions
for convergence are very restrictive and not easy to verify in practice.

3. Presentation of the model and connection to existing
optimization algorithms

In this section, we briefly introduce some notations on vector’s operations
used in the paper. In section 3.2, we present a general system of differential
equations as well as a possible discretization of it. In sections 3.3 and 3.4, we
explicitly make the connection between this numerical approximation and
first order optimization methods. In section 3.5, we make some observations
on the behavior of the deterministic version of Adam that we illustrate on
toy problems.

3.1. Compact notation. In what follows, we use several times the same
non standard operations on vectors. It is convenient to fix the notation of
these operations. Given two vectors u = (u1, . . . , ud) and v = (v1, . . . , vd) of
Rd and constants a, ε ∈ R, we use the following notation:

u+ ε = (u1 + ε, . . . , ud + ε)

u� v = (u1 · v1, . . . , ud · vd)
u/v = (u1/v1, . . . , ud/vd)

[u]a = (ua1, . . . , u
a
d)√

u = (
√
u1, . . . ,

√
ud)

3.2. Presentation of the continuous time model. Throughout this pa-
per we study the following dynamical system (whose connection with various
numerical optimization methods is established via the Euler approximation
scheme (3.3)).

(3.1)


θ̇(t) = −m(t)/

√
v(t) + ε

ṁ(t) = h(t)∇f(θ(t))− r(t)m(t)

v̇(t) = p(t) [∇f(θ(t))]2 − q(t)v(t),
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where ε ≥ 0, (θ,m, v, t) ∈ Rd × Rd × Rd≥0 × R>0, (if ε = 0, then v ∈ Rd>0).

The above system has a momentum term m (or memory term depending on
the values for h and r). We also consider the alternative system

(3.2)

{
θ̇(t) = −∇f(θ)/

√
v(t) + ε

v̇(t) = p(t) [∇f(θ(t))]2 − q(t)v(t),

The analysis of this second differential equations is similar (and simpler) to
the first. However, it is interesting here to study the impact of the rescaling
term v. In this work, we always make the following hypotheses

Assumption 1. The objective function f is assumed to be a C1 function
defined in Rd whose gradient is locally Lipschitz. The functions h, r, p and
q are non-negative and non-increasing C1-functions defined over R>0. We
also require that:

h(t) 6≡ 0, r(t) 6≡ 0, and either p(t) 6≡ 0, or p(t) ≡ q(t) ≡ 0

Additional assumptions about the regularity of those functions will be
given in section 4.1. Moreover, we won’t make, at any point, the assumption
that the ODE (3.1) has globally Lipschitz coefficients. This assumption
would be too strong and is not satisfied for quadratic functions, for example.
This constitutes an important technical difficulty in the remaining of the
paper.

The system is supplemented with initial conditions x0 = (θ0,m0, v0) at
time t = t0 ≥ 0. We denote by x(t, t0,x0) = (θ(t),m(t), v(t)) a solution of
(3.1) with initial condition x(t0, t0,x0) = x0. In order to establish a relation
between the continuous and the optimization algorithms, we study the finite
difference approximation of (3.1) by the forward Euler method

(3.3)


θk+1 = θk − smk/

√
vk + ε

mk+1 = (1− sr(tk+1))mk + sh(tk+1)∇f(θk+1)

vk+1 = (1− sq(tk+1))vk + sp(tk+1) [∇f(θk+1)]
2

where tk = ks. We chose this method because it fits well with Adam dis-
crete system. Moreover its convergence can be proven under certain extra
assumptions (see subsection 4.2). However it is certainly not the only choice
of discretization. In particular, more efficient quadrature rules can be con-
sidered to get more accurate numerical integration [20, 31] in the case of
singular functions p, q, r, h.

The connections between our model and optimization algorithms is made
precise in the next sections. Indeed, we show that these algorithms ex-
actly match with the forward method, which is a good approximation of the
continuous trajectories.
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Remark 3.1 (On the stochastic model). In subsections 4.1 and 4.2 below,
we enunciate our results in terms of the stochastic version of (3.1)

(3.4)


θ̇(t) = −m(t)/

√
v(t) + ε

ṁ(t) = h(t)∇f(θ(t), ξ(t))− r(t)m(t)

v̇(t) = p(t) [∇f(θ(t), ξ(t))]2 − q(t)v(t),

where ξ(t) is a stochastic process with continuous sample paths. In this
case, the forward Euler discretization yields:

(3.5)


θk+1 = θk − smk/

√
vk + ε

mk+1 = (1− sr(tk+1))mk + sh(tk+1)∇f(θk+1, ξk+1)

vk+1 = (1− sq(tk+1))vk + sp(tk+1) [∇f(θk+1, ξk+1)]
2

3.3. Adaptive optimization algorithms.

3.3.1. Adagrad differential equation. Adagrad [18] was designed to in-
corporate knowledge of the geometry of the data previously observed during
the training. For all k ∈ N,

(3.6)


vk+1 =

k∑
j=0

[∇f(θj)]
2

θk+1 = θk − s∇θf(θk)/
√
vk+1.

with initial conditions v0 = 0 and θ0 ∈ Rd. Here, we recall that [∇θf(θ)]2

denotes the element-wise product∇θf(θ)�∇θf(θ). The adaptive part in the
algorithm comes from the term

√
vk which is precisely the preconditioning

matrix used to scale the gradients. The algorithm (3.6) can be equivalently
described by

(3.7)

{
θk+1 = θk − s∇f(θk)/

√
Gk

Gk+1 = Gk + [∇f(θk+1)]
2.

with initial condition θ0 and G0 = ∇f(θ0)
2. By setting α = s2 and ωk =

αGk, it is easy to conclude that the Adagrad’s update rule can be written
as:

(3.8)

{
θk+1 = θk − α∇f(θk)/

√
ωk

ωk+1 = ωk + α[∇f(θk+1)]
2

with the re-scaled initial condition ω0 = α[∇f(θ0)]
2 and θ0 ∈ Rd. It is

now easy to see that (3.8) is a forward Euler discretization of the system of
differential equations (3.2) (which we call the Adagrad differential equa-
tion) with initial condition given by θ0 ∈ Rd, ω0 = α[∇f(θ0)]

2 and with
q ≡ 0, ε = 0 and p ≡ 1.
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3.3.2. RMSprop and Adam differential equations. The only difference be-
tween these two optimizers and Adagrad is how the preconditioning matrix
is computed. In RMSprop, it consists of an exponentially decaying moving
average rather than a sum of the previous gradients

(3.9)

{
vk+1 = βvk + (1− β)∇θf(θk)

2

θk+1 = θk − s∇θf(θk)/
√
vk+1.

Adaptive Moment estimation (Adam) [28] is a famous variant of RMSprop
that incorporates a momentum equation. More precisely, it computes the
exponential moving average of the gradient and the square gradient. This
method combines the advantages of RMSprop [49] in addition to the run-
ning average for the gradient. We recall that Adam has three hyperparam-
eters: the learning rate s and the exponential rate of decay for the moment
estimates β1, β2 ∈ (0, 1). The parameter ε is usually set to 10−8 to avoid
dividing by zero. This parameter is typically not tuned. As already formu-
lated in the Introduction, the algorithm reads as follows: for any constants
β1, β2 ∈ (0, 1), ε > 0 and initial vectors θ0 ∈ Rd,m0 = v0 = 0 and for all
k ≥ 1 

gk = ∇f(θk−1)

mk = µkmk−1 + (1− µk)gk
vk = νkvk−1 + (1− νk)g2k
θk = θk−1 − s mk/(

√
vk + ε).

where the two parameters for the moving average are given by{
µk = β1(1− βk−11 )/(1− βk1 )

νk = β2(1− βk−12 )/(1− βk2 ).

We rewrite the update for the parameters θ such that

(3.10) θk = θk−1 − s mk/
√
vk + ε.

This modification does not change anything in the behavior of the algorithm.
By modifying the order of the updates and the value of the initial conditions,
we can rewrite the above algorithm in a more suitable way for our analysis.
Indeed, let θ0 ∈ Rd be such that ∇θf(θ0) 6= 0 and m0 = ∇θf(θ0), v0 =
∇θf(θ0)

2, then the following recursive update rules are equivalent to Adam
for all k ≥ 0

(3.11)


θk+1 = θk − s mk/

√
vk + ε

gk+1 = ∇f(θk+1)

mk+1 = µk+2mk + (1− µk+2)gk+1

vk+1 = νk+2vk + (1− νk+2)g
2
k+1

As a consequence, the initial velocity is θ̇0 = − sign(∇f(θ0)).
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Remark 3.2 (On the parameters µ and ν). In the original formulation of
the algorithm (as stated in (1.5)), the parameters µ and ν depends on the
iterations k to correct for the bias induced by the moving average. These
coefficients can also be taken constant µ = β1 and ν = β2 and this does not
change the conclusion of our work. In particular, let us consider the system
(3.1) with

h ≡ r ≡ 1/α1, p ≡ q ≡ 1/α2

where α1, α2 are two positive constants. It can be easily checked that the
choice of β1 = (1− s/α1) and β2 = (1− s/α2) leads to the Adam optimizer
(3.11) without rescaling.

Consider now the three parameter family of differential equations

(3.12)


θ̇ = −m/

√
v + ε

ṁ = gA1 (t, λ, α1, α2) (∇f(θ)−m)

v̇ = gA2 (t, λ, α1, α2)
(
∇f(θ)2 − v

)
where the coefficients in (3.1) are given by

(3.13) h ≡ r ≡ gA1 (t, λ, α1, α2), p ≡ q ≡ gA2 (t, λ, α1, α2),

and (λ, α1, α2) are positive real numbers and:

(3.14) gAi (t, λ, α1, α2) =
1− e−λ/αi

λ
(
1− e−t/αi

) , i = 1, 2.

Note that both functions have a simple pole at t = 0 and, furthermore, sat-
isfy assumption 3 below. Now, let us consider the associated discretization
(3.3) with learning rate s and a sub-family of discrete models parametrized
by (β1, β2) ∈ (0, 1)× (0, 1) which are given by

(3.15) λ = s, βi = e−λ/αi , i = 1, 2.

It easily follows that for i = 1, 2

sgAi ((k + 1)s, λ, α1, α2) = 1− β1
1− βk1

1− βk+1
1

= 1− µk+1,

which recovers Adam’s discrete system (3.11) (apart from small difference in
the evaluation of µ). Therefore, Adam is an Euler discretization of system
(3.1) for the choice of function (3.13)-(3.14) and parameters (3.15).

3.4. Accelerated optimization algorithms. In this section, we show
that our framework encompasses previous studies of accelerated methods.
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3.4.1. Heavy Ball differential equation. We consider the Heavy ball second
order differential equation [2]

(3.16) ẍ+ γẋ+∇f(x) = 0,

where γ > 0. By taking θ = x and m = −ẋ (and v ≡ 1), we obtain the
system (3.1) with

h(t) ≡ 1, r(t) ≡ γ, and p(t) ≡ q(t) ≡ 0.

Equation (3.3) simplifies to

(3.17)

{
θk+1 = θk − smk

mk+1 = (1− sγ)mk + s∇f(θk+1)

which corresponds to the classical Heavy ball methods with damping coef-
ficient β = 1− sγ, momentum variable nk = smk and learning rate α = s2.
Implicit discretization has also been considered in [2].

3.4.2. Nesterov differential equation. Following [48], we consider the Nes-
terov second order differential equation, parametrized by the constant r > 0,

(3.18) ẍ+
r

t
ẋ+∇f(x) = 0.

Similarly as in the Heavy Ball case, we define θ = x and m = −ẋ and write
the above equation as a system (3.1) with

h(t) ≡ 1, r(t) = r/t, and p(t) ≡ q(t) ≡ 0.

In [48], the authors studied a slightly different forward Euler scheme and
proved that the difference between the numerical scheme and the Nesterov
algorithm goes to zero in the limit s→ 0. Similar analysis holds here.

3.5. Considerations on adaptive algorithms. We make here empirical
observations and discuss some limitations on adaptive algorithms. On 2D
toy problems, we emphasize some facts limiting the applicability of such
algorithms in practice.

3.5.1. The discrete dynamics does not necessarily converge. One strong lim-
itation of Adam is the existence of discrete limit cycles in the sense that the
algorithm produces oscillations that never damp out. If the discrete dynam-
ics reaches such an equilibrium, the difference f(θk) − f(θ?) can not con-
verge arbitrarily close to zero with an increasing number of steps. However,
it reaches a neighborhood of the critical point whose radius is determined
by the learning rate s. Decaying the learning rate is therefore necessary
to obtain convergence of the dynamics. Numerically, we found that Adam
with β1 > 0 suffers from the same phenomena but the limit cycles are more
difficult to establish. We believe that the existence of such cycles depend on
the local curvature of the function f near the optimum.

Proposition 3.3 (Existence of a discrete limit cycle for Adam). Let β1 = 0
and f(θ) = θ2/2. Then there exists a discrete limit cycle for (3.11).
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(a) Discrete limit cycles for Adam (b) Convergence

Figure 1. Illustration of discrete limit cycles for the Adam’s al-
gorithm with ε = 10−8, β2 = 0.5, s = 10−2. a) Limit cycle of pe-
riod two for Adam. The algorithm oscillates between two points
(0.005, 0.005) and (−0.005,−0.005). b) Plot of the logarithm of f
versus the number of iterations. The loss plateau after 50 itera-
tions.

Proof. Let us assume that there exists a k such that θk = s/2 and that
vk = (s/2)2, where s is the learning rate. It easily follows from the update
rules that

θk+1 = θk − s
∇f(θk)√

vk
=
s

2
− s = −θk

vk+1 = (s/2)2

Therefore θk+2 = − s
2 + s = θk and the system has entered a discrete equi-

librium. �

We illustrate this behavior in Figure 1 on the strongly convex function
f(x, y) = x2 + y2.

It is important to note that the value of the gap between f(θk) and f(θ?)
depends on the learning rate. Choosing a smaller learning rate will reduce
this gap but cannot remove it.

3.5.2. For Adam and RMSprop, the hyper-parameters β1, β2 are functions
of learning rate s. The second observation is related to the hyper-parameters
of the optimizers and give important guidance on how to tune them. As
observed in section 3.3, the parameters β1 and β2 were chosen as functions of
the learning rate s. It is often the case in practice (in particular in stochastic
optimization) to decay the learning rate during the training process. By
doing so, the discrete dynamics is completely modified unless the β’s are
adjusted to keep αi constant. The coefficients must be modified according
to the formula (3.15), which we recall here

βi = e−s/αi , i = 1, 2.

In plot b), Figure 2, we compute the logarithm of the error between different
trajectories
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(a) Trajectories (b) Comparison of L2 norms

Figure 2. Fixing β2 and changing the learning rate s lead to
different dynamics. a) Trajectories of Adam (1) & (2) when only
the learning rate is changed. b) Comparison of the error between
trajectories (1) & (2) and (1) & (3). As expected the discrepancies
between (1) & (3) is very small.

(a) f(x, y) = (x+ y)4 + (x/2− y/2)4 (b) Rate of convergence

Figure 3. Comparison between gradient descent and Adam. Gra-
dient Descent converges faster initially when the gradients are large
but Adam outperforms Gradient descent after entering the flat re-
gion. Both trajectories start from the point (0.5,−2.5).

(1) This is the reference dynamics: β2 = 0.99 and s = 0.001. According
to formula (3.15), α2 = −0.001/ log(0.99) ≈ 0.0995

(2) The second dynamics: β2 = 0.99 and s = 0.01
(3) For the third dynamics, we keep the same learning rate s = 0.01 but

adjust β2 = exp(−0.01/0.0995) = 0.90438.

3.5.3. On the strength of Adam and RMSprop on flat surfaces. The con-
vergence analysis in the convex case (see Section 4.3) seems to indicate that
Adam and RMSprop are rather slow algorithms and the convergence is
only guaranteed in a neighborhood of the global minimum. However, there
are situations where they seem to perform consistently well. This is the case
for flat surfaces (see figure 3).

3.5.4. Adam and RMSprop are fundamentally different from Adagrad
and Amsgrad. It is common to consider adaptive algorithms as a whole.
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(a) f(x, y) = (x+ y)4 + (x/2− y/2)4 (b) Rate of convergence

Figure 4. Comparison between gradient descent and Adam. Gra-
dient Descent outperforms Adam in this example because β1, β2
are large and Adam keeps memory of the past large gradients.
Both trajectories start from the point (0.5,−2.5).

However, we do not believe this should be done. The variable v has different
asymptotic and it is easily seen on the continuous dynamics that the equi-
librium are different. In the strictly convex setting, for Adam (with ε > 0),
the equilibrium is given by (θ?, 0, 0) (and respectively (θ?, 0) for RMSprop),
while for Adagrad it is given by (θ?, c) for some (large) constant c. In par-
ticular because v is non-decreasing, we believe that Amsgrad should be
considered as a modification of Adagrad rather than Adam.

4. Statement of the main results

In this section, we state the main theoretical results of this paper: exis-
tence and uniqueness of solutions for the continuous equation (3.4), order
of convergence for the forward Euler scheme (3.5) and convergence analysis
for equation (3.1) (in the deterministic case).

4.1. Existence and uniqueness of solutions. In this section we present
the main result about existence and solutions for the random ordinary dif-
ferential equation (3.4). Let (Ω,F ,P) be a probability space where F is a
σ-algebra on Ω and P is a probability measure. A continuous random differ-
ential equation is an ordinary differential equation for almost every realiza-
tion ω ∈ Ω and we enjoy the fact that the techniques for the deterministic
and stochastic system are essentially the same. However, the solution to a
random differential equation has to be a stochastic process defined on an
ω-independent time interval. We ask for the following assumptions on the
noise process, the function f and its gradient.

Assumption 2.

(1) Let ξ : [0, T ] × Ω → Rm be an Rm-valued stochastic process with
continuous sample paths.

(2) For almost all ω ∈ Ω, ∇f : Rd × Rm → Rd is a continuous function.
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(3) For all ν ∈ Rd, the function f(·, ν) : Rd → R is C1 and its gradient is
locally Lipschitz i.e for all ν and all x, y,∈ Rd, there exists a constant
L, depending on the norm of x and y, such that almost surely

‖∇f(x, ν)−∇f(y, ν)‖ ≤ L (‖x‖ , ‖y‖) ‖x− y‖ .
The function L is almost surely bounded on the bounded sets.

(4) There exist a positive constant B such that for all ν ∈ Rm almost
surely

‖∇f(0, ν)‖ ≤ B.
Therefore

‖∇f(x, ν)‖ ≤ L (‖x‖) ‖x‖+B.

The assumption on the continuity of the stochastic process (ξ(t))t is only
necessary to prove that the solution x is continuously differentiable. It can be
relaxed if the continuity of x is sufficient. Moreover, note that the ODE (3.4)
is measurable in ω and continuous in (t, x), since ∇f is continuous in both
variables, and ξt(ω) is measurable in ω and has continuous sample paths.
Finally, we assume that the gradient is almost surely locally Lipschitz. It
corresponds to locally Lipschitz in the deterministic case and is a necessary
condition in order to use the Banach contraction mapping theorem.

In order to study the existence of the solution at t = 0, we demand the
following from the coefficients, which are allowed to have a pole at zero.

Assumption 3. We assume one of the following condition

(1) The functions h, r, p, q have a simple pole at t = 0.
(2) If h ∈ C1([0,+∞)) (resp p ∈ C1([0,+∞))), then r (resp. q) can

have (at most) a simple pole at zero.
(3) In any other cases, all functions are assumed to be C1 on [0,∞).

The initial conditions can be taken arbitrarily.

In cases (1) and (2), furthermore, we demand that there exists a small time
t̂ such that

q(t)− 2r(t) ≤ 0, ∀t < t̂,

and that the initial conditions must be taken as:

m0 = ∇f(θ0, ξ0) lim
t→0+

h(t)/r(t), v0 = [∇f(θ0, ξ0)]
2 lim
t→0+

p(t)/q(t).

Note that these assumptions are verified by Adam’s (under certain as-
sumptions on the parameters, e.g. β1 ≥ 0.21) and Nesterov equations (3.12)
and (3.18), respectively. The potential singularity in time makes the analysis
more technical and we rely on a compactness argument to prove wellposed-
ness at t = 0. In order to illustrate this technical difficulty, let us consider
the differential equation:

θ̇(t) =
L

t
θ(t), θ(0) = 0

Note that there always exist a solution given by θ(t) ≡ 0 of the above system.
Now the solutions of this equation with initial condition at t0 = 1 are given
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by θ(t) = θ(1) · tL (for L 6= 1). Therefore, uniqueness only holds if L < 0.
Indeed, if L ≥ 0, for every θ(1) ∈ R the solution θ(t) = θ(1) · tL converges to
0 when t→ 0. Finally we assume that the local variance is bounded, which
is needed to prove existence and uniqueness at t = 0. More precisely:

Assumption 4. There exists two constants σ1 and σ2 such that for all t > 0

E
(

sup
0<u≤t

‖h(u) (∇f(x, ξ(u))−∇f(x, ξ0))‖2
)
≤ σ1

and

E
(

sup
0<u≤t

∥∥p(u)
(
[∇f(x, ξ(u))]2 − [∇f(x, ξ0)]

2
)∥∥2) ≤ σ2.

for all initial conditions x ∈ Rd and ξ0 ∈ Rm.

We recall that the system (3.1) is supplemented with initial conditions.
We say that they are admissible at t0 if x(t0) = (θ0,m0, v0) ∈ Rd×Rd×Rd≥0.
If ε = 0, then v ∈ Rd>0. We are now ready to enunciate our main result:

Theorem 4.1. Suppose that the ODE (3.4) satisfies assumptions 1 and
2. In addition, for any t0 > 0 and admissible initial condition x(t0), there
exists a unique global solution to equation (3.4) such that P-almost surely:

θ ∈ C2([t0,∞);Rd) and m, v ∈ C1([t0,∞);Rd).

Suppose, furthermore, that assumptions 3 and 4 are also satisfied. Then,
there exists a unique global solution to equation (3.4) such that P-almost
surely:

θ ∈ C2((0,∞);Rd) ∩ C1([0,∞);Rd) and

m, v ∈ C1((0,∞);Rd) ∩ C([0,∞);Rd).

The proof is postponed in Appendix B and is divided as follows: we
first study existence and uniqueness for t > 0 using the Banach fixed point
theorem and a cut-off argument. Then we study a regularized system and
from a compactness argument, we obtain that the system is well-posed for
t = 0.

4.2. Convergence of the Euler discretization. We now study the va-
lidity of the approximation given by the discrete system (3.5) of the differ-
ential equation (3.4). As in the previous section, we work on the stochastic
equations and we give some additional regularity assumptions on the noise
process (ξt)t∈R+ .

In the traditional finite-time convergence (and order of convergence) the-
ory for numerical methods, one usually requires the vector field to be glob-
ally Lipschitz, which is not the case here (see Assumptions 2). This rep-
resents a technical difficulty, and we rely on weaker assumptions, such as
the one’s requested in [25], to prove our results. Furthermore, as pointed
out in [23,29,38], the stochastic driving process has usually at most Hölder
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continuous sample paths (and therefore are not continuously differentiable)
and standard numerical analysis do not directly apply.

In order to be precise, let us now fix the notation. Fix a (final) time T > t0
and consider an interval [t0, T ] on which we study the approximation of the
solution of (3.4). We recall that the step size is given by s > 0. Consider
Kt,s = [(t − t0)/s], the integer part of (t − t0)/s. We write tk = t0 + ks
for any k ∈ [[0,Kt,s]] and π = {t0 < t1 < · · · < tK = T} is a homogeneous
partition of the interval [t0, T ]. Now, let x0 = (θ0,m0, v0) be a fixed initial
condition and consider:

• The sequence (xk)k∈N given by the discrete system (3.5) with initial
condition x0;
• The sequence x̃k := y(tk) for all k ∈ N, where y(t) is the exact

solution of ODE (3.4) with initial condition y(t0) = x0.

We study the almost sure order of convergence of the Euler approximation.
Following [23] we prove that the strong order of convergence in probability is
determined by the order of the Hölder continuity of the sample paths of the
driving process. More precisely, as in [29, page 2931], we make the following
assumption on the regularity in time of the stochastic process (ξt)t∈R+ .

Assumption 5. The stochastic process (ξt)0≤t≤T is assumed to have sample
paths which are locally Hölder continuous with the same exponent i.e. there
exists a γ ∈ (0, 1] such that almost surely and for all T , there exists a
constant ∥∥ξ(t)− ξ(t′)∥∥ ≤ CT ∣∣t− t′∣∣γ , ∀t, t′ ≤ T.

Moreover, we introduce the modulus of continuity of the gradient of f on
[0, T ]

ωf (s, x, T ) = sup
t6=u,

t0≤t,u≤T,
|t−u|≤s

‖∇f(x, ξ(t))−∇f(x, ξ(u))‖

and we make the following assumption

Assumption 6. There is a positive constant α and a positive constant C,
bounded on bounded sets, such that

ωf (s, x, T ) ≤ C(‖x‖) sup
t6=u,

t0≤t,u≤T,
|t−u|≤s

‖ξ(t)− ξ(u)‖α

These two conditions will determine the order of approximation of the
Euler scheme. Following [23], we get:

Theorem 4.2. Let T > 0 and suppose that t0 > 0. Let us consider a
compact set A0 of Rd≥0 × Rd≥0 × R>0 and assume that the ODE (3.4) and

discretization (3.5) satisfies assumptions 1, 2, 5 and 6. Then, there exists
a constant C(T,A0) (which only depends on T and the compact A0) such
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that for any admissible initial condition x(t0) ∈ A0, the numerical scheme
satisfies

max
k=0,··· ,K

‖xk − x̃k‖ ≤ C(T,A0)s
min(αγ,1).

4.3. Convergence analysis in continuous time. In this section, we
study the asymptotic behavior of the solutions of (3.1). Our analysis is
based on the following three steps:

(1) Topological convergence: Find sufficient conditions on the functions
f and p, q, r, h in order for the solutions of equation (3.1) to converge
to a critical value of f , that is, ∇f(θ(t)) → 0 when t → ∞. In
particular we do not require f to be convex.

(2) Avoiding local maximum and saddles: We want to strengthen the
result of part (1) and give sufficient conditions so that the dynamics
avoid local maximum and saddles and only converge to local mini-
mum. In other words, fix t0 > 0 and denote by St0 the set of initial
conditions x0 = (θ0,m0, v0) such that the limit set of the associated
solution θ(t) contains a critical point θ? which is not a local mini-
mum. We give, in subsection 4.3.2, sufficient conditions for the set
St0 to have Lebesgue measure zero.

(3) Rate of convergence: Under the convexity assumption, find the rate
of convergence of f to a local minimum.

Remark 4.3 (On the convexity assumption). For non-convex functions, in a
neighborhood of a local minimum, the function is not always locally convex.
Consider, for example, the function f(x) = x21x

2
2 which has the origin as a

local minimum. It is not locally convex at 0 since there is no sufficiently
small neighborhood of the origin where f is convex. However, consider the
space C∞(Rd,R) of all C∞ function f : Rd → R and fix a compact set K.
For almost every function f ∈ C∞(Rd,R), if x0 ∈ K is a local minimum of
f then f is locally convex at x0 (see Remark F.3 for a precise statement).
Therefore a small perturbation of the function f(x) = x21x

2
2 can induce local

convexity. Consider the one-parameter family fλ(x) = x21x
2
2 + λ2(x21 + x22).

Then for every λ ∈ R \ {0}, the function fλ(x) is locally convex at 0. This
is illustrated in Figure 5.

In the remaining of this section, we give precise statements for all three
steps. For each step, we will make appropriate assumptions on the objective
function. However, the following two assumptions must be satisfied in all
cases

Assumption 7. There exists t̃ ∈ [t0,∞) such that:

2r(t)− q(t)

2
+
h′(t)

h(t)
≥ 0, ∀ t > t̃

Assumption 8. The solution θ(t) of the ODE (3.1) is bounded.

We start by the topological convergence analysis.
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(a) f(x, y) = x2y2 (b) fλ(x, y) = x2y2 + λ2(x21 + x22)

Figure 5. On locally convex C2 functional.

4.3.1. Topological convergence. In this part, we make an additional assump-
tion on the asymptotic behavior of the coefficients.

Assumption 9. Suppose that ε > 0. Consider the functions:

H(s) = h(1/s), R(s) = r(1/s), P (s) = p(1/s), Q(s) = q(1/s),

and suppose that these functions are C1 in [0,∞) such that H(0) > 0;
R(0) > 0; 4R(0) > Q(0) and either P (s) ≡ Q(s) ≡ 0, or Q(0) > 0.

Let us observe that this assumption is satisfied when the coefficients do
not converge to zero at infinity. Hence, it holds for Adam (3.12) and the
Heavy ball differential equation (3.16) but not for the Nesterov’s acceleration
equation (3.18). Under this assumption, we prove the convergence of the
dynamics in the following sense:

Theorem 4.4 (Topological Convergence). Suppose that assumptions 1, 7,
8 and 9 are verified (and that v0 = 0 and ε = 1 if p(t) ≡ q(t) ≡ 0). Then
f(θ(t)) → f?, m(t) → 0 and v(t) → 0 when t → ∞, where f? is a critical
value of f .

The proof of this result is postponed in Appendix D. Our method is in-
spired by the work of Alvarez [2], based on the energy functional of the
system. However, we use a different argument, based on the Poincaré-
Bendixson type arguments, which does not rely on convexity. In the next
part, we improve the above result and we prove that the dynamics converge
to a local minimum for almost all initial condition.

4.3.2. Avoiding local maximum and saddles. Before stating the main hy-
pothesis of this section, we need introduce the definition of isolated critical
points and strict saddle points

Definition 4.5. A critical point θ? is called isolated if there is a neighbor-
hood U around θ? that does not contain any other critical points.

Definition 4.6. (Following [32, Definition 1]) A critical point θ? of a C2

function f : Rd → R is said to be a strict saddle if there exists a strictly
negative eigenvalue of the Hessian Hf (θ?) of f at θ?.
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We now make the following assumption

Assumption 10. The function f is C2. Moreover each critical point θ?
which is not a local-minimum is a strict saddle and is isolated (as a critical
point).

Now, fix a time t0 > 0 and recall that the topological limit of a curve θ(t)
is given by:

ω(θ(t)) =
⋂
τ>t0

θ([τ,∞)).

Consider the set of initial conditions such that the limit set of the associated
orbit contains a critical point which is not a local minimum

St0 := {x0 = (θ0,m0, v0); ω(θ(t)) 3 θ?, where θ? is a strict saddle}

The main result of this subsection is the following:

Theorem 4.7 (Avoiding Saddle and Local Maximum points). Suppose that
assumptions 1, 7, 8, 9 and 10 are satisfied. Then, for every t0 > 0, the set
St0 has Lebesgue measure zero. More precisely, the Hausdorff dimension of
St0 is smaller or equal to 3d− 1.

Remark 4.8. It follows that, if x0 = (θ0,m0, v0) is a random initial condi-
tion, then the solution x(t, t0,x0) = (θ(t),m(t), θ(t)) converges to a local
minimum of f with total probability.

Our method to prove the above result relies on the central(-stable) mani-
fold theory of differential equations (see [45, Chapter 1] for detailed exposi-
tion). Similar results are proved for discrete systems having isolated critical
points in [32, 33]. An extension of this result to non-isolated critical points
can be found in [41]. In this work, we assume that critical points are iso-
lated in order to exclude pathological differences between local and global
center-stable manifold theory (see example 4.9 below). The general theory
of central-stable manifolds (c.f. [45, Theorem 3.2] and [41, Lemma 5]) can
be applied if the differential equation has globally Lipschitz coefficients and
assumption 10 is not mandatory. However, the global Lipschitz assumption
is not met in our case. We believe, nevertheless, that assumption 10 can be
relaxed to prove saddle point avoidance in the case of non-isolated critical
points, c.f [41].

Example 4.9. Consider the differential equation:

ẋ = y − (y2 − sin(x)2) sin(x) cos(x)

ẏ = sin(x) cos(x) + (y2 − sin(x)2))y.

and let us consider the orbits of the differential equation whose limit set
contain the singularity (π, 0). Note the following contrast:
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• Local: consider a (very) small neighborhood U of (π, 0), then the
only solutions which contain (π, 0) in their limit set have initial con-
ditions in:

(x(t0), y(t0)) ∈ U ∩ {y2 = sin(x)2}

and all other solutions “leave” U in finite time.
• Global: Every solution (x(t), y(t)) with initial condition

(x(t0), y(t0)) ∈ {−π < x < π, y2 < sin(x)2} \ {(0, 0)}

converges to the set {−π ≤ x ≤ π, y2 = sin(x)2}, which contains the
singular point (π, 0).

4.3.3. Rate of convergence. The study of the rate of convergence of f(θ(t))
to the minimum value f(θ?) usually relies on a convexity assumption (c.f.
Remark 4.3) and a Lyapunov energy functional (see [2, 3, 21, 48]). Strictly
speaking, we do not find a Lyapunov functional for (3.1), but a natural
functional which allow us to prove convergence to a least a neighborhood
of a local minimum. For accelerated methods, the proposed functional cor-
responds to the standard Lyapunov energy used in many other works c.f.
[2, 3, 21,48]. This approach relies on the following assumptions:

Assumption 11. The function f is convex and admits a minimum point,
that is, there exists θ? such that f(θ) ≥ f(θ?) for every θ ∈ Rd.

Assumption 12. Let t0 > t̃ (as defined in assumption 7) and suppose that

lim
t→∞

∫ t

t0

e
−

∫ s
t0
r(u)du

ds < +∞(4.1)

either lim
t→∞

p(t)

q(t)
<∞ or p(t) ≡ q(t) ≡ 0.(4.2)

Furthermore, we define the following three functions (which only depend on
h, k, r and q)

A(t) =

∫ t

t0

h(s)B(s)ds(4.3)

B(t) = e
∫ t
t0
r(s)ds

∫ ∞
t

e
−

∫ s
t0
r(u)du

ds(4.4)

C(t) =
A(t)

h(t)
=

1

h(t)

∫ t

t0

h(s)B(s)ds(4.5)

and we suppose that for all t ≥ t0
B2(t) ≤ C(t)(4.6)

3B(t) ≤ C(t)
(

2r(t)− q(t)

2
+
h′(t)

h(t)

)
.(4.7)

We are now ready to state the main theorem of this section:
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Theorem 4.10. We assume that assumptions 1, 7, 11 and 12 are all sat-
isfied. Then

f(θ)− f(θ?) ≤
E(t0,m0, v0, θ0)

A(t)
+

∫ t
t0
p(u)

〈
[∇f(θ)]2

[v+ε]1/2
, [θ − θ?]2

〉
, du

4A(t)

where E(t,m, v, θ) is a Lyapunov functional for the system (3.1). In par-
ticular under assumption 8, there exist two positive and finite constants K1

and K2 (which depend on f , θ0, v0 and ε) such that for all t ≥ t0:

f(θ(t))− f(θ?) ≤
E(t0,m0, v0, θ0)

A(t)
+
K1 +K2

∫ t
t0
q(u)du

A(t)
.

It follows that the ODE (3.1) converges to the minimum point with rate of
convergence of order at most:

max

{
1,

∫ t

t0

q(u)du

}
/A(t).

5. Convergence results: application to first order algorithms

In this section, we specify the choice of functions h, p, q, r corresponding
to different optimization methods and apply each convergence theorem to
them. We start by a brief discussion on the assumptions which appear in
this section.

5.1. On the different assumptions. In the convergence analysis, we
made several assumptions on the objective function and the coefficients.
We briefly discuss their meaning and situations where they are satisfied.

• Assumption 7 gives an asymptotic relationship between the coeffi-
cients. In what follows, we discuss how this assumption affects the
choice of the parameters of each optimization algorithm.
• Assumption 8 states that the trajectory θ(t) is bounded. While this

may not always be true, there are some very practical situations
where this assumption is always satisfied. For example in the case
of coercive objective functions (see Lemma D.1).
• Assumption 9 is satisfied, roughly, when the coefficients do not con-

verge to zero at infinity. It is worth noticing that this assumption
holds for Adam (3.12) and the Heavy ball differential equation (3.16)
but not for the Nesterov’s acceleration equation (3.18). This repre-
sents a limitation of our analysis.
• Assumption 10 gives a condition on the nature and the degeneracy of

the critical points of the objective function. As discussed in Remark
F.3, this assumption is satisfied for a large class of functions. Indeed,
every Morse function f satisfies assumption 10. This implies that, if
we fix a compact set K, for almost every function f ∈ C∞(Rd,R),
the restriction of f to K satisfies assumption 10 (the meaning of
almost is made more precise in Remark (F.3)).
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5.2. Convergence of Adam. In this section, we state convergence results
in the specific case of the Adam’s differential equation (3.12).

Corollary 5.1 (Convergence of Adam). Suppose ε > 0 and let assumptions
1 and 8 be satisfied for equation (3.12). Moreover, we assume

3 + β2 > 4β1, where βi = exp(−λ/αi), i = 1, 2.

Then the following convergence results hold true

(I) Topological convergence: f(θ(t)) → f?, m(t) → 0 and v(t) → 0
when t→∞, where f? is a critical value of f .

(II) Non-local minimum avoidance: Assume that assumption 10 holds
true.Then the set St0 has Lebesgue measure zero.

(III) Rate of convergence: Under the additional assumption 11 , there
exists a constant K > 0 which depends on f , θ0 and v0, so that:

lim
t→∞

f(θ(t))− f(θ?) < K ln(1/β1)
1− β2
s(1− β1)

.

The rate of convergence to this neighborhood, furthermore, is of order
O(1/t).

Remark 5.2 (Existence and Uniqueness of Solution for Adam differential
equation). In order to guarantee that assumption (3) is satisfied (and there-
fore, there exists an unique solution of Adams differential equation at
t0 = 0), it is enough to demand β1 ≥ 0.21. Indeed, in this case we cna
guarantee that q(t)− 2r(t) < 0 for small enough t.

Proof of Corollary 5.1. The proof of (I) directly follows from Theorem 4.4
provided that assumptions 7 and 9 are satisfied. Hence, the proof simply
consists on checking the validity of both assumptions under the condition
that 3 + β2 > 4β1. Let us recall that the coefficients for the Adam’s differ-
ential equations are given by

h ≡ r ≡ gA1 (t, λ, α1, α2), p ≡ q ≡ gA2 (t, λ, α1, α2),

and (λ, α1, α2) are positive real numbers and:

gAi (t, λ, α1, α2) =
1− e−λ/αi

λ
(
1− e−t/αi

) , i = 1, 2.

It is easy to check that assumptions 7 and 9 are satisfied if there exists a t,
large enough, such that

1− e−λ/α1

λ(1− e−t/α1)
− 1− e−λ/α2

4λ(1− e−t/α2)
> 0

Taking the limit as t goes to infinity in the above inequality gives

1− e−λ/α1 >
1− e−λ/α2

4
.

We conclude using the expressions of β1 and β2. The proof of (II) follows
directly from Theorem 4.7 since assumptions 7 and 9 are satisfied under the
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condition 3 + β2 > 4β1. In order to prove (III), let us check the hypotheses
of Theorem 4.10. We compute explicitly the functions

A(t) =
1− e−λ/αi

λ

∫ t

t0

es/α1

es/α1 − 1
B(s)ds

B(t) = (et/α1 − 1)

∫ ∞
t

1

es/α1 − 1
ds

C(t) =
et/α1 − 1

et/α1

∫ t

t0

es/α1

es/α1 − 1
B(s)ds

so, by direct computation via L’Hôpital’s rule:

lim
t→∞
A(t)/t = α1

1− e−λ/α1

λ
lim
t→∞
B(t) = α1

lim
t→∞
C(t)/t = α1

and it easily follows that assumption 12 is verified. Finally, by using
L’Hôpital’s rule, we get:

lim
t→∞

∫ t

t0

q(s)ds/A(t) = α−11

1− e−λ/α2

1− e−λ/α1

which yields the result. �

5.3. Convergence of Adagrad. We start by recalling the differential
equation related to Adagrad, which was derived in subsection 3.3.1:

(5.1)

{
θ̇(t) = −∇f(θ(t))/

√
ω(t)

ω̇(t) = [∇f(θ(t))]2 ,

with initial condition given by θ0 ∈ Rd and ω0 = α[∇f(θ0)]
2. Now, every

consideration made for (3.1) can be specialized to this differential equation
via the following functional:

E(t, θ, ω) = f(θ) +
1

2

∥∥∥ω1/4
∥∥∥2

E(t, θ, ω) = t [f(θ)− f(θ?)] +
1

2

∥∥∥[ω]1/4 � (θ − θ∗)
∥∥∥2

Indeed, mutatis mutandis, the same considerations (in a much simpler
form) made in the appendixes give rise to the following results:

Theorem 5.3. Suppose that assumptions 1 and 8 are satisfied for equation
(5.1). Then

(I) Topological convergence: f(θ(t)) → f? and ω(t) → ω∞ > 0 when
t→∞, where f? is a critical value of f .
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(II) Non-local minimum avoidance: We assume the additional hypothesis
10 on the objective function. Fix t0 > 0 and denote by St0 the set of
initial conditions (θ0, ω0) ∈ Rd × Rd≥0 such that θ? ∈ ω(θ(t)), where
θ? is not a local-minimum of f . Then the Lebesgue measure of St0
is zero.

(III) Rate of convergence: Under the additional assumption 11, f(θ(t))→
f(θ?) with the rate O(1/t).

5.4. Convergence of Heavy Ball. In this section, we recover some of the
classical convergence results for the Heavy Ball method. Let us first recall
that the Heavy Ball differential equation (3.16) is a special case of the ODE
(3.1) with the choice

h(t) = 1 r(t) = γ p(t) = q(t) = 0.

Under assumptions 1, 8, 10 and 11, it is easy to check that all hypotheses
of Theorems 4.4, 4.7 and 4.10 are satisfied. Moreover, a direct computation
gives the rate of convergence O(1/t) since

A(t) = γ(t− t0) B(t) = γ C(t) = γ(t− t0)
Analogous results for the discrete update rules (3.17) are given in [22,32].

5.5. Convergence of Nesterov’s differential equation. Recall that the
differential equation of Nesterov (3.18), presented in subsection 3.4.2, is
given by {

θ̇ = −m
ṁ = ∇f(θ)− r m/t

where r > 0. The condition 9 is not satisfied and the Theorems 4.4 and
4.7 can not be applied here. We are ready enunciate the main convergence
result for Nesterov’s differential equation. These results exist and can be
found in [4, 5, 48].

Corollary 5.4 (Convergence Rate of Nesterov). Suppose that equation
(3.18) satisfies assumptions 1, 8 and 11 (for example, if f is coercive C2

and convex). Then f(θ)→ f(θ?) when t→∞ with rate of convergence:

O(1/t2), if r ≥ 3

O(1/t2r/3), if r ≤ 3.

Proof. The proof for r ≤ 3 is given in subsection E.2. Therefore, we assume
that r ≥ 3 in here. We recall that:

h(t) = 1 r(t) = r/t p(t) = q(t) = 0

From direct computation, we get:

A(t) = (t2 − t20)/2(r − 1) B(t) = t/(r − 1) C(t) = (t2 − t20)/2(r − 1)

It easily follows that, whenever r ≥ 3, the inequalities of assumption 12 are
verified. �
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Appendix A. Preliminaries

This appendix gives some preliminary results used in the proof of the
main theorems. We start this appendix by giving nonlinear versions of the
Gronwall Lemma.

A.1. Gronwall’s Lemmas.

Lemma A.1 (Gronwall’s Lemma). Let T > 0, λ ∈ L1(0, T ), λ ≥ 0 almost
everywhere and C1, C2 ≥ 0. Let ϕ ∈ L1(0, T ), ϕ ≥ 0 almost everywhere, be
such that λϕ ∈ L1(0, T ) and

ϕ(t) ≤ C1 + C2

∫ t

0
λ(s)ϕ(s)ds

for almost every t ∈ (0, T ). Then we have

ϕ(t) ≤ C1 exp

(
C2

∫ t

0
λ(s)ds

)
Lemma A.2. Let ϕ : [t0, t1] be absolutely continous stricly non-negative
function and suppose ϕ obeys the differential inequality for 0 ≤ α ≤ 1

ϕ′(t) ≤ β(t)ϕα(t)

for almost every t ∈ [t0, t1], where β is continuous. Then for all t ∈ [t0, t1]
and all 0 ≤ α < 1

ϕ(t) ≤
[
ϕ(t0)

1−α +

∫ t

t0

(1− α)β(s)ds

]1/(1−α)
.

If α = 1 then

ϕ(t) ≤ e
∫ t
t0
β(s)ds

ϕ(t0).

Proof.

[ϕ1−α]′ = (1− α)ϕ−αϕ′ ≤ (1− α)ϕ−α(t)β(t)ϕα(t) = (1− α)β(t)

Integrating over time gives

ϕ(t) ≤
[
ϕ(t0)

1−α +

∫ t

t0

(1− α)β(s)ds

]1/(1−α)
�

Lemma A.3. Let ϕ : [t0, t1] be absolutely continous stricly non-negative
function and suppose ϕ obeys the differential inequality for 0 ≤ α < 1

ϕ′(t) ≤ γ(t)ϕ(t) + β(t)ϕα(t)
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for almost every t ∈ [t0, t1], where β, γ are continuous. Then for all t ∈
[t0, t1]

ϕ(t) ≤
[
e
(1−α)

∫ t
t0
γ(s)ds

ϕ(t0)
1−α +

∫ t

t0

(1− α)e(1−α)
∫ t
s γ(u)duβ(s)ds

]1/(1−α)
.

Proof.

[ϕ1−α]′ = (1− α)ϕ−αϕ′

≤ (1− α)ϕ−α(t) (γ(t)ϕ(t) + β(t)ϕα(t))

= (1− α)γ(t)ϕ1−α(t) + (1− α)β(t)

and we conclude using the standard Gronwall Lemma applied to ϕ1−α . �

A.2. A priori estimates under boundedness assumption. In this sec-
tion, we compute elementary bounds for the solutions of the ODE (3.1),
under the additional assumption 8. These bounds are used in the proof
of convergence Theorems 4.4 and 4.10. More precise bounds are studies in
section B, where the assumption 8 is not verified.

Lemma A.4. Let t0 > 0 and x0 = (θ0,m0, v0) be fixed. Under assumptions
1 and 8, there exists an unique solution x(t) = (θ(t),m(t), v(t)) of (3.1)
with initial condition x(t0) = x0, and which is defined for all t in [t0,∞).
Furthermore, we have v(t) ≥ 0 for all t ∈ [t0,∞) and, denoting by Lg =
sup{‖∇f(θ(t))‖ ; t ≥ t0}, we get:

(A.1)

‖m(t)‖ ≤ ‖m(t0)‖+ Lgd

∫ t

t0

h(s)ds,

‖v(t)‖ ≤ ‖v(t0)‖+ L2
gd

∫ t

t0

p(s)ds

where we recall that d stands for the dimension of the space. If we suppose
that r(t) 6≡ 0 and q(t) 6≡ 0, furthermore, then:

‖m(t)‖ ≤ ‖m(t0)‖+ Lgd sup
s∈[t0,t]

{
h(s)

r(s)

}
,

‖v(t)‖ ≤ ‖v(t0)‖+ L2
gd sup

s∈[t0,t]

{
p(s)

q(s)

}
Proof. By assumption 1 and classical ODE’s, there exists a solution x(t) =
(θ(t),m(t), v(t)) of system (3.1) with maximal interval of definition [t0, T )
and initial conditions x(t0) = x0 = (θ0,m0, v0). Now, consider the functions:

a(t) = exp

(∫ t

t0

r(s)ds

)
, b(t) = exp

(∫ t

t0

q(s)ds

)
which are increasing functions bigger than 1 (for all t ≥ t0). We note that:

d

dt
(m · a(t)) = a(t)h(t)∇f(θ),

d

dt
(v · b(t)) = b(t)p(t)∇f(θ)2.
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In particular, we easily conclude that

m(t) =
1

a(t)

(
m0 +

∫ t

t0

a(s)h(s)∇f(θ)ds

)
v(t) =

1

b(t)

(
v0 +

∫ t

t0

b(s)p(s)∇f(θ)2ds

)

Next, under assumption 8, we can assume that |∇f(θ(t))| ≤ Lg for some
positive real number Lg. It is now easy to get inequalities (A.1), which lead
to:

|mi(t)| ≤ |mi(t0)|+ Lg h(t0) (t− t0)
|vi(t)| ≤ |vi(t0)|+ L2

g p(t0) (t− t0)

|vi(t)| ≥
1

b(t)
v0 > 0

and we easily conclude that T = ∞. Finally, if r(t) 6≡ 0, we get by direct
integration:

|mi(t)| ≤ |mi(t0)|+ Lg
1

a(t)

∫ t

t0

r(s)a(s)
h(s)

r(s)
ds

≤ |mi(t0)|+ Lg sup
s∈[t0,t]

{
h(s)

r(s)

}
1

a(t)

∫ t

t0

r(s)a(s)ds

= |mi(t0)|+ Lg sup
s∈[t0,t]

{
h(s)

r(s)

}
a(t)− a(t0)

a(t)
≤ L sup

s∈[t0,t]

{
h(s)

r(s)

}

A similar computation holds whenever q(t) 6≡ 0, which concludes the
Lemma. �

Appendix B. Existence and uniqueness of solutions

B.1. The Cauchy problem for t0 > 0. The proof of this result relies on
a standard cut off argument to construct a local solution. This is done to
handle the fact that the nonlinearities are not assumed to be globally Lips-
chitz (see Assumption 2). Global existence follows by standard applications
of the Gronwall Lemma and of the alternative on the existence time. For
consistency, we give the main steps of the proof.

We denote by x the vector function x = (θ,m, v) ∈ R3d with θ,m, v ∈ Rd.
Let Θ ∈ C∞c (R) such that Θ ≥ 0 with support supp(Θ) ∈ [0, 2] and Θ ≡ 1
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on [0, 1]. For all ` ∈ N∗, we set Θ`(x) = Θ(x/`) and we denote

F`(t,x(t), ξ) =


h(t)Θ`

(
‖θ(t)‖2

)
∇f(θ(t), ξ(t))− r(t)m(t)

p(t)Θ`

(
‖θ(t)‖2

)
[∇f(θ(t), ξ(t))]2 − q(t)v(t)

−Θ`

(
‖x(t)‖2

)
m(t)√
v(t)+ε


=

F1,`(t,x(t), ξ)
F2,`(t,x(t), ξ)
F3,`(t,x(t), ξ)

 .

Then we consider the equation

ẋ` = F`(t,x(t), ξ)

and its equivalent integral formulation, by assumption 2,

(B.1) x`(t) = x0 +

∫ t

0
F`(s,x`(s), ξ(s))ds.

In the following proposition, we state that there is a unique solution with
trajectories in ETc = C([t0, T ],R3d), the space of continuous functions from
[t0, T ] into R3d. We endowed this space with the norm

‖x‖ETc = sup
t∈[t0,T ]

‖x(t)‖ ,

where ‖.‖ denotes the euclidean norm in R3d.

Proposition B.1. Assume Assumption 2 holds and let T > t0; then Equa-
tion (B.1) has a unique solution x` ∈ L2(Ω, ETc ).

Proof of Proposition B.1. We prove this result by using a fixed point argu-
ment in the Banach space L2(Ω, ETc ) for sufficiently small time T depending
on both `, δ and the initial condition. To do so we will need the following
Lemma, whose proof is postponed in section B.4

Lemma B.2. Assume Assumption 2 holds. Then the function [∇f(·, ξ)]2
is locally Lipschitz and for all x, y ∈ Rd∥∥∥[∇f(x, ξ)]2 − [∇f(y, ξ)]2

∥∥∥ ≤M (‖x‖ , ‖y‖) ‖x− y‖

where the positive constant M is given by

M (‖x‖ , ‖y‖) =
√

2L (‖x‖ , ‖y‖) (B + max (L (‖x‖) ‖x‖ , L (‖y‖) ‖y‖)) .
Moreover the mapping m/

√
v + ε is almost surely locally Lipschitz for all

ε > 0.
For ε = 0, if v is a.s. lower bounded by a strictly positive constant then

the mapping m/
√
v is almost surely locally Lipschitz.

Note that from equation (3.1) and the choice of initial condition, the
stochastic mapping v is a.s bounded from below. Indeed, almost surely and
for all time

v̇ = p(t)[∇f(θ, ξ)]2 − q(t)v ≥ −q(t)v,
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and we obtain by an application of the Gronwall Lemma that

v(t) ≥ e−
∫ t
t0
q(s)ds

v0.

Hence, it follows that∥∥∥∥ m√v − n
√
y

∥∥∥∥ ≤ ‖m− n‖
v
1/2
0

e
1
2

∫ t
t0
q(s)ds

+
‖n (y − v)‖

2v
3/2
0

e
3
2

∫ t
t0
q(s)ds

.

Given x` ∈ L2
(
Ω, ETc

)
, we denote by ϕ(x`) the right hand side of Equa-

tion (B.1). From assumption 2 and Lemma B.2, we deduce that ϕ maps
L2(Ω, ETc ) into itself. Moreover, from assumption 2, Lemma B.2 and the
same argument as in [17] for the cut-off, we obtain

E
(
‖ϕ (x`(t))− ϕ (y`(t))‖2ETc

)1/2
≤ TC(`, T )E

(
‖x`(t)− y`(t)‖2ETc

)1/2
.

where the constant C depends on the radius `, the Lipschitz constant L
and M of ∇f and ∇f2, the final time T and the constant c. Hence, ϕ is a
contraction mapping in L2(Ω, ETc ) if T is chosen such that TC(`, T ) < 1. We
conclude that ϕ has a unique fixed point in L2(Ω, ETc ) which is the unique
solution to Equation (B.1) . Since the existence time only depends on `, the
solution can be extended globally for all T > t0, which concludes the proof
of Proposition B.1. �

Our aim is to prove global existence for the process x, solution to equation
(3.4), which will be constructed from the previous results. From the integral
formulation, we can easily prove that τ` is non-decreasing with ` and x`(t) =
x`′(t) on [0, τ`] for any ` < `′. As a consequence, we set τ∗ = lim`→+∞ τ`
and we define a local solution x to Equation (3.4) on [t0, τ

∗(x(0))) by setting
x(t) = x`(t) on [t0, τ`]. By construction of τ∗, it is clear that the following
alternative holds almost surely

τ∗(x(0)) = +∞(B.2)

τ∗(x(0)) < +∞ and lim
t→τ∗

‖x`(t)‖ = +∞(B.3)

B.2. A priori estimates and global solution. Our aim is now to get
global existence for the process x solution to (3.4). A key observation is
given in the next lemma which states that the growth of the norm m/

√
v + ε

is uniform in ε.

Lemma B.3. For any s, t ∈ [t0, T ∧ τ`] such that t0 ≤ s ≤ t ≤ T ∧ τ`∥∥∥∥∥ m(t)√
v(t) + ε

∥∥∥∥∥
2

≤ e
∫ t
s q(u)−2r(u)du

∥∥∥∥∥ m(s)√
v(s) + ε

∥∥∥∥∥
2

+ d

∫ t

s
e
∫ t
u q(a)−2r(a)da

h2(u)

p(u)
du
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Proof. The first inequality follows by integrating the equation in time. On
the other hand, from the Young inequality

d

dt

1

2

∥∥∥∥ m√
v + ε

∥∥∥∥2 = h(t)

〈
m√
v + ε

,
∇f (θ, ξ)√
v + ε

〉
− r(t)

∥∥∥∥ m√
v + ε

∥∥∥∥2
− 1

2
p(t)

∥∥∥∥m�∇f(θ, ξ)

v + ε

∥∥∥∥2 +
q

2

∥∥∥∥m�√vv + ε

∥∥∥∥2
We notice that

h(t)

〈
m√
v + ε

,
∇f (θ, ξ)√
v + ε

〉
− p(t)

2

∥∥∥∥m�∇f(θ, ξ)

v + ε

∥∥∥∥2
= h(t)

d∑
i=1

mi∂if (θ, ξ)

vi + ε
− p(t)

2

d∑
i=1

(
mi∂if(θ, ξ)

vi + ε

)2

= −p(t)
2

d∑
i=1

(
mi∂if(θ, ξ)

vi + ε
− h(t)

p(t)

)2

+
h2

2p(t)
d

= −p(t)
2

∥∥∥∥m�∇f(θ, ξ)

v + ε
− h(t)

p(t)

∥∥∥∥2 +
h2(t)

2p(t)
d

where d is the dimension of the state space. Hence,

d

dt

1

2

∥∥∥∥ m√
v + ε

∥∥∥∥2 = −p(t)
2

∥∥∥∥m�∇f(θ, ξ)

v + ε
− h(t)

p(t)

∥∥∥∥2 +
h2(t)

2p(t)
d

− r(t)
∥∥∥∥ m√

v + ε

∥∥∥∥2 +
q(t)

2

∥∥∥∥m�√vv + ε

∥∥∥∥2
≤ h2(t)

2p(t)
d+

(
q(t)

2
− r(t)

)∥∥∥∥ m√
v + ε

∥∥∥∥2
and we easily conclude. �

Lemma B.4. For all t0 ≤ s ≤ t ≤ T ∧ τ`,

‖θ(t)‖2 ≤
[
‖θ(s)‖+

∫ t

s

∥∥∥∥ m√
v + ε

∥∥∥∥ du]2 .
Therefore

‖θ(t)‖ ≤ ‖θ(s)‖+

∥∥∥∥∥ m(s)√
v(s) + ε

∥∥∥∥∥
∫ t

s
e

1
2

∫ u
s q(a)−2r(a)dadu

+
√
d

∫ t

s

(∫ u

s
e
∫ u
a q(b)−2r(b)db

h2(a)

p(a)
da

)1/2

du

Proof. From the Cauchy-Schwarz inequality, we obtain

d

dt

1

2
‖θ(t)‖2 = −

〈
θ,

m√
v + ε

〉
≤ ‖θ‖

∥∥∥∥ m√
v + ε

∥∥∥∥ .
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We apply Lemma A.2 to ϕ(t) = 1
2 ‖θ(t)‖

2, β(t) =
√

2
∥∥∥ m√

v+ε

∥∥∥ and α =

1/2. �

Lemma B.5. For all t0 ≤ s ≤ t ≤ T ∧ τ`, we have

‖m(t)‖2 ≤
[
e
−

∫ t
t0
r(s)ds ‖m(t0)‖+

∫ t

t0

e−
∫ t
s r(u)duh(s) ‖∇f(θ, ξ)‖ ds

]2
.

Proof. From Cauchy Schwarz,

d

dt

1

2
‖m(t)‖2 = h(t) 〈m,∇f (θ, ξ)〉 − r(t) ‖m‖2

≤ h(t) ‖m‖ ‖∇f (θ, ξ)‖ − r(t) ‖m‖2

Then solving the equation gives

‖m(t)‖2 ≤
[
e
−

∫ t
t0
r(s)ds ‖m(t0)‖+

∫ t

t0

e−
∫ t
s r(u)duh(s) ‖∇f(θ, ξ)‖ ds

]2
.

�

Lemma B.6. For all t0 ≤ s ≤ t ≤ T ∧ τ`, we have∥∥∥v1/2(t)∥∥∥2 ≤ e− ∫ t
t0
q(s)ds

∥∥∥v1/2(t0)∥∥∥2 +

∫ t

t0

e−
∫ t
s q(u)dup(s) ‖∇f(θ, ξ)‖2 ds.

Proof. Note that

d

dt

∥∥∥v1/2(t)∥∥∥2 =

〈
p(t) [∇f(θ, ξ)]2 − q(t)v

v1/2
, v1/2

〉

= p(t) ‖∇f(θ, ξ)‖2 − q(t)
∥∥∥v1/2∥∥∥2

and the Lemma easily follows from the Gronwall lemma. �

From the alternative (B.2) and estimates in section B.2, we conclude that
τ∗ = +∞ and that there exists a unique solution x of (3.4) with path almost
surely in C1((t0, T ];Rn) ∩ C([t0, T ];Rn) for any T > t0.

B.3. Existence and uniqueness for t0 = 0. In the previous section, we
proved that for all T > 0, there exists a unique solution to the system (3.4)
in the space C1((t0, T ];Rn) ∩C([t0, T ];Rn) for any strictly positive time t0.
The purpose of this section is to extend this result to solutions starting at
t = 0. Classical results on differential equations do not apply directly here
because the functions h, r, k, q are allowed to have a pole of order one at
t = 0 (see Assumption 3).

For that reason, we introduce a smoothed process xδ, for δ > 0, solution
to the equation

(B.4)


θ̇δ(t) = −mδ(t)/

√
vδ(t) + ε

ṁδ(t) = hδ(t)∇f(θδ(t), ξ(t))− rδ(t)mδ(t)

v̇δ(t) = pδ(t) [∇f(θδ(t), ξ(t))]
2 − qδ(t)vδ(t),
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where

hδ(t) = h(max (δ, t))

and similar formulas hold for rδ, pδ and qδ. Those functions are continous in
time and from the previous section, it is obvious that there exists a global
solution to this equation in C1((0, T ];Rn) ∩ C([0, T ];Rn).

B.3.1. Equicontinuity and uniform boundedness. We now prove existence
and uniqueness of system (3.4) using a compactness argument. We prove in
this section, that the family of functions xδ is equicontinuous and uniformly
bounded, where xδ is the solution to (B.4). Then applying the Arzela-Ascoli
theorem, we extract a converging subsequence, and we prove that its limit is
unique and satisfy (3.4). This is a standard argument in dynamical system
and has been used for example in [48]. The key result is the following
proposition which is proved in Appendix B.4

Proposition B.7. Moreover assume Assumptions 3 and 4 are satisfied.
Then there exists a positive constant C2(T ), independent of δ, such that for
all t, s ∈ [0, T ]

E
(
‖xδ(t)− xδ(s)‖2

)
≤ C2(T )(t− s)2.

The proof is straightforward when none of the functions p, q, r, h have a
singularity at zero. It will become apparent in the proof that the pole can
only be of order one.

Before stating the next Lemma, we introduce the notion of fractional
Sobolev space. For a real number 0 < δ < 1 and p ≥ 1, we denote by
Wα,p([0, T ]) the fractional Sobolev space of functions u ∈ Lp(0, T ) satisfying∫ T

0

∫ T

0

‖u(t)− u(s)‖p

|t− s|δp+1
dsdt < +∞

The space Cγ([t0, T ];R3d) is the space of Hölder continuous function of order
γ > 0 on [t0, T ] with values in R3d. It follows that

Lemma B.8. Under the same assumptions as Lemma B.7, there exists a
positive constant C3(T ), independent of δ, such that for all t, s ∈ [0, T ]

E
(
‖xδ‖2W γ,2

)
≤ C3(T )

for any γ < 1.

Proof. The proof is a consequence of Lemma B.7. Indeed

E

(∫ T

0

∫ T

0

‖xδ(t)− xδ(s)‖2

|t− s|2γ+1 dsdt

)
≤ C2(T )

∫ T

0

∫ T

0

(t− s)2

|t− s|2γ+1dsdt

<∞,

if γ < 1. �
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We use the Sobolev embedding W γ,2([0, T ]) ↪−→ Cα([0, T ]) for γ−α > 1/2
and γ < 1, which implies α < 1/2. It follows that the family xδ ∈
Cα([0, T ],Rn) and is therefore equi-continuous and uniformly bounded. Ap-
plying Arzela Ascoli theorem, we deduce that there exists a converging sub-
sequence (still denoted xδ) in C([0, T ],Rn). We denote by x̂ its limit and
we prove in the next section that x̂ satisfies Equation (3.4).

B.3.2. Identification of the limit and uniqueness of the solution. From
Arzela-Ascoli, we can extract a sub-sequence converging to x̂ in C([0, T ],Rn).
We prove in this section that x̂ is the unique solution to the equation (3.4)
with initial condition x̂0 = x0. The proof heavily relies on the fact that the
function

√
v + ε is lower bounded (under assumption 3) and we can deduce

the uniform convergence of 1/
√
vδ + ε to 1/

√
v̂ + ε from the uniform con-

vergence of vδ to v̂. The proof of existence and uniqueness also relies on the
following lemma

Lemma B.9. There exists two constants K1 and K2 such that for all t ∈
[0, T ] and all δ > 0∥∥∥∥∥ mδ(t)√

vδ(t) + ε

∥∥∥∥∥
2

≤ K1

∥∥∥∥ m0√
v0 + ε

∥∥∥∥2 +K2.

Existence. The convergence of the initial conditions are a direct conse-
quence of the uniform convergence. For any 0 < t ≤ T , we can prove that
x̂ satisfies equation (3.4) from the convergence of xδ towards x̂, assumption
2 and Lemma B.2 on the local Lipschitz property of the gradient and the
squared gradient, Lemma B.9 and the following inequality∥∥∥∥ m̂√

v̂ + ε
− mδ√

vδ + ε

∥∥∥∥ ≤ ∥∥∥∥mδ − m̂√
v̂ + ε

∥∥∥∥+

∥∥∥∥ mδ√
vδ + ε

∥∥∥∥
∥∥∥∥∥ v̂ − vδ√

v̂ + ε
(√
vδ + ε+

√
v̂ + ε

)∥∥∥∥∥ .
Uniqueness. We proceed by contradiction. Assume there exist two solu-
tions x = (θ,m, v) and y = (ψ, n, y) to the system (3.4).

An easy computation shows that for all 0 ≤ t ≤ T (because v and y are
a.s. lower bounded)

‖θ(t)− ψ(t)‖ ≤
∫ t

0

∥∥∥∥ m√
v + ε

− n√
y + ε

∥∥∥∥ ds
≤ C

∫ t

0
‖m− n‖+ ‖n(s)‖ ‖y − v‖ ds

By continuity of the solution of equation (3.1) on [0, T ], we know that there

exists a constant C̃ such that for all s ≤ t
‖n(s)‖ ≤ C̃

and therefore

‖θ(t)− ψ(t)‖ ≤ C
∫ t

0
‖m− n‖+ C̃ ‖y − v‖ ds.(B.5)
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Now, consider the functions

aη(t) = exp

(∫ t

η
r(s)ds

)
, bη(t) = exp

(∫ t

η
q(s)ds

)
which are increasing functions bigger than 1 (for all t ≥ η > 0). We note
that:

d

dt
(m · aη(t)) = aη(t)h(t)∇f(θ, ξ),

d

dt
(v · bη(t)) = bη(t)p(t)∇f(θ, ξ)2.

In particular, we easily conclude that

m(t) =
1

aη(t)

(
m(η) +

∫ t

η
aη(s)h(s)∇f(θ, ξ)ds

)
v(t) =

1

bη(t)

(
v(η) +

∫ t

η
bη(s)p(s)∇f(θ, ξ)2ds

)
It follows from Assumptions 2 and 3, inequality (B.5), and the fact that the
Lipschitz constant L is bounded on bounded sets, that for all η ≤ t ≤ T ,

‖m(t)− n(t)‖

=

∥∥∥∥ 1

aη(t)
(m(η)− n(η)) +

1

aη(t)

∫ t

η
aη(s)h(s) (∇f(θ, ξ)−∇f(ψ, ξ)) ds

∥∥∥∥
≤ ‖m(η)− n(η)‖+ C1

∫ t

η
h(s)

∫ s

0
‖m− n‖+ C̃ ‖y − v‖ duds

≤ ‖m(η)− n(η)‖+ C1

(
sup

0≤u≤t
‖m− n‖+ C̃ sup

0≤u≤t
‖y − v‖

)∫ t

η
h(s)sds

By continuity of the process m and n, the fact that m0 = v0 and the con-
tinuity of s 7→ sh(s) on [0, t], we obtain by taking the limit when η goes to
zero that

‖m(t)− n(t)‖ ≤ C1t

(
sup

0≤u≤t
‖m− n‖+ C̃ sup

0≤u≤t
‖y − v‖

)
.

Similarly there is a constant C2 such that

‖v(t)− y(t)‖ ≤ C2t

(
sup

0≤u≤t
‖m− n‖+ C̃ sup

0≤u≤t
‖y − v‖

)
.

Hence, by combining all bounds there exists two constants, still denoted
C1 and C2 such that

‖m(t)− n(t)‖+ ‖v(t)− y(t)‖+ ‖θ(t)− ψ(t)‖
≤ C1t sup

0<u≤t
‖m− n‖+ C2t sup

0<u≤t
‖y − v‖ .

Since there exists a t > 0 such that C1t and C2t are strictly smaller than 1,
we conclude on the uniqueness of the solution.
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B.4. Supporting proofs.

Proof of Lemma B.2. We denote ∇f = g. From the identity a2 − b2 =
(a− b)(a+ b) and the Young inequality, we get

∥∥g2(x, ξ)− g2(y, ξ)∥∥2
=

d∑
i=1

∣∣g2i (x, ξ)− g2i (y, ξ)∣∣2
≤ 2 max

(
‖g(x, ξ)‖2∞ , ‖g(y, ξ)‖2∞

)
‖g(x, ξ)− g(y, ξ)‖2

Therefore from the local Lipschitz assumption∥∥g2(x, ξ)− g2(y, ξ)∥∥
≤
√

2L (‖x‖ , ‖y‖) max (‖g(x, ξ)‖∞ , ‖g(y, ξ)‖∞) ‖x− y‖

≤
√

2L (‖x‖ , ‖y‖) (‖g(0, ξ)‖+ max (L (‖x‖) ‖x‖ , L (‖y‖) ‖y‖)) ‖x− y‖
≤M (‖x‖ , ‖y‖) ‖x− y‖

where

M (‖x‖ , ‖y‖) =
√

2L (‖x‖ , ‖y‖) (B + max (L (‖x‖) ‖x‖ , L (‖y‖) ‖y‖)) .

�

Proof of Lemma B.9. From Lemma B.3 and assumption 3 (which implies

that δhδ(δ), δqδ(δ), δrδ(δ) and hδ(δ)
pδ(δ)

are bounded for δ < 1), there exits a

constants K1 ≥ 0 and K2 ≥ 0 such that for every δ ≤ 1 we have:

∥∥∥∥∥ mδ(t)√
vδ(t) + ε

∥∥∥∥∥
2

≤ e
∫ δ
0 qδ(δ)−2rδ(δ)du

∥∥∥∥ m0√
v0 + ε

∥∥∥∥2 + d

∫ δ

0
e
∫ δ
u qδ(δ)−2rδ(δ)da

h2δ(δ)

pδ(δ)
du

= eδ(qδ(δ)−2rδ(δ))
∥∥∥∥ m0√

v0 + ε

∥∥∥∥2 + d
eδ(qδ(δ)−2rδ(δ)) − 1

qδ(δ)− 2rδ(δ)

h2δ(δ)

pδ(δ)
(B.6)

≤ K1

∥∥∥∥ m0√
v0 + ε

∥∥∥∥2 +K2.

Moreover from Lemma B.3 and assumption 3 (which implies that qδ(u) −
2rδ(u) < 0, hδ(t)/pδ(u) and hδ(t)/rδ(u) are bounded for δ and u small),

there exits a constants K̃1 ≥ 0 and K̃2 ≥ 0 such that for every δ ≤ 1 we
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have:∥∥∥∥∥ mδ(t)√
vδ(t) + ε

∥∥∥∥∥
2

≤ e
∫ t
δ qδ(u)−2rδ(u)du

∥∥∥∥∥ mδ(δ)√
vδ(δ) + ε

∥∥∥∥∥
2

+ d

∫ t

δ
e
∫ t
u qδ(a)−2rδ(a)da

h2δ(u)

pδ(u)
du

≤

∥∥∥∥∥ mδ(δ)√
vδ(δ) + ε

∥∥∥∥∥
2

+ d sup
δ<u<t

hδ(u)

pδ(u)
sup
δ<u<t

∣∣∣∣ hδ(u)

qδ(u)− 2rδ(u)

∣∣∣∣(B.7)

≤ K̃1

∥∥∥∥∥ mδ(δ)√
vδ(δ) + ε

∥∥∥∥∥
2

+ K̃2,

which (apart from increasing K̃1 and K̃2) combined with (B.7) yields a.s.:∥∥∥∥∥ mδ(t)√
vδ(t) + ε

∥∥∥∥∥ ≤ K̃1

∥∥∥∥ m0√
v0 + ε

∥∥∥∥+ K̃2.

�

Proof of Proposition B.7. The proof uses the integral formulation and weighted
space. First, we define the following norm for all 0 < t ≤ T

N(t, δ) = E
(

sup
0<u≤t

‖hδ(u)∇f(θδ(u), ξ(u))− rδ(u)mδ(u)‖2
)1/2

+ E
(

sup
0<u≤t

∥∥∥pδ(u) [∇f(θδ(u), ξ(u))]2 − qδ(u)vδ(u)
∥∥∥2)1/2

+ E

 sup
0<u≤t

∥∥∥∥∥ mδ(u)√
vδ(u) + ε

∥∥∥∥∥
2
1/2

.

We claim that there exists a constant C(T ) (independent of δ) such that
N(t, δ) ≤ C(T ) for all t ∈ (0, T ]. Note that Proposition B.7 immediately
follows from the claim and the following inequality

E
(
‖xδ(t)− xδ(s)‖2

)
≤ E

[(∫ t

s
‖ẋδ(u)‖du

)2
]
≤ 3N(T, δ)2(t− s)2.

We now turn to the proof of the claim.
The case t ≤ δ. For all t ≤ δ, the functions rδ and qδ are constant and
the equations for mδ and vδ, given by system (B.4), have the equivalent
Duhamel formulation given by

mδ(t) = e−trδ(δ)m0 + e−trδ(δ)
∫ t

0
eurδ(δ)hδ(δ)∇f(θδ(u), ξ(u))du(B.8)

vδ(t) = e−tqδ(δ)v0 + e−tqδ(δ)
∫ t

0
euqδ(δ)pδ(δ) [∇f(θδ(u), ξ(u))]2 du.(B.9)
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From Lemma B.9, we know that
∥∥∥mδ(t)/

√
vδ(t) + ε

∥∥∥2 is uniformly bounded

with respect to δ. Moreover, ‖θδ(t)‖ is a.s uniformly bounded so is
L (‖θδ(t)‖ , ‖θ0‖). Indeed,

‖θδ(t)− θ0‖ ≤
∫ t

0

∥∥∥∥∥ mδ(u)√
vδ(u) + ε

∥∥∥∥∥ du ≤ t
(
K1

∥∥∥∥ m0√
v0 + ε

∥∥∥∥+K2

)
(B.10)

Next, let us consider the first term which appears in N(t, δ). From the
Duhamel formulation (B.8), the triangle inequality and the fact that the ini-
tial condition m0 = ∇f(θ0, ξ0) limt→0+ h(t)/r(t), we obtain an upper bound
of the form

‖hδ(δ)∇f(θδ(t), ξ(t))− rδ(δ)mδ(t)‖ ≤ N1 +N2 +N3 +N4 +N5

where:

N1 = ‖hδ(δ) (∇f(θδ(t), ξ(t))−∇f(θ0, ξ(t))‖
N2 = ‖hδ(δ) (∇f(θ0, ξ(t))−∇f(θ0, ξ0))‖

N3 =

∥∥∥∥rδ(δ)e−trδ(δ)(m0 −
hδ(δ)

rδ(δ)
∇f(θ0, ξ0)

)∥∥∥∥
N4 =

∥∥∥∥rδ(δ)e−trδ(δ) ∫ t

0
eurδ(δ)hδ(δ) (∇f(θδ(u), ξ(u))−∇f(θ0, ξ(u))) du

∥∥∥∥
N5 =

∥∥∥∥rδ(δ)e−trδ(δ) ∫ t

0
eurδ(δ)hδ(δ) (∇f(θ0, ξ(u))−∇f(θ0, ξ0)) du

∥∥∥∥ .
We now show that each one of these terms are bounded uniformly in terms
of δ. The term N1 is bounded by the local Lipschitz assumption 2 of the
gradient, inequality (B.10), the Duhamel formula (B.8) and Lemma B.9

N1 ≤ δhδ(δ)L (‖θδ(t)‖ , ‖θ0‖)

(
K1

∥∥∥∥ m0√
v0 + ε

∥∥∥∥2 +K2

)
,

and we easily conclude that N1 is uniformly bounded by assumption 3. From
the variance assumption 4, we can bound the term N2 as follows

E(N2) ≤ E

(
sup

0<u≤δ
‖h(u) (∇f(θ0, ξ(u))−∇f(θ0, ξ0))‖2

)1/2

≤ σ1/21 .

The term N3 is bounded from the choice of the initial condition and the fact
that h(t)/r(t) is a C1 function. More precisely

N3 ≤ δrδ(δ)e−trδ(δ) ‖∇f(θ0, ξ0)‖
∣∣∣∣hδ(δ)rδ(δ)

− lim
t→0

h(t)

r(t)

∣∣∣∣ δ−1.
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The term N4 is bounded in a similar way as N1 using assumption 3, inequal-
ity (B.10) and Lemma B.9

N4 ≤ rδ(δ)hδ(δ)L (‖θδ(t)‖ , ‖θ0‖)

(
K1

∥∥∥∥ m0√
v0 + ε

∥∥∥∥2 +K2

)∫ t

0
u du

≤ δ2rδ(δ)hδ(δ)

2
L (‖θδ(t)‖ , ‖θ0‖)

(
K1

∥∥∥∥ m0√
v0 + ε

∥∥∥∥2 +K2

)
.

Finally, the term N5 is bounded using assumption 4, in a similar way than
N2. Indeed

E(N5) ≤ E
(
rδ(δ) sup

0≤u≤t
‖hδ(u) (∇f(θ0, ξ(u))−∇f(θ0, ξ0))‖

∫ t

0
ds

)
≤ E

(
δrδ(δ) sup

0≤u≤t
‖h(u) (∇f(θ0, ξ(u))−∇f(θ0, ξ0))‖

)
≤ δrδ(δ)σ

1/2
1 ,

which is bounded by assumption 3. Gathering all bounds, we easily conclude
that there exists a constant C1 such that, for every δ ≤ 1:

E
(

sup
0<u≤t

‖hδ(u)∇f(θδ(u), ξ(u))− rδ(u)mδ(u)‖2
)1/2

≤ C1.

From a similar argument, we obtain that there exists a constant C2 such
that, for every δ ≤ 1:

E
(

sup
0<u≤t

∥∥∥pδ(u) [∇f(θδ(u), ξ(u))]2 − qδ(u)vδ(u)
∥∥∥2) ≤ C2.

We conclude that there exists a constant C such that N(t, δ) < C for every
t ≤ δ and δ ≤ 1.
The case t > δ. The proof uses the same arguments as in the case of t ≤ δ
using the appropriate integral formulation and Lemma B.9. We omit the
details here.

�

Appendix C. Convergence of the Euler discretization

C.1. Proof of Theorem 4.2. The result from [25] can be adapted to ran-
dom differential equations and we check that the two assumptions are sat-
isfied for (3.4) and (3.5). We start by a proposition, concerning the strict
positivity of vk, up to numerical approximation, as long as v0 > 0.

Proposition C.1. For all k = 0, · · · ,K − 1

mk+1 =
k∑
i=0

shi+1∇f(θi+1, ξi+1)
k∏

j=i+1

(1− srj+1) +
k∏
j=0

(1− srj+1)m0
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and

vk+1 =
k∑
i=0

spi+1[∇f(θi+1, ξi+1)]
2

k∏
j=i+1

(1− sqj+1) +
k∏
j=0

(1− sqj+1)v0,

where we used the notation hi = h(ti) (and similarly for the other functions).
Let assume that the learning rate s satisfies sr1 < 1 and sq1 < 1. Hence, the
numerical scheme preserves the strict positivity of v i.e if we assume v0 > 0,
then for all k = 0, · · · ,K, vk > 0.

Proof. The proof is simply based on induction and the iterative formula for
m and v. �

The next proposition shows that the quantity
∥∥mk/

√
vk
∥∥ is bounded for

finite number of iterations K. Therefore the discrete solution has the same
properties as the solution of the continuous system.

Proposition C.2. Let assume that the learning rate s satisfies sr1 < 1 and
sq1 < 1. For all k = 0, · · · ,K − 1, the following bound holds

∥∥∥∥ mk+1√
vk+1

∥∥∥∥2 ≤ ∥∥∥∥ m0√
v0

∥∥∥∥2 k∏
i=0

max

(
(1− sri+1)

2

(1− sqi+1)
, 1

)

+ sd

k∑
i=0

h2i+1

pi+1

k∏
j=i

max

(
(1− srj+1)

2

(1− sqj+1)
, 1

)
.

Moreover

K−1∏
i=0

(1− sri+1)
2

(1− sqi+1)
≤ exp

(
−2

∫ T

t1

r(t)dt+
1

1− sq1

∫ T

t0

q(t)dt

)
.

Proof. From the discrete updates for mk+1 and vk+1 given by equation (3.3),
we easily observe that the following identity holds true

m2
j,k+1vj,k −m2

j,kvj,k+1

=
(
(1− srk+1)

2m2
j,k + s2h2k+1[∂jfk+1]

2 + 2shk+1(1− srk+1)mj,k∂jfk+1

)
vj,k

−m2
j,k(1− sqk+1)vj,k − spk+1m

2
j,k[∂jfk+1]

2

= vj,k
(
(1− srk+1)

2 − (1− sqk+1)
)(

m2
j,k + s

h2k+1

pk+1
vj,k

)

+ s
h2k+1

pk+1
vj,k+1vj,k − spk+1

(
mj,k∂jfk+1 −

hk+1

pk+1
(1− srk+1)vj,k

)2

.
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Thus, dividing both side of the previous equality by vj,k+1vj,k, we obtain for
all k ≥ 0∥∥∥∥ mk+1√

vk+1

∥∥∥∥2 − ∥∥∥∥ mk√
vk

∥∥∥∥2 =
d∑
j=1

m2
j,k+1

vj,k+1
−
m2
j,k

vj,k

≤
d∑
j=1

(1− srk+1)
2 − (1− sqk+1)

vj,k+1

(
m2
j,k + svj,k

h2k+1

pk+1

)
+ sd

h2k+1

pk+1
.

We consider two different cases: if (1− srk+1)
2 − (1− sqk+1) ≤ 0 then,∥∥∥∥ mk+1√

vk+1

∥∥∥∥2 ≤ ∥∥∥∥ mk√
vk

∥∥∥∥2 + sd
h2k+1

pk+1
.

On the other hand, if (1− srk+1)
2 − (1− sqk+1) ≥ 0, then from the update

rule for vk+1, given by equation (3.3), and the fact that vk+1 ≥ (1−sqk+1)vk,
we get∥∥∥∥ mk+1√

vk+1

∥∥∥∥2 − ∥∥∥∥ mk√
vk

∥∥∥∥2
≤

d∑
j=1

(1− srk+1)
2 − (1− sqk+1)

(1− sqk+1)vj,k

(
m2
j,k + svj,k

h2k+1

pk+1

)
+ sd

h2k+1

pk+1

=
(1− srk+1)

2 − (1− sqk+1)

(1− sqk+1)

(∥∥∥∥ mk√
vk

∥∥∥∥2 + sd
h2k+1

pk+1

)
+ sd

h2k+1

pk+1
.

Thus ∥∥∥∥ mk+1√
vk+1

∥∥∥∥2 ≤ (1− srk+1)
2

(1− sqk+1)

(∥∥∥∥ mk√
vk

∥∥∥∥2 + sd
h2k+1

pk+1

)
Combining the upper bounds obtained in the two cases∥∥∥∥ mk+1√

vk+1

∥∥∥∥2 ≤ max

(
(1− srk+1)

2

(1− sqk+1)
, 1

)(∥∥∥∥ mk√
vk

∥∥∥∥2 + sd
h2k+1

pk+1

)
By induction we get that∥∥∥∥ mk+1√

vk+1

∥∥∥∥2 ≤ ∥∥∥∥ m0√
v0

∥∥∥∥2 k∏
i=0

max

(
(1− sri+1)

2

(1− sqi+1)
, 1

)

+ sd
k∑
i=0

h2i+1

pi+1

k∏
j=i

max

(
(1− srj+1)

2

(1− sqj+1)
, 1

)
.

We now prove that the previous upper bound is bounded by a constant
depending only on the final time T . For all x ∈ (0, 1), we know that −x ≥
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log(1− x) ≥ −x/(1− x). Therefore

log

(
k∏
i=0

(1− sri+1)
2

(1− sqi+1)

)
=

k∑
i=0

2 log(1− sri+1)− log(1− sqi+1)

≤
k∑
i=0

−2sri+1 +
sqi+1

1− sq1
.

From assumption 3, the functions q and r are non-increasing. Then for all
t ∈ [ti, ti+1], we have qi ≥ q(t) ≥ qi+1 and similarly for r. Integrating over
[ti, ti+1] and summing from zero to K − 1 gives∫ T

t0

q(t)dt ≥
K−1∑
i=0

sqi+1.

Similarly integrating over [ti, ti+1] and summing from one to K − 1 gives∫ T

t1

r(t)dt ≤
K−1∑
i=1

sri ≤
K−1∑
i=0

sri+1.

We conclude that
K−1∏
i=0

(1− sri+1)
2

(1− sqi+1)
≤ exp

(
−2

∫ T

t1

r(t)dt+
1

1− sq1

∫ T

t0

q(t)dt

)
.

�

Finally, from the previous estimates, we obtain a moment bound on θ.
This estimate is important since the bound only depends on the final time
T , the constant p and the norm of the initial solution but not on the norm
of θ itself.

Proposition C.3. For all k = 0, · · · ,K − 1

‖θk+1‖ ≤ ‖θ0‖+ s

k∑
i=0

∥∥∥∥ mi√
vi + ε

∥∥∥∥ .
Then, from Proposition C.2, we conclude that there exists a constant C(T ) >
0, such that for all s

sup
0≤k≤KT,s

‖θk‖ ≤ C(T )(1 + ‖x0‖).

Using the previous estimates given by Propositions C.1, C.2 and C.3 and
the locally Lispchitz assumption 2, we obtain the following bounds for the
solution of the numerical scheme (3.3).

Proposition C.4 (Bounds for the solution of the numerical scheme). Let
A0 ⊂ Rd≥0×Rd≥0×Rd>0 be a compact set. There exists a constant C(T,A0) >
0, such that for all s and all initial condition x0 ∈ A0

sup
0≤k≤KT,s

‖xk‖ ≤ C(T,A0) (1 + ‖x0‖) .
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The proof follows [23]. We denote by B` =
{
x ∈ R3d; ‖x‖ ≤ `

}
. From

section B.2 and Proposition (C.4), we know that there exists a constant `
such that x(t) and xk remain in B` for all t ∈ [0, T ] and k = 0, · · · ,K.
Moreover we considered the numerical approximation only for t0 > 0 and
therefore all functions p, q, r, h are continuously differentiable. The global
error is controlled using the integral formulation and decomposing the error
as follows∫ tk+1

tk

h(s)∇f(θ(s), ξ(s))− h(tk+1)∇f(θk+1, ξk+1)ds

=

∫ tk+1

tk

(h(s)− h(tk+1))∇f(θ(s), ξ(s))ds

+

∫ tk+1

tk

h(tk+1) (∇f(θ(s), ξ(s))−∇f(θ(s), ξk+1)) ds

+

∫ tk+1

tk

h(tk+1) (∇f(θ(s), ξk+1)−∇f(θk+1, ξk+1)) ds.

and ∫ tk+1

tk

∥∥∥∥∥ m(s)√
v(s) + ε

− mk√
vk + ε

∥∥∥∥∥ ds ≤
∫ tk+1

tk

∥∥∥∥∥mk −m(s)√
v(s) + ε

∥∥∥∥∥ ds
+

∫ tk+1

tk

∥∥∥∥ mk√
vk + ε

∥∥∥∥
∥∥∥∥∥∥ v(s)− vk√

v(s) + ε
(√

vk + ε+
√
v(s) + ε

)
∥∥∥∥∥∥ ds.

We conclude the proof using again the integral formulation, assumptions 5
and 6, assumption 2 and Proposition C.2.

Appendix D. Exploring an energy functional

We consider the following energy functional, which is inspired from [2,
Theorem 2.1]:

(D.1) E(t, θ,m, v) = f(θ) +
1

2h(t)

∥∥∥∥∥ m

[v + ε]1/4

∥∥∥∥∥
2

where we recall the notation:

m

[v + ε]1/4
=

〈
m1

(v1 + ε)1/4
, . . . ,

md

(vd + ε)1/4

〉
.
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The derivative of E(t, θ, v) can be easily computed:

d

dt
E(t, θ,m, v) =− 1

h(t)

(
r(t) +

h′(t)

2h(t)

)∥∥∥∥∥ m

[v + ε]1/4

∥∥∥∥∥
2

+
1

h(t)

d∑
i=1

m2
i (q(t)vi − p(t)∂θif(θ)2)

4(vi + ε)3/2

and it is easy to see that

(D.2)
d

dt
E(t, θ,m, v) ≤ − 1

h(t)

[
r(t)− q(t)

4
+
h′(t)

2h(t)

] ∥∥∥∥∥ m

[v + ε]1/4

∥∥∥∥∥
2

.

Therefore, under the assumption 7, the derivative of E(t, θ, v) is non-
positive. In particular, this yields the following results:

Lemma D.1. Let ε ≥ 0. Suppose that assumptions 1 and 7 are verified.
Then there exists T ≥ t0 such that for all t ≥ T :

f(θ(t)),
1

2h(t)

∥∥∥∥∥ m

[v + ε]1/4

∥∥∥∥∥
2

≤ E(T, θ(T ),m(T ), v(T )).

In particular, if f is coercive, then assumption 8 is satisfied.

Proof. The proof is immediate from the fact that the energy has non-positive
derivative. �

D.1. Proof of Theorem 4.4. Consider the autonomous system associated
to (3.1), that is, the following vector field defined in R3d+1:

∂ = ∂t +

d∑
i=1

− mi√
vi + ε

∂θi + (h(t)∂θif(θ)− r(t)mi)∂mi

+ (p(t)∂θif(θ)2 − q(t)vi)∂vi .

which is well-defined for every (θ,m, v, t) ∈ Rd×Rd×Rd≥0×R>0 (because we

assume that ε > 0, c.f. assumption 9). In order to study the convergence of
the vector field when t→∞, we perform the change of coordinates s = 1/t
which yields:

(D.3)
∂ = −s2∂s +

d∑
i=1

− mi√
vi + ε

∂θi + (H(s)∂θif(θ)−R(s)mi)∂mi

+ (P (s)∂θif(θ)2 −Q(s)vi)∂vi .

Now, let us fix an orbit x(t) = (θ(t),m(t), v(t), s(t)) with initial conditions
x(t0) = (θ(t0),m(t0), v(t0), 1/t0). By the Lemma A.4, we know that x(t) is
bounded and v(t) > 0 for all t ∈ (t0,∞). Denote by ω(x(t)) (which stands
for ω-limit) the topological limit of x(t), that is:

ω(x(t)) =
⋂
τ>t0

x([τ,∞)).
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It is well-known that the ω-limit of an orbit is a closed (therefore, under
assumption 8, a non-empty, compact, connected) and invariant set by ∂. It
follows from the expression of ∂ that ω(x(t)) ⊂ (s = 0).

We are ready to consider the energy functional E given in (D.1). More
precisely, consider the functional:

Ẽ(s, θ,m, v) = f(θ) +
1

2H(s)

∥∥∥∥∥ m

[v + ε]1/4

∥∥∥∥∥
2

,

and we note that

∂(Ẽ(s, θ,m, v)) =
d

dt
Ẽ(s, θ,m, v).

It follows from a similar computation as the one performed in the last sub-
section that:

d

dt
Ẽ(s, θ,m, v) ≤ − 1

2H(s)

[
2R(s)− Q(s)

2
− s2H

′(s)

H(s)

] ∥∥∥∥∥ m

[v + ε]1/4

∥∥∥∥∥
2

.

which is everywhere non-positive by assumption 7 and 9. Now, since E(x(t))
is bounded from below (because E is continuous and x(t) is bounded), we
conlude that the limit:

lim
t→∞

Ẽ(x(t)) = Ẽ∞

exists. In particular, we conclude that ω(x(t)) ⊂ (Ẽ(s, θ,m, v) = Ẽ∞),
which implies that ω(x(t)) must be contained in the set of zero derivative of

Ẽ(s, θ,m, v). By assumption 9 this implies that ω(x(t)) ⊂ (m = 0). Since
H(0) 6= 0 (assumption 9), by the expression of ∂, we conclude that ω(x(t)) ⊂
(∇f(θ) = 0). Finally, since either P (s) ≡ Q(s) ≡ 0 or Q(0) > 0(assumption
9), by the expression of ∂, we conclude that ω(x(t)) ⊂ (v = 0). We conclude
easily.

D.2. Proof of Theorem 4.7. We start by enunciating the main result
from center-manifold theory, which is a local version of [45, Ch. 1 Thm 4.2]
by using the cut-off technique given in [45, Ch. 1 Lem. 3.1]; c.f. [45, Ch. 1,
Thm 1.1 and 3.2]:

Theorem D.2. Consider the differential equation ẋ = Ax + F (x) defined
over Rn, where A is a matrix which contains at least one positive eigenvalue,
and F (x) is a Ck function, for some k ≥ 1, such that F (0) = 0 and DF (0) =
0. Then there exists a neighborhood U of 0 and a Ck sub-manifold Σ (the
center-stable manifold) such that:

(1) The manifold Σ is invariant by the differential equation everywhere
over U ;

(2) The manifold contains the origin 0 and has dimension at most n−1;
(3) If x0 ∈ U\Σ, then there exists t̃0 > t0 such that x(t̃0) /∈ U , where x(t)

denotes the solution of the differential equation with initial condition
x(t0) = x0.
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We now proceed with the proof of Theorem 4.7. Recall the vector field ∂
defined in (D.3), which describes the ODE (3.1). We consider the set:

C = {θ? ∈ Rd; ∇f(θ?) = 0, and θ? is a strict saddle of f}

By assumption 10, the set A is a countable union of isolated points of Rd.
It follows from Theorem 4.4 that the set:

B := {(θ,m, v, s); θ ∈ C and (θ,m, v, s) is a singularity of ∂}

is a countable union of isolated points, all of each have the form (θ?, 0, 0, 0),
where θ? ∈ C. We now consider the set:

S := {(θ0,m0, v0, s0); the ω-limit of (θ(t),m(t), v(t), s(t)) ⊂ B}

where (θ(t),m(t), v(t), s(t)) have initial condition equal to (θ0,m0, v0, s0).
We now make a local argument valid for each singular point in B in order

to show that S is locally a manifold; indeed, fix (θ?, 0, 0, 0) ∈ S. Consider
the Jacobean of ∂ at the singular point (θ?, 0, 0, 0), which is the 3d+1 square
matrix:

Jac(∂)(θ?, 0, 0, 0) =


0 −ε−1/2Id 0 0

H(0)Hf (θ?) −R(0)Id 0 0
0 0 −Q(0)Id 0
0 0 0 0

 ,
where Id denotes the Identity of a d-square matrix, andHf (θ?) is the Hessian
of f at θ?. It follows from direct computation that the eigenvalues λ of this
matrix are: 0 with order 1, −Q(0) with order d and the solutions of the
quadratic equations:

(D.4) ηi = − ε1/2

H(0)
(R(0) + λ)λ, i = 1, . . . , d

where {η1, . . . , ηd} are the eigenvalues of Hf (θ?). By assumption 10, we
can suppose without loss of generality that η1 < 0, and we easily con-
clude by equation (D.4) that there exists one strictly positive eigenvalue
λ of Jac(∂)(θ?, 0, 0, 0). By Theorem D.2, there exists an open neighbor-
hood Uθ? of (θ?, 0, 0, 0) and a C1 manifold Σθ? ⊂ Uθ? such that every orbit
(θ(t),m(t), v(t), s(t)) with initial condition in Uθ? \ Σ, leaves Uθ? in finite
time. In particular, since (θ?, 0, 0, 0) is an isolated critical point and the
ω-limit of an arbitrary orbit (θ(t),m(t), v(t), s(t)) is connected, we conclude
that S∩Uθ? ⊂ Σθ? (otherwise, the ω-limit would contain points in the border
of U). Now, consider the set Σ given by the union of all orbits with initial
conditions in Σθ? , for some θ? ∈ C. It easily follows that S ⊂ Σ. Since C is
a countable set, we conclude that the Hausdorff dimension of Σ is at most
3d.

Finally, let t0 > 0 be fixed and denote by St0 = S∩{s = 1/t0}. Note that
St0 ⊂ Σt0 , where Σt0 = Σ ∩ {s = 1/t0}. Now, Σ has Hausdorff dimension
3d and contains orbits of ∂, all of each are transverse to the set {s = 1/t0}.
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It follows that the Hausdorff dimension of Σt0 is at most 3d − 1, and we
conclude easily.

Appendix E. Exploring a (generalized) Lyapunov

E.1. Proof of Theorem 4.10. Let θ? be a minimum point of f (which
exists by Assumption 11). Let us consider the following energy functional

E(t,m, v, θ) = E1(t, θ) + E2(t,m, v, θ)

where

E1(t, θ) = A(t) (f(θ)− f(θ?))

E2(t,m, v, θ) =
1

2

∥∥∥[v + ε]1/4 (θ − θ?)
∥∥∥2 − B(t) 〈θ − θ?,m〉+

C(t)
2

∥∥∥∥∥ m

[v + ε]1/4

∥∥∥∥∥
2

.

This functional is used as a Lyapunov function to prove convergence to a
neighborhood of the global minimum. We first compute its time derivative
and we find conditions on the functions B and C, as well as the coefficients
h, p, q, r, so that d

dtE is bounded. The conditions must also guarantee that
E is positive. From the convexity assumption on the objective function f ,
we get

(E.1)
d

dt
E1(t, θ) ≤ A′(t) 〈∇f(θ), θ − θ?〉 − A(t)

〈
∇f(θ),

m

[v + ε]1/2

〉

Next, we derive each term of E2.

1

2

d

dt

∥∥∥[v + ε]1/4 (θ − θ?)
∥∥∥2

= −〈m, θ − θ?〉 −
q(t)

4

〈
v

[v + ε]1/2
(θ − θ?) , θ − θ?

〉

+
p(t)

4

〈
[∇f(θ)]2

[v + ε]1/2
� (θ − θ?) , θ − θ?

〉

d

dt
B(t) 〈θ − θ?,m〉

= −B(t)

∥∥∥∥∥ m

[v + ε]1/4

∥∥∥∥∥
2

+ B(t)h(t) 〈∇f(θ), θ − θ?〉

+ (B′(t)− B(t)r(t)) 〈θ − θ?,m〉
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d

dt

C(t)
2

∥∥∥∥∥ m

[v + ε]1/4

∥∥∥∥∥
2

= h(t)C(t)

〈
∇f(θ),

m

[v + ε]1/2

〉

+
(
−r(t)C(t) + C′(t)/2

) ∥∥∥∥∥ m

[v + ε]1/4

∥∥∥∥∥
2

+
C(t)q(t)

4

∥∥∥∥∥m� [v]1/2

[v + ε]3/4

∥∥∥∥∥
2

− C(t)p(t)
4

∥∥∥∥∥∇f(θ)�m
[v + ε]3/4

∥∥∥∥∥
2

By adding all of the above computations, we get that:

0 ≤ E1(t, θ), E2(t,m, v, θ)

d

dt
E(t,m, v, θ) ≤ p(t)

4

〈
[∇f(θ)]2

[v + ε]1/2
� (θ − θ?) , θ − θ?

〉
,

if all the following sufficient conditions are satisfied

A(t) ≥ 0, A′(t) ≥ 0,(E.2)

A′(t) = h(t)B(t)(E.3)

A(t) = h(t)C(t)(E.4)

B′(t)− B(t)r(t) = −1(E.5)

B(t) ≤ C(t)
3

(
2r(t)− q(t)

2
+
h′(t)

h(t)

)
(E.6)

B2(t) ≤ C(t).(E.7)

It is now easy to see that assumption 12 implies that all above conditions are
satisfied. It is now immediate from the Fundamental Theorem of calculus
(and the fact that E2 ≥ 0) that:

f(θ)− f(θ?) ≤
E(t0,m0, v0, θ0)

A(t)
+

∫ t
t0
p(u)

〈
[∇f(θ)]2

[v+ε]1/2
, [θ − θ?]2

〉
du

4A(t)
.

Next, consider the constant:

K = sup
t∈R+

∥∥∥[v + ε]1/4 (θ − θ?)
∥∥∥2
∞

This constant is finite by Lemma A.4. We now note that:

p(t)

〈
[∇f(θ)]2

[v + ε]1/2
, [θ − θ?]2

〉
≤ Kp(t)

∥∥∥∥ ∇f(θ)√
v + ε

∥∥∥∥2 ≤ Kp(t)∥∥∥∥∇f(θ)√
v

∥∥∥∥2 .
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Now, from the expression of ODE (3.1) in v we get:

d

dt
ln(v) + q(t) = p(t)

[∇f(θ)]2

v

which implies that:

p(t)

〈
[∇f(θ)]2

[v + ε]1/2
, [θ − θ?]2

〉
≤ K

(
d · q(t) +

d∑
i=1

d

dt
ln(vi)

)
.

and it follows that:∫ t

t0

p(u)

〈
[∇f(θ)]2

[v + ε]1/2
, [θ − θ?]2

〉
du ≤

∫ t

t0

K

(
d · q(t) +

d∑
i=1

d

dt
ln(vi)

)
du

The result now follows from the fact that v(t) is bounded by Lemma A.4.

E.2. Proof of Corollary 5.4. We may also consider the slightly more
general energy functional:

E2(t,m, v, θ) =
D(t)

2

∥∥∥[v + ε]1/4 (θ − θ?)
∥∥∥2−B(t) 〈θ − θ?,m〉+

C(t)
2

∥∥∥∥∥ m

[v + ε]1/4

∥∥∥∥∥
2

,

where D(t) is a positive function. If we assume that D(t) is bounded, we
are able to follow the same reasoning of the previous section. In this case,
we need to add the sufficient condition D(t)′ ≤ 0, and equality (E.5) and
inequality (E.7) are now given by:

B′(t)− B(t)r(t) = −D(t)(E.8)

B2(t) ≤ D(t)C(t)(E.9)

In particular, this implies that:

B(t) = e
∫ t
t0
r(s)ds

∫ ∞
t
D(s)e

−
∫ s
t0
r(u)du

ds

while the equations for A(t) and C(t) are unchanged. Since D(t) has neg-
ative derivative, in general, this computation can not lead to a stronger
convergence rate than the one obtained in the previous section. Neverthe-
less, it does allow one to obtain convergence rates for parameters which are
inaccessible in the previous section. Indeed, using this more general energy
functional, we prove a convergence result for Nesterov when 0 < r < 3:

End of proof of Corollary 5.4. Let t0 = 1 and D(t) = t−α for some positive
α which satisfies 2 > α > 1− r. Then:

B(t) = tr
∫ ∞
t

s−r−α =
t1−α

r + α− 1

A(t) = C(t) =
t2−α − 1

(2− α)(r + α− 1)
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Therefore, from inequality (E.6) we get:

t1−α

r + α− 1
≤ t2−α − 1

(2− α)(r + α− 1)

(
2r

3t

)
⇐⇒ 2− 2r

3
≤ α

while from (E.9) we obtain:

t2−2α

(r + α− 1)2
≤ t2−2α − 1

(2− α)(r + α− 1)
⇐⇒ 1− r

2
≤ α

In other words, it is enough to consider α = 2 − 2r/3 for every 0 < r < 3.
This implies that f(θ(t))→ f? with rate of convergence:

o(1/A(t)) = o(1/t2r/3)

as we wanted to prove. �

Appendix F. Morse functions

Let us briefly recall some basic notions about Morse functions. We follow
[36]. We start by recalling the definition of degenerate critical point:

Definition F.1. A critical point x0 of a C2 function f : Rd → R is said to
be degenerated if the determinant of the Hessian matrix Hf (x) of f at x0 is
zero. Otherwise, x0 is said to be non-degenerated.

We are now ready to define the notion of a Morse function:

Definition F.2. A C2 function f : Rd → R is said to be Morse if all of the
critical points of f are non-degenerated.

The following is well-known properties of Morse functions:

Remark F.3 (On Morse functions).

(i) Let 0 be a critical point of a Morse function f(θ). The Morse Lemma
states that there exists a (locally defined) coordinate system x =
(x1, . . . , xd), and a number 0 ≤ r ≤ d such that:

f(θ) = x21 + . . .+ x2r − x2r+1 − . . .− x2d
in particular, every local minimum of a Morse function f is locally
convex.

(ii) Consider the space C∞(M,R) of all C∞ functions f : M → R,
where M is a compact smooth manifold. Almost every function f ∈
C∞(M,R) is Morse and, therefore, satisfies assumption 10. More
precisely, there exists a set U ⊂ C∞(M,R), which is open and dense
in the Whitney C∞-topology, such that every f ∈ U is Morse.

(iii) Let f : Rd → R be a function in C∞(Rd,R) and fix a compact set
K ⊂ Rd. Then there exists a set UK ⊂ C∞(Rd,R), which is open
and dense in the Whitney C∞-topology, such that for every f ∈ UK ,
the restriction f |K is Morse.
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