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How to Systematically Distribute Candidate
Models and Robust Controllers in Multiple-Model
Adaptive Control: A Coverage Control Approach

Stefan Kersting

Abstract—Distributing nominal models in multiple-
models applications constitutes a long standing problem.
The set of models needs to be distributed in such a way that
their corresponding controllers can stabilize all possible
system configurations in a large uncertainty set. This paper
presents a systematic solution by phrasing the distribution
as coverage control problem, in which each model covers a
subset of the uncertainty. The subsets are derived based on
a combination of the v-gap metric, which serves as a dis-
tance measure, and the generalized stability margin. Char-
acterizing coverage in terms of the v-gap also motivates
the use of H, controller synthesis to design a set of con-
trollers. The proposed algorithms are initialized with subop-
timal model configurations. Two update laws optimize the
model parameters and minimize the coverage function. The
first algorithm performs a gradient descent on the coverage
function and the second algorithm performs pairwise opti-
mizations. Due to computational complexity, a discretized
implementation is derived, which reduces the optimization
to an efficient graph search. The proposed algorithms are
evaluated in numeric benchmark examples.

Index Terms—Coverage control, multiple model adaptive
control (MMAC), robust control.

|. INTRODUCTION

NCERTAIN models are a common challenge in the con-
U trol of dynamical systems. In order to deal with small
uncertainties, research on robust control theory led to various
schemes, such as p-synthesis or H,., loop-shaping, to design a
single controller with fixed parameters, which is capable of ro-
bustly stabilizing all systems from a given uncertainty set with
specified performance properties. For large uncertainties, how-
ever, a single robust controller, stabilizing all possible param-
eter configurations, may be infeasible. Consider for instance,
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faults in the system, which result in considerable changes in
parameters and therefore render the nominal controller unable
to stabilize the faulty system. Hence, very large uncertainties
require adaptive mechanisms in order to adjust the controller in
such a way that it matches the current system parameters.

One direction followed in adaptive control is to continuously
tune the controller gains and show that adaptation causes the
gains to converge to values ensuring both stability and tracking.
Difficulties in continuous adaptation arise in case the parameter
change is large and sudden, which induces undesirable transient
effects. In order to overcome this limitation, the concept of
multiple model adaptive control with switching and tuning [1],
[2] may be helpful. By reinitializing adaptation from a finite set
of possible parameter configurations, i.e., multiple models, the
transient effects are reduced. Note that the continuous adaptation
of control gains in [1] and [2] precludes the application of robust
control concepts due to the complicated relationship between
robust and adaptive control structures.

Later, it was noted that neglecting the continuous tuning of
control gains enables the application of results from robust con-
trol in the multiple models framework. Such algorithms are re-
ferred to as Multiple Model Adaptive Control (MMAC) [3]-[5]
or Supervisory Control [6]-[10]. They have in common that the
large uncertainty set is divided into smaller subsets, such that for
each subset there exists a fixed controller to robustly stabilize all
possible systems in the subset. In [3], it was shown that, under
mild assumptions on the uncertainty, a finite set of candidate
model-controller pairs suffices to cover the uncertainty set. The
task then is to select at each time instance from the set of candi-
date controllers the most suitable one. For that purpose, a first
component of the framework characterizes the match between
the true system and the multiple models. This is often carried out
by predicting the output of the true systems with multiestimators
(observers) or a bank of Kalman filters. Then, performance sig-
nals are defined as the conditional probabilities obtained from
the Kalman filters or by suitably integrating the prediction er-
rors. Based on the performance signals, a second component,
frequently referred to as supervisor, selects, weights or blends
the candidate controllers. In early papers, the focus was on a dis-
continuous switching logic, which selects one of the controllers
and puts it into feedback with the systems. In that context,
various switching strategies haven been investigated involving
dwell-time constraints and hysteresis switching to ensure safe
switching [4], [5], [9]. Stability is concluded for constant system
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parameters if the switching logic ceases switching in finite time
and settles upon a stabilizing controller. One problem arising in
discontinuous switching schemes are transients induced by con-
troller initialization. Some results on bumpless transfer [11] and
optimal reset maps [12] aim to reduce such effects. Besides hard
switching among candidate controllers, some mixing and blend-
ing strategies have been proposed [13]-[16]. Overall, adaptive
schemes which rely on mixing or blending replace the discon-
tinuous switching logic with a smooth and stable interpolation.
While this avoids undesirable effects of the switching behavior,
such algorithms react slower to large parameter changes than
switching-based algorithms can.

The unfalsified control framework [17], [18] introduced by
Safonov et al. is closely related to MMAC algorithms in a sense
that an uncertain system is stabilized by one controller taken
from a set of controllers. The difference is that the controller
set is designed without a set of nominal models, and the con-
trollers are selected with the help of fictitious reference signals
that enable a virtual evaluation of all controllers at the same
time. Poorly performing controllers are falsified (discarded) un-
til a set of unfalsified controllers remains, which satisfy the
given performance specifications. Recent extensions by Baldi
et al. introduced more robustness in the controller design and
extended unfalsified control to multiinput systems [19], [20].

In conclusion, MMAC can be decomposed into designing
switching strategies and finding a finite set of controllers to
cover the uncertainty set. While a brief introduction into the
framework including switching will be given, the primary fo-
cus of this paper is on the systematic controller distribution.
Approximately optimal algorithms to determine the minimum
number of nominal models needed and their distribution in the
uncertainty set will be derived. Unavoidable problem approxi-
mations and assumptions leading to suboptimal solutions will
be highlighted and discussed as they are introduced.

The performance of multiple models-based algorithms de-
pends to a large extent on the selected set of candidate con-
trollers. The dominant questions in this context are: How many
candidate models are needed and how do they need to be dis-
tributed in the uncertainty set to achieve the best result? Most
publications on the topic, however, avoid the question about
how to optimally select candidate model-controller pairs. Most
often, a set of suitable candidate controllers is simply assumed
to be given [9], [21], [22] or obtained by trial and error [6].
Some authors acknowledge the design of candidate controller
sets as a challenging open problem [3], [13], [22]. Ander-
son et al. for instance conclude with “It further remains to
find a computationally efficient method to determine such a
finite set, so that the number of models needed is not overly
conservative” [3].

In spite of its importance, only a few systematic algorithms
exist for determining the model distribution in MMAC. Fekri
et al. in [13] propose an approach to determine the required
number of models in their robust MMAC algorithm, which is
essentially a greedy search, i.e., beginning from the upper bound
of the uncertainty set, the subset assigned to the first model is
extended until the desired performance is reached. At this point,
the next model is initialized and the process is repeated until the

entire uncertainty set is covered. The increased complexity of
such greedy algorithms in higher dimensional parameter spaces
constitutes the main limitation of this approach. A similar greedy
approach involving the v-gap metric [23], [24] to characterize
stability margins was proposed in [3] with the same limitations.
In [25], four heuristics also involving the v-gap metric are given
for determining model distributions, one of which is a more
systematic version of the greedy approach in [3]. A bisectional
method to find a robustly stabilizable partitioning of the initial
uncertainty set is proposed in [26]. Starting with the entire un-
certainty set as the first subset, the proposed algorithm performs
repeated bisections of all subsets for which a single robust con-
troller is infeasible. Finally, for various early algorithms which
did not incorporate the desired robustness properties, see [27]
and the references therein.

In this paper, we propose a new systematic approach for
model distribution in MMAC. In contrast to existing greedy
search algorithms, the proposed approach builds upon a formal
optimization problem formulated with tools form the robust con-
trol literature. More precisely, we make use of the v-gap metric
to characterize distances between candidate model-controller
pairs and the uncertain plant configurations. Furthermore, the
v-gap metric enables stability statements to be made. Finally, ro-
bust candidate controllers are designed with standard H . tools.
To solve the optimization problem, we propose two coverage
control-inspired algorithms. With both algorithms, two types
of optimization are practicable. Either, the number of model-
controller pairs may be reduced while ensuring stabilizability
of all systems in the uncertainty set. Or, for a fixed number
of model-controller pairs, their distribution can be optimized
to increase control performance as rated by the scalar cover-
age functional. This paper demonstrates the effectiveness of the
proposed algorithms in the context of two benchmark examples.

Note that MMAC is a highly modular framework in which
various units such as estimators, candidate controllers or the
design of switching strategies can be considered independently
and independent methodologies can be easily substituted. A
very detailed and modular treatment of MMAC is given in [28]
and [29]. Hence, the synthesis of a finite controller covering pre-
sented in this paper is quite general and can be combined with
other switching strategies or frameworks related to MMAC.
Also note that the considered question of how to divide uncer-
tainty sets also has applications in the field of linear time varying
(LTV) and linear parameter varying (LPV) systems as pointed
out for instance in [30]: “How to divide and what the number
of subsets is are interesting research questions of their own.”
Also in [31], the gap metric is used to determine the operating
points of local linear models in LPV systems. The LPV system is
then obtained by interpolating the local models. Another greedy
search algorithm to increase validity regions in LPV systems
is discussed in [32]. Besides LTV and LPV system synthesis,
another field of possible application for the proposed coverage
control algorithms is gain scheduling.

The remainder of this paper is structured as follows. First,
Section II introduces the MMAC framework. Then, Section III
revises some robust control results needed to characterize a fi-
nite controller covering of the uncertainty set and design suitable
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robust controllers. The problem of optimal model distribution
is formulated in Section IV as a coverage control problem, for
which two algorithms are proposed. Testing the proposed algo-
rithms in two benchmark simulations is the subject of Section V.
Conclusions are drawn in Section VI.

II. MuLTIPLE MODELS AND SUPERVISORY CONTROL

Consider a system G(g) with uncertain parameter vector ¢ €
R™ taking values from the compact uncertainty set Q@ C R"™.
More precisely, let the system matrices A(q), B(q), C(q) and
D(q) of the state-space realization define

o) {$=A@M+B@M

y = C(q)z + D(q)u M

and depend continuously on ¢g. Assume furthermore that the
uncertainty set Q is too large for a single fixed controller to sta-
bilize all possible configurations. A central result in the MMAC
literature [3, Th. 2.1] states that, under the mild assumption of
continuity of G(¢) in the v-gap metric, there exists a finite set
of controllers, whose corresponding set of robustly stabilized
plants covers the uncertainty set. In other words, we can always
find a finite set of candidate controllers {C;}}¥ ; such that each
system G(q) in the uncertainty set Q is stabilized by at least
one candidate controller. Let ¢ be an index taking values from
the index set Z := {1,..., N} to express which one of the N
models or controllers is considered.

One way to design the set of candidate controllers is to choose
a finite set of nominal configurations p; € Q and design a ro-
bust controller for the corresponding nominal model G (p; ). How
many and how to choose the nominal configurations will be
presented in Section IV as the main contribution of this paper.
Given the set of nominal model-controller pairs, MMAC eval-
uates which nominal model best describes the current system
input—output behavior and applies the corresponding nominal
controller. Hence, the heart of every MMAC algorithm is a mul-
ticontroller

te = Ac,, xc + Be, Y
u=Cg,, xc+Dc,,y 2

with shared state x¢, whose matrices switch between
the state-space realizations of nominal controllers C; :=
{A¢,,Bc,,C¢,, D¢} designed for the nominal models
A(pi), B(pi), C(pi), D(p;). The switching is represented in (2)
by the switching signal o(¢) : R — 7.

Various strategies for logic-based switching in MMAC have
been proposed since its establishment. We consider here the
one proposed in [4], due to its simplicity. Note that due to the
modularity of the MMAC framework, the model distribution
presented in this paper can and should also be combined with
other switching strategies. In this context, we also want to stress
that issues related to stability of the switching logic, the number
of switches and chattering effects strongly depend on the applied
switching logic and will therefore not be considered in this paper.

Fig. 1 shows the supervisor proposed by Hespanha et al. [4],
which contains the three components multiestimator, monitor-

i i +
: S J; M € :
s al” |
f Supervisor ] E [
0 |

Fig. 1. Supervisor in MMAC.

ing signal generator and hysteresis switching logic to orchestrate
the switching in the multicontroller (2). First, a multiestimator E
generates estimated system outputs g; for each nominal model
G(pi),i € T based on the measured control inputs u and outputs
y of the uncertain system. With the estimated system outputs g;,
estimation errors

e =9 —y 3

are formulated. Inside the monitoring signal generator M, these
estimation errors are translated into performance signals .J; > 0
which express the fitness of the nominal models. A popular
choice is to consider a weighted integral over the estimation
errors, such as

50 = acl Wett) + [ LT () (@)
0

with design constants «, 3,1 > 0. The third component, called
switching logic S, generates the switching signal o(t) based
on the performance signals. The simplest switching logic is to
select the nominal controller with the best performance, i.e.,
smallest error signal. With noisy measurements, however, this
causes too frequent switching, which motivated the hysteresis
switching logic in [4]. Suppose that the last switch occurred at
time ¢; and the switching signal is now o(t) = k € Z. Under
hysteresis switching, the value of o remains fixed until a time
instance tj, 1 > t; + € is reached, at which

(1 +h)min Ji(tj41) < Jy(tj+1) ©)

with hysteresis constant 2 > 0. The dwell ¢ is then bounded
below by a finite value. At ¢, 1, the switching signal takes the
value o (t) = arg min;c7 J; (¢;+1) until the hysteresis switching
condition (5) is satisfied the next time.

The stability proof for the interconnection of the uncertain
system (1) with the state-shared multicontroller (2) under hys-
teresis switching (5) is by now well understood. It must first
be shown that for a constant parameter vector ¢, the supervisor
ceases switching in finite time with a finite number of switches.
Then, the controller on which the supervisor settles must be
confirmed to stabilize the linear time invariant system G(q). For
continuous uncertainty sets, convergence to a single most ap-
propriate controller is not guaranteed under the above hysteresis
switching logic. Hence, additional measures need to be taken on
the side of the supervisor such as hierarchical hysteresis switch-
ing [9] or continuous mixing of nominal controllers [14]. As
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details on the supervisor are not in the scope of this paper, we
refer the interested reader to [4], [6], [7], [9] for more details.

[ll. RoBUST CONTROLLER DESIGN

In order to implement MMAC, one needs to ensure that there
exists a stabilizing controller for each plant in the uncertainty
set. Such guarantees can be given with results from the robust
control literature [23], [24], [33]-[36], to be presented in this
section. First, we revise how to express distances between linear
time invariant systems in terms of the v-gap metric and how
these distances relate to the stability margin of nominal model-
controller interconnections. Afterward, the calculation of the
best possible stability margin for a given system is described.
Finally, the synthesis of a robust controller with desired stability
margin is detailed.

A. Characterizing Stabilizable Systems With the
v-Gap Metric

The v-gap metric was introduced to the field of robust control
by Vinnicombe [23], [24] in the 1990s, providing a measure
of the maximum distance between a nominal and a perturbed
system under which the controller, which was designed for the
nominal system, still stabilizes the perturbed system. For the
supervisory control setting, it is necessary to determine those

systems
G(s)=C(sI—A)"'B+D (6)

from the uncertainty set, which are sufficiently close to the :th
nominal model

Gi(s) = @)

and that they are stabilized by the corresponding controller C;.
Here, I is the identity matrix of matching dimension.
The v-gap between G; and G is defined as

Ci(sI —A) ' B + D,

0,(G:,0) = || (1 +66) G- a1+ G:6)F||  ®
given that the following winding number conditions':
det(] +G"G;)(jw) #0 Vw and
wno det(I + G*G;) + k(G;) — k(G) =0 )

are satisfied [23], where G* denotes the complex conjugate of
G. If the conditions are not satisfied, then let 0, (G;,G) = 1.
With the definition above, the value of ¢, is between O and 1.
Systems that are close to each other in the v-gap metric have a
value close to 0, whereas systems that are very different have a
maximum distance of 1. Efficient implementations of the v-gap
metric are available, such as the function gapmetric in the
Robust Control Toolbox of MATLAB.

The most important property of the v-gap metric is related
to the generalized stability margin bg, ¢, of a nominal model G;

Here, wno is the winding number evaluated on the standard Nyquist contour
indented at the imaginary axis poles of G and G;. The number of poles of a
transfer function G in the open right half-plane are denoted by «(G).

with the nominal controller C; in the feedback loop. If the feed-
back interconnection (G;, C;) is stable, the generalized stability
margin is defined by

-1

b%.,C, = H [%:| (I—Cigi)_l [76, I]‘ (10)

o0

otherwise bg, ¢, = 0. The following statement reveals the im-
portance of the v-gap metric [23]: Given a nominal model G;,
a nominal controller C;, and a number [, then (G,C;) is sta-
ble for all systems G, satisfying 0, (G;,G) < [ if, and only if,
bg, ¢, > (. That means the nominal controller C;, which in feed-
back with the nominal model G; achieves a generalized stability
margin greater than (3, also stabilizes all systems G located in
an (-radius (in the v-gap metric) around the nominal model G;.

B. Determining the Maximum Radius
of Stabilizable Systems

Now, given a nominal model G;, two useful questions may be
asked: What is the most robust controller in the v-gap metric for
this system? And, what is the maximum generalized stability
margin that can be achieved? To answer these questions, let G;
be written in terms of the normalized left coprime factorization
(LCF)

G, = M;'N, (1)
where normalization means
N;N!+ M;M =1 (12)

which is equivalent to the matrix [N;, M;] being coinner. (See
[33, Lemma 2.1] for how to calculate a normalized LCF).
The most robust controller is found as the solution to the
following H..-optimization problem [33]:
2
= (1 [ )

_1
. 2
inf
C.

i

[¢]0-ser

(13)
where || - || 7 is the Hankel norm. Denote the obtained infimum
as g, min and note that it also yields an upper bound for the
achievable generalized stability margin of the system G;. In [33]
and [34], it is shown that

[5)e-ser

_ H {gj } (I - C;)l [~ 1] HOO (14)

which is due to the fact that [M;, N;] is coinner and that the M,
norm is invariant under right multiplication by coinner functions
[36, Ex. 9.7]. Hence, the maximum generalized stability margin
for a system G;—as considered in the v-gap metric—is

bgumax = ’yg_,l.,min = (1 - H [NI MJ Hi1)5 > 0. (15)

C. Designing Controllers With Specific Stability Margin

Note that the application of the most robust controller is often
undesirable as controller synthesis is a tradeoff between robust-
ness and performance. Hence, the most robust controller may
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not deliver the desired performance. Assume therefore that a
desired stability margin bg, des < bg, max 1S chosen by the de-
signer and a suitable controller satisfying this stability margin is
to be found. By reducing the desired stability margin, the result-
ing controller can be configured for improved performance, but
guarantees closed-loop stability only for smaller perturbations
of the nominal system.

In [33], suitable controllers are synthesized by solving a Ne-
hari extension problem. Here, we follow the approach presented
in [36, Sec. 9.4]. Given a minimal state-space representation
[A;, B;, C;, D;] for G; and a desired threshold g, des > Vg, min>
then let

Ry :=I1+D;D/, S;:=I1+D/D; (16)
and solve the two algebraic Riccati equations
(A — B;S;'D]C))" X, + X, (A, — B;S;' D] C)
- X;B;S;'B/ X; + C/R;'C; =0 (17)
and
(A, = B,S;,'D/ C)) Z, + Z; (A — B;S;' D[ C;)
~ Z;C/R7'CiZ; + B;S;'B =0 (18)
for the unique matrices X; and Z;. With
F;:=-87' (D/C; + B/ X;) (19)
Li = (1 =G, )] + Xi Z; (20)

the state-space realization of a controller C; satisfying b, ges =
Vg, 1 des 18 given by

Ac = A + BiF; + 796, aes (L) Z:C (G + D F)
BCi = ’75, ,des(LiT)_lziCiT
Ce = B'X;

i 2

D¢ :=—D,..

i K3

21

Finally, note that the synthesis of robust controllers with spe-
cific stability margin can be combined with performance criteria
in the form of loop shaping. An introduction on how to include
loop shaping ideas into the H,-controller synthesis above is
given in [35] and [36, Sec. 9.4.2].

To conclude the revision of tools from the robust control
literature, let us repeat the three essential findings which will
enable optimized model distribution in MMAC. First, given a
nominal model G;, one can determine its maximal stability mar-
gin bg, max With (15). Second, a nominal controller C; for G;
satisfying a specific stability margin bg, ges < bg, max can be
synthesized according to (21). Third, the fact that C; stabilizes
all systems G for which 6, (G;, G) < bg, ¢, paves the way to par-
titioning the uncertainty set into various subsets, each associated
with one nominal model-controller pair. Previous approaches to
MMAC such as [3], [13], [25], [26] incorporate the same idea
to investigate—based on the v-gap metric—whether the chosen
set of nominal controllers can stabilize all possible system con-
figurations. So far the focus was, however, only on providing

stability guarantees. In the next section, we present a new al-
gorithm, which not only ensures the existence of a stabilizing
controller for each system configuration but also provides an
optimized partitioning of the uncertainty set in a sense that less
nominal systems are needed.

IV. SYSTEMATIC MODEL DISTRIBUTION THROUGH
COVERAGE CONTROL

In this section, the optimal distribution of nominal models is
phrased as a coverage control problem. The coverage control
problem is extensively studied in the field of multiagent sys-
tems in the robotics community, where a set of robots/agents
autonomously covers an area of interest for monitoring pur-
poses [37]-[40]. Most algorithms build upon the classic work
by Lloyd [41] on optimal quantizer selection, which was first
applied to the distributed robotic coverage problem in [37]. Ini-
tial algorithms were concerned with convex environments and
the Euclidean distance. More recent works focus on coverage
control algorithms for nonconvex domains or manifolds and ar-
bitrary distances [38]-[40] as well as heterogeneous agents [42]
(e.g., robots with different sensing capabilities). For MMAC,
we transfer the coverage-control framework from the physical
space, in which robotic agents operate, to an abstract space in
form of the model uncertainty, in which the nominal models need
to be placed. In this analogy, we replace the target environment
of the robotic agents by the uncertainty set. The abstract coun-
terpart to the robotic agents are the nominal model-controller
pairs, which will therefore also be referred to as agents. Dis-
tances in the MMAC setting are measured in terms of the v-gap
metric instead of the Euclidean distance.

This section begins with the formulation of the coverage
control optimization problem in Section IV-A, followed by a
continuous gradient descent approach in Section I'V-B. For com-
putational reasons, a discretized version of the coverage control
problem is introduced in Section IV-C. Then, a first algorithm
performing a gradient descent on the discrete graph is derived
in Section IV-D. Afterward, a second algorithm, which is based
on pairwise optimizations, is presented in Section I'V-E. Finally,
a brief summary in Section IV-F lists potential sources for sub-
optimality.

A. Continuous Coverage Control Problem

Consider the uncertainty set @ C R™ in which the uncertain
parameters g of the controlled system reside. Hence, each g € Q
represents a potential configuration of the system. We assume
that the uncertainty set is characterized by a convex polytope.”
In other words, there exist known bounds on the entries of the
parameter vector ¢, €.2., ¢(1),min < (1) < q(1),max- NEXt, let the
distribution density function ¢ : Q — R introduce a notion of
relevance/importance of each configuration in the set Q. This
importance can be seen as some prior on the probabilities of
certain parameter configurations. Thus, more likely or more

>The assumption of convex uncertainty sets is made for simplicity. In case
Q is nonconvex or even unconnected, one may consider a convex hull 0 of the
original uncertainty set and assign a distribution density function of zero to all
configurations which are not from the original set, i.e., ¢(¢) =0 Vg ¢ Q.
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q2) A

>

q(1)

Fig. 2. Visualization of the coverage problem.

important parameter configurations should be assigned a larger
value in ¢. If all configurations are equally important, let ¢(q) =
1Vq € O.

The goal in MMAC is to stabilize all possible system config-
urations from the uncertainty set Q by a total of N € N nominal
systems and their associated controllers. We refer to these sys-
tems as nominal system configurations p; € Q and let all chosen
configurations be combined in the set P = {p1,...,py }. It is
desirable to distribute the models in such a way that for each
potential system configuration ¢ € Q there is at least one model
p; € P whose controller stabilizes the system g. Let this rela-
tionship be expressed by a partitioning W = {W, ..., Wnx}
of the uncertainty set Q. The partitions are such that their union
corresponds to the complete uncertainty set UY_, W, = Q, such
that there is no overlap W, N W, = 0,7 # j, and such that
each partition is nonempty W; # () and connected Vi, j € Z :=
{1,..., N}. Hence, each system configuration ¢ € Q belongs
to just one partition W; and its nominal model configuration p;.
The controller associated with the model p; shall be responsi-
ble to stabilize all potential systems g € W;. Fig. 2 visualizes
an example of how the uncertainty set Q of a two-dimensional
parameter vector is covered by three models and their partitions.

Next, introduce a metric d(q,p;) : @ x Q@ — Rs( which de-
fines the distance between a configuration ¢ and the nominal
model configuration p;. As pointed out above, the v-gap met-
ric in (8) is ideally suited for such distance measures for con-
trol design applications. Hence, let d(q, p;) := 6, (G(q), G(pi))-
It is furthermore well known that the ., performance of the
closed-loop system, whose controller was designed for the nom-
inal configuration p;, degrades with growing distance from the
nominal configuration. Let this relationship be specified by a
function f(d) : R — Rxq, which we refer to as the inverse con-
trol performance. Let f(d(g, p;)) be strictly increasing with the
distance d(q, p;). Hence, a small value in f(d(q,p;)) indicates
that the controller designed for p; performs well for g. A large
value on the other side indicates that the system ¢ cannot be ro-
bustly stabilized by the nominal controller for p;. The increase in
f with decreasing performance motivates the name inverse con-
trol performance. A common choice for f in coverage control
with homogeneous agents/robots is f(d) = d>.

In the present setting of coverage control for model distribu-
tion in MMAC, however, we observe that the nominal models
(i.e., agents) may be very heterogeneous due to varying stability
margins. Take for instance two nominal models p; and ps with
different stability margins, e.g., bg, max < bg, max. In this case,
a perturbed system G(q) may be stabilized only by the nom-
inal controller associated with py even if 6,(G(q),G(p1)) <
6,(G(q),G(p2)), given that 6,(G(q),G(p2)) < bg, max and
0,(G(q),G(p1)) > bg, max- In order to accommodate this het-
erogeneity, we apply ideas presented in [42] and introduce the
stability-distance

dS (q7pz) = 5u (g(Q)7 g(pz)) - bgi ,max

which essentially incorporates the maximum stability radius
into the distance measure. Compared to the distance d(q, p;),
the stability-distance dg (g, p;) contains more information in a
sense that systems ¢ with dg (g, p;) < 0 can, and systems with
ds(q,p;) > 0cannot, be stabilized by the (most robust) nominal
controller C; with stability margin bg, ax. In order to reflect the
instability for dg > 0, the inverse control performance is defined
to be

(22)

flds) = e

which grows exponentially with dg and the scalar design pa-
rameter I' > 0.

With the above definitions, introduce the following cost func-
tion, which rates the expected performance of the distribution
‘P and the partitioning W

(23)

N
HPW) =3 [ fstap)oti @

This cost function is also referred to as coverage function as it
indicates how well the set of model-controller configurations P
covers the considered parameter uncertainties Q partitioned by
W. The lower the cost H, the better are the models distributed
and the better is the expected control performance. Hence, the
goal of optimally distributing the nominal models p; is formu-
lated as

o . 5
ml%{IVI\I/IZeH(P,W) (25)

It is well known [42], [43] that the so-called Voronoi dia-
gramsV = {Vy,...,Vx} with

Vi(P) :={q € Q :ds(q,pi) <ds(q,p;)Vj # i}

constitute the optimal choice for VV; given the model configu-
ration P. A Voronoi diagram is a partitioning of Q in which the
elements ¢ € V; have the closest stability-distance to the nomi-
nal model p;. As V is a function of all nominal models in P, it
suffices to optimize the parameter configuration P and apply the
optimal Voronoi diagrams, i.e., Hy(P) = H(P,V(P)), which
simplifies (25) to

(26)

minimize Hy(P). 27)

Above, it was assumed that the partitions are connected. In
order to ensure this property for the Voronoi diagrams V;, an
additional assumption needs to be imposed on the system. That
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5,(G(p),9(q)) in P by
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pi=—-p—, t€Z={1,...,N} (29)
,,,,,,,, 8]?7;

p q2 q1

Fig. 3. While the first system (green solid line) satisfies the assumption
of the monotonically increasing v-gap along the shortest path between p
and ¢, the second system (red dashed line) does not, which may result
in additional nominal models.

is, the system G and its uncertainty set Q are such that the
distance in the v-gap metric 9, (G(p), G(g2)) is monotonically
increasing for all points ¢» along the shortest path in Q between
p and q;. Fig. 3 visualizes this property for the scalar case. This
assumption is hard to validate in practice due to the possibly
complicated relationship between a parameter g and the v-gap.
Note however that violating this assumption only leads to a mi-
nor disadvantage in the form of an increased number of nominal
systems.

In practice, the number /N of nominal model-controller pairs
in the optimization problem (27) is usually unknown and must
also be determined. For this purpose, note that finding the op-
timum in (27) alone does not ensure that each configuration ¢
is stabilized by at least one nominal controller p;. Hence, the
additional inequality constraints

minds(q,pi) <0 Vg€ Q (28)
need to be imposed and checked after optimization. Hence, the
minimum number of required model-controller pairs may either
be determined by increasing N from N = 1 until the optimum
in (27) satisfies the constraints (28). Otherwise, if a conservative
number N is known, one can start from N = N and decrease
N until (27) cannot be solved without violating (28).

An important assumption regarding the partitions is that the
switching logic selects for a system ¢ € V; the nominal con-
troller p; Vi € 7. If this is not the case, the obtained performance
is at best suboptimal, i.e., a model with greater distance in the
v-gap metric and therefore worse control performance would be
chosen. If p; was the only nominal controller to stabilize g, this
may even cause instability. This assumption is to be ensured by
the switching logic, which is not discussed here. Our primary
concern is to obtain a finite covering for which there exists at
least one stabilizing controller for each system in the uncertainty
set.

B. Gradient Descent

As shown in the coverage control literature [37], [39], [40],
the coverage problem (27) can be solved by a distributed gra-
dient descent, in which each agent (here each nominal model)
only needs to know the location of the agent in its neighboring
partitions. Let P be initialized with some initial models p; (0)
and let the uncertainty set be partitioned by the Voronoi dia-
grams V;. Then, a gradient-descent approach for (27) moves
each model p; in the direction of the steepest descent given by

377“‘ This motivates updating the nominal model parameters

with scaling constant p > 0. Note that the domains of integration
in (24) depend on V;, which in turn depends on the configura-
tions in P. Hence, the update p; would intuitively depend not
only on p; and V; but also on neighboring partitions. However,
with differentiation under integration it was shown in [42] that
the gradient with respect to the ¢ th model reduces to

OH [ Of(ds(q,pi))
- /V D g)ag

_ / 8f(d5' (Q7p2)) (ad(Q7p2) - 8bg,,max
v, 0ds(q,p:) Ip;i Opi
Note that the integral in (31) requires evaluating the gradient
of the distance metric, i.e.,

(30)

) #(q)dg. (31)

ad(‘]? pz)
Ip;

for all ¢ € V;, which is computationally expensive. In order to
reduce the computational load, it can be exploited that the gradi-
ent (32) is the same for all other points 7 on the shortest path—in
terms of d(q, p;)—between ¢ and p; [39]. That means, moving
p; toward q along the shortest path causes equal reduction in
d(q,p;) and d(n, p;). Hence, for each point ¢, consider another
point 7(¢g) € Q in the vicinity of p; which lies on the shortest
path between p; and ¢, and exploit that

9d(g,pi) _ 0d(nlq)pi) (33)
opi Ipi
In that case, the evaluation of the gradient at a lot of points g is
reduced to the evaluation of the gradient at fewer points 7)(q).

The gradient (31) is then given by

OH _ af(dS) ad(n((])»])?) _ 8bg,,max
Op; v, 0ds Opi Opi

(32)

) Ha)dg.

(34
Using the gradient descent (34) with Voronoi diagrams (26)
and the v-gap metric yields a modified application of the
continuous-time Lloyd algorithm [41] for optimal model dis-
tribution in MMAC. The derived algorithm updates an initial
model configuration P and results in an optimized coverage
H(P,V). The obtained optimum is a so-called Centroidal Con-
figuration, i.e., a configuration (P,V) in which P gives rise
to the Voronoi diagrams )V and at the same time each p; € P
corresponds to the optimal location in V;. Note that centroidal
configurations are not unique and depend on the initial configu-
ration of P. Therefore, the obtained optimum is only local and
the algorithm may have to be initialized from various initial
configurations in order to find the global optimum. For more
details on centroidal configurations, refer to [44].
Unfortunately, the application of the modified Lloyd algo-
rithm remains computationally expensive due to the numerous
evaluations of the v-gap metric in form of dg under the integral
in (34). Therefore, in the next step, the uncertainty set is quan-
tized, which enables a more efficient graph-based realization
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Fig. 4. Visualization of the discrete Voronoi partitioning obtained by

Algorithm 1. The selected nominal vertices P, in (a) are extended and
yield the partitioning shown in (b). (a) Initial setting. (b) Discrete Voronoi
partitioning.

of the coverage problem. This step is in line with algorithms
proposed in [38] and [39], where the consideration of the path-
length metric in nonconvex environments requires quantization.

C. Coverage Control as Graph Search

Let the uncertainty set Q be approximated by a finite set
of models q,, k=1,...,s as shown in Fig. 4(a), where
the gray circles correspond to models q;. These models can
be understood as a quantization of the original uncertainty
set. Next, define an undirected weighted graph G(Q, E,d),
whose vertex set Q(G) is the set of quantized models, i.e.,
Q(G) :={q,...,q,}. While g, refers to a vertex in the graph,
let ¢(q;) € Q refer to the continuous parameter associated
with the vertex ;. Let neighboring vertices be connected by
a weighted edge in the graph [see Fig. 4(a)]. Hence, the edge
set of the graph is F(G) C Q(G) x Q(G). Define the neigh-
borhood of g, as N(q,) = {q, € Q(G) : (4, q)) € E(G)}.

The considered metric d serves as the weight map on the edges
d: E(G) — R;. The edge weights thus introduce the metric
distance between adjacent vertices. In other words, if two nodes
0;,9; € Q(G) are connected by an edge, i.e., (q;,q;) € E(G),
then the connecting edge takes the weight d(¢(q; ), ¢(q;)). Intro-
ducing the graph greatly reduces the computational complexity
in a sense that the v-gap metric only needs to be computed once
for each edge during initialization as compared to various com-
binations dg (¢, p;) under the integral in (34) at each iteration of
the gradient descent.

The distance between two arbitrary vertices of GG is defined in
terms of paths. A path in G is a sequence of vertices, in which
every pair of consecutive vertices belongs to the edge set F(G).
The sum of the edge weights along a path defines the weight
of the path. The distance between two vertices ;, and q; in G
is given by the weight of the path with the lowest weight and
we denote it by d¢ (q;,, q;). As G is undirected, it follows that
de (9, q;) = de (9, )

The graph-based representation above restricts the metric d
from the continuous uncertainty set Q to the discrete vertex set
Q(G). Doing so is motivated by the computational complexity in
the continuous space. The restriction allows for a more efficient
graph-search on G. It must be noted, however, that this quantiza-
tion essentially yields an approximation of the original problem.
First, quantization restricts the choice of nominal models to ver-
tices of the graph which may not contain the optimal configura-
tions. Second, determining distances on the graph by summing
up the edge weights of the shortest path yields an approxima-
tion. Due to the triangle inequality, it follows that the distance
on the graph is always greater or equal to the distance between
the same points in Q, i.e., d¢ (qQ;, P;) > d(q(qy), ¢(p;)). While
the error associated with the graph-based approximation can to
some extend be regulated by the density of quantized models q,,
the quantization nonetheless remains a tradeoff: Accuracy and
elegance of the continuous representation against computational
efficiency of the discrete graph.

For the coverage problem, select N nominal vertices p;,1 =
1,...,N and refer to P = {py,...,py} as the set of nominal
vertices. Furthermore, let G' be partitioned into N subgraphs
W, C G with the same intention as in the continuous uncertainty
set. That is, the nominal models p; = ¢(p; ) should be distributed
in such a way that their controllers stabilize all systems asso-
ciated with the vertices in the partition W;. As in partitioning
of the continuous uncertainty Q, the partitions W, are such that
their union corresponds to the complete graph UN W, = G,
such that there is no overlap W; "W, = ), 7 # j and such that
each partition is nonempty W; # () and connected.

In order to introduce the discrete counterpart to the Voronoi
diagrams, let the stability-distance on the graph G be

dG,S(q, pz) = dG (qa pz) - bgz ,max (35)

where bg, max 18 the maximal stability margin for the nominal
model associated with ¢(p;). Then, a Voronoi diagram for G is
given by the subgraphs

Vi(P) = {Qk €Q:dg s(qs,P;) <dg.s(qQy:P;) Vi # Z}
(36)
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For one of the proposed algorithms, a notion of adjacent
partitions is needed. Two partitions W; and W; with ¢ # j are
adjacent if there exist two vertices q,, € W; and q; € W; that
are connected by an edge in the graph (q,,,q;) € E(G).

Next, we rewrite the coverage function (24) in terms of G.
Replacing the integration over W; by summation over W; yields
the discrete coverage function

H(P, W) = Z Z f(dw, s (a5, p;)) o(ay)-

(37
i=1q,eW,
For later analysis, we refer to
Hip, W) = Y f(dw, s(q.p,)é(ar)  (38)

q. €W;

as the coverage of a single partition.

Finally, let us revise two notions of optimality and their
relationship derived in [38]. First, a configuration (P, W) is
called Centroidal Configuration, if W is the Voronoi dia-
gram according to (36), i.e., W; =V;(P) Vi, and if p;, =
arg min,cy, H(r,V;) Vi. Second, a configuration (P, W) is
called Pairwise-Optimal Configuration if, for every pair of
adjacent partitions W; and W; with nominal vertices p; =
arg min,y, H(r,W;) and P, = arg miny, H(r,W;), the
value of the coverage function is lower than for any other two-
partition of the union of W; and W, i.e.,

H(pzawz)+|:|(pjawl) SH(p(zywa)+H(pb7Wb) (39)

with P.,Py € W; N W] and Wu,Wb cW;n Wj and W, N
W, = (0. An intuitive understanding for the Centroidal Con-
figuration is that W is the optimal partitioning for P, and P
is the optimal choice of nominal models for the partitioning
W. Hence, it turns out that Centroidal Configurations consti-
tute (local) minima of the discrete coverage function (37). The
pairwise-optimality adds that for every union of adjacent par-
titions, one cannot find a better partition. It follows that every
Pairwise-Optimal Configuration (P, W) is at the same time a
Centroidal Configuration [38, Prop.2.8]. The opposite is not
true.

With the preliminaries discussed so far, we are ready to
present two algorithms inspired by [38] and [39] to solve the
coverage problem (25) for near optimal model distribution in
MMAC.

D. Discretized Llyod Algorithm

Building upon ideas presented in [39], we propose a modifi-
cation of Dijkstra’s algorithm [45], [46], which performs both
the partitioning with Voronoi diagrams (26) and the gradient
descent (34) on the discrete graph GG. The pseudocode of the
proposed approach is given by Algorithm 1 with explanations
given in the following paragraphs.

First, the partitioning of Q(G) in Algorithm 1 is straight-
forward and essentially requires three parameters per vertex:
The value of 7(q;,) determines the closest nominal model, and
9(q;) and gs(q; ) determine the distance and stability-distance
along the shortest path between g, and the vertex of the closest
nominal model. Initially, the algorithm assigns infinite distances

Algorithm 1: Voronoi diagram & Gradient Descent.

1: forallq, € Q(G) do o> Initialization
2: Set7(qy),n(q;) := 0, and g(q;), gs(qy,) := o0
3: end for

4: for allp;, € Pdo > Init. vertices of nominal models

5: Setg(p;) :=0,and gs(p;) := —bc, max

6: Set7(p;) :=p,;,and Vy(p;) :=0

7.  forallqg, € N(p;)do

8: Set7(qy) == qy.

9:  end for
10: end for
11: Q:=Q(G) > List of not-yet-extended nodes

12: while Q # 0 do
13:  Getr:= arg ming cq gs(dy)
14: LetQ:=Q\r

15:  forallw € N/(r) do

> Extend to node r

> Update adjacent vertices

16: Let ¢’ := g(r) + d(r,w)
17: Let g == ¢ — bGT(T),max
18: if g5 < gs(w) then
19: Set g(wW) := ¢', and gg (W) := gk,
20: and 7(w) := 7(r)
21: if 7(r) # () then
22: Set n(w) := n(r)
23: end if
24 end if
25:  end for
26:  if n(r) # 0 then > Contribution of r to gradient
27: Set ‘

V(T (1) = Vu(r(r) + L)

5 lds=gs ()
9d(n(r),pi) AbG ; max
(E)p, pi=7(r) 2 pi=7(r) (b(r)

28:  endif

29: end while

30: forallp, € P do

31:  Replace p; by
arg maxycy(p,) — V(D) - (@(W) — (p;))

32: end for

> Choose next nominal models

to each vertex in line 2 and leaves the closest nominal model
unspecified. Afterward, the values of nominal model vertices
are overwritten in lines 5 and 6 with zero distances, negative
stability-distances, and their own indexes (a nominal model is
naturally closest to itself). The while-loop from lines 12 to 29
describes the main part of the algorithm. At every iteration,
the vertex with the lowest gs(q,,) (initially one of the nominal
model vertices) is chosen and the distance of its neighbors is
calculated by adding the weight of the connecting edge (see
line 16). Based on the stability-distance obtained in line 17, the
algorithm reasons in line 18 whether the currently expanded
node is to be added to the same nominal model as its source. By
doing so, the set of vertices assigned to one model expands from
the nominal model vertex and step by step replace all initially
infinite distances by the true values. The wavefronts, expanding
from different nominal vertices, collide at the boundary of their
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Voronoi diagrams. In Fig. 4(b) for instance, the values of 7(q,)
obtained with Algorithm 1 are included as color-coded circles.
Algorithm 1 also performs a discretized version of the gradi-
ent descent (34), for which a few more comments are needed.
As was concluded by (33), it is beneficial (from a computational
point of view) to express the partial derivative of the distance
in terms of a reduced set of points 7 in the vicinity of p;. In
the graph-based representation, the set of neighboring vertices
to p; constitutes a suitable choice for 7. During the expansion
phase of the Dijkstra algorithm one thus has to keep track of
which vertex in the vicinity of p; lies on the shortest path to a
vertex (. For this purpose, the variable 7)(q,, ) assigns to each
q;; the unique vertex which is: 1) in the neighborhood of its as-
sociated nominal vertex 7(q, ), i.e., 7(q;) € N(7(q;.)), and 2)
on the shortest path between q;, and the nominal vertex 7(q, ).
All possible vertices, that 7(q;,) can point to, are highlighted in
Fig. 4(b) by circles with black filling. With these definitions in
mind, the continuous gradient in (34) is approximated by

uip) = 3 2s)

od
q; €V; s

ds=de s (q;,p;)

. ad(n(qk)apt) _ abGi,max
opi opi

)o@ @
Note that for a specific p; the partial derivative % is now
restricted to a finite set of cardinality [N (p;)|. It is therefore
reasonable to compute and store all possible values during the
initialization period of the graph.

Analyzing the details of Algorithm 1, one can see the initial-
ization of vertices that qualify as 7 in line 8. Afterward, during
the expansion period, line 22 determines 7(q;, ) for each vertex.
Based on 7(q,,), line 27 calculates the contribution of vertex q,
to the gradient in (40). Finally, the best next vertices are deter-
mined in line 31 by evaluating the benefit of all possible steps
(induced by the grid) in terms of the approximated gradients
VH(P;)-

Algorithm 1 causes the nominal vertex set P to converge to
a centroidal configuration, which corresponds to a local mini-
mum. As the convergence of the gradient descent is determin-
istic, the same initial configurations will always result in the
same centroidal configuration. Hence, the algorithm may have
to be executed multiple times with different initial configura-
tions in order to determine the global optimum. In the second
algorithm, which is proposed next, the set of minima to which
the algorithm converges is reduced by seeking pairwise-optimal
configurations.

E. Pairwise-Optimal Partitioning Approach

In the following, we present a second approach to optimize
the distribution of nominal vertices p, in the vertex set Q(G),
which is a modification of the gossip approach presented in [38].
The task in [38] is to monitor a nonconvex environment with a
team of robots. It is proposed to use the sparse communication
(gossip) between adjacent robots in order to compute pairwise
optimal configurations. For the coverage problem in this pa-
per, we can neglect the sparse communication and consider a

Algorithm 2: Pairwise-Optimal Partitioning.
1: Initialize p, and let W; :=V,;(P),i=1,...,N
2: repeat

3:  Randomly choose p;, P, with adjacent W;, W;
4. LetU := Wl U Wj

5:  Let S be alist of all pairs of vertices in U

6:  Setp; :=p;, W, =W,,and p; :=p;, W, =W;
7. forall (q,,q,) € S do

8: Compute partitions

o: W, :={qeU:dy(q,9,) <dv(a.q,)}
10: W, :={qeU :dy(qa,q,) >du(a,q,)}
11: if H(q,,W.)+H(q,,W;) <

H(p;, W;) +H(p;,W;) then

12: Setp: :=q,, W, :=W,,
13: and p; == q;, W, :=W,
14: end if

15:  end for

16: until pairwise-optimal partition for P, W is reached

centralized version of the gossip approach. The pseudocode is
given by Algorithm 2 with additional explanations given in the
following paragraphs.

The goal of Algorithm 2 is to decrease the coverage function
(37) by optimizing pairs of adjacent partitions. Hence, after the
initial distribution and partitioning in line 1 of the algorithm, a
pair of adjacent partitions is chosen at random in line 3. Next,
the adjacent partitions are combined in line 4 before all possible
combinations of nominal vertices are listed in .S in line 5. Then,
the code from lines 7 to line 15 iterates over all possible vertex
combinations and determines the corresponding coverage func-
tion values. The current choice of nominal vertices is replaced in
lines 12—13 by a new combination that leads to a lower value in
the coverage function. This corresponds to determine the two-
pair optimal partition for the union of the adjacent partitions
W; and W;. Then, the nominal vertices and partitions of the
considered partitions are updated with the obtained optimum.
This update always yields an improved coverage if p;, p; and
W;, W, are not yet pairwise optimal. Repeating this process
for a random sequence of pairs of adjacent partitions ultimately
results in a pairwise-optimal configuration. Hence, the algo-
rithm terminates in line 16 if the nominal vertex set P and the
corresponding partitions W form a pairwise-optimal partition.

Note that the computational complexity of the pairwise opti-
mization in Algorithm 2 grows with the number of combinations
in S. Hence, the finer the quantization of the uncertainty set Q,
the more combinations need to be evaluated. For intermediate
iterations, this effect can be circumvented by returning subopti-
mal improvements.

In summary, it can be noted that Algorithm 1 requires less
computational power (O(kn?) per iteration, where k is the av-
erage number of quantized models per dimension), but provides
only local optima in the form of Centroidal Configurations.
Algorithm 2 on the other side converges to pairwise-optimal
configurations, which forms a subset of the Centroidal Con-
figurations with reduced values of the coverage function. This
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reduction comes at the cost of increased computational com-
plexity (O(k*n*)). A combination of both algorithms allows
us to exploit their advantages while attenuating their disadvan-
tages. In the combined algorithm, apply the gradient descent of
Algorithm 1 until a Centroidal Configuration is reached. Then,
apply Algorithm 2 to validate whether the obtained solution is
pairwise-optimal. If not, continue the gradient descent on the
intermediate result returned by Algorithm 2. Repeat these steps
until Algorithm 2 confirms pairwise optimality of the final con-
figuration. While the curse of dimensionality may not be avoided
in the presented algorithms, the computational load may be kept
low by carefully increasing the number of quantized models &
per dimension of the uncertainty set.

F. Sources of Suboptimality

In this section, we have presented two algorithms to optimize
the distribution of candidate model-controller pairs in MMAC.
While both algorithms are based on the rigorous coverage func-
tion from Section I'V-A, various pragmatic considerations lead to
problem approximations, which ultimately render the obtained
solutions only near optimal. In order to make these sources of
suboptimality transparent, a short summary is in order.

The central source for suboptimality is quantization, which
immediately restricts the search space to suboptimal configu-
rations. By making the quantization finer, however, the corre-
sponding error can be reduced. Also measuring distances on
the graph by summing edge weights yields two sources of sub-
optimality. First, there is an error due to the triangle inequality,
which again may be reduced through finer quantization. Second,
the obtained distance is only accurate under the assumption that
the actual v-gap is monotonically increasing along the short-
est path between two models. If this assumption is violated,
the partitions V; turn out to be unconnected. The presented
algorithms would then assign a different partition V; to each
of the connected subsets, which results in a suboptimal num-
ber of models. This problem may not be overcome with finer
quantization. Overall, the quantization step was made to tradeoff
computational load and accuracy of the obtained solution. While
quantization enabled the derivation of a systematic approach for
optimized model distribution in MMAC, the tradeoff subsists in
terms of quantization fineness and computational load against
suboptimality.

Furthermore, both the gradient descent and the pairwise op-
timization only guarantee convergence to local minima. Hence,
if the algorithms are not evaluated starting from a sufficiently
large number of initial configurations, the obtained solution may
only correspond to a local minimum in the coverage function.

V. SIMULATION RESULTS

Next, the hybrid algorithm obtained by combining Algo-
rithm 1 and Algorithm 2 is tested in two benchmark examples.

A. SISO System

To validate the proposed algorithms, first consider the bench-
mark example studied by Anderson [3] and Morse [6]. For the

0.04

30 40

0.12f ™=

/bgu),max

0.04

40

(b)

Fig. 5. Comparison of nominal model distribution by (a) trail and error
and (b) the proposed coverage formulation. (a) Configuration in [3] with
21 systems. (b) Configuration with 15 systems obtained by proposed
algorithms.

uncertain linear time invariant transfer function

s—1

G(s) = i
it was found that a total of 21 nominal model-controller pairs
are sufficient to stabilize all configurations from the entire un-
certainty set. Note that the scalar multiplicative uncertainty in
this example allows to find an infinite continuum of controllers
to stabilize the system. Hence, the retrieval of a finite controller
covering in this case is (as in [3], [6]) simply motivated by
illustrative purposes.

Fig. 5(a) analyzes the configurations given in [3, Table 2]
in more detail. The dotted line visualizes the achievable sta-
bility margin bg m.x as a function of the uncertain parameter
q in (41). Next, dots on the g-axis denote the chosen nominal
model configurations, which were found in [6] by tedious trial
and error. Horizontal lines represent the maximal stability mar-
gins of theses nominal models. The colored segments indicate
for each configuration ¢ the distance min,, d,(G(q),G(p;)).
Stability can be concluded with the v-gap metric if the col-
ored segments remain underneath the horizontal lines, i.e.,
6,(G(q),G(pi)) < bg(p,).max- As the five models to the right
of Fig. 5(a) violate this requirement, Anderson et al. had to re-
sort to frequency dependent considerations to ensure stability,
resulting in additional complexity. Furthermore, Fig. 5(a) shows
that the trial and error result does not exploit the maximum sta-
bility margin in the interval ¢ € [1,10], leading to the overly
conservative number of 21 nominal systems.

In order to apply the proposed algorithms, a graph was ini-
tialized with equally spaced vertices separated by Ag = 0.01.

q € [1,40] (41)
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Fig. 7. (a) Beginning from the suboptimal configuration in [20], (b)

the coverage control methodology yields the optimized configuration. (c)
evolution of the coverage functional during optimization.
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Fig. 8. Optimized covering of the two-cart uncertainty set with 5 model-
controller pairs.

With design parameter I' = 30 for the inverse controller per-
formance in (23), it is possible to determine a finite controller
covering only 15 nominal systems, which are shown in Fig. 5(b).
Asminy, 6,(G(q), G(pi)) < bg(p,)max V¢, itis guaranteed that
there exists a stabilizing controller for every possible system
configuration. The figure furthermore shows that the larger sta-
bility margin in the interval ¢ € [1, 10] is successfully exploited.

Overall, the proposed algorithm reduces the number of nom-
inal model configurations from 21 to 15 and at the same time
removes the need for frequency-dependent stability considera-
tions.

B. Four-Cart System

Next consider the four-cart system in Fig. 6, which was pre-
viously studied by Baldi et al. in [20] and [47]. By applying
forces u(1) and uy) to the inner two carts, the positions yy)
and y(y) of the outer two carts are to be controlled. Let the
masses m = 1 kg and the damping coefficients ¢ = 0.6 Ns/m
be known. Only the spring constants q(y), q(2), q(3) are assumed
to be uncertain.

For uncertain outer springs q(1), 3y € [0.1,1.75] and known
inner spring g2y = 0.7 N/m, Baldi et al. chose the configu-
ration shown in Fig. 7(a) consisting of nine nominal model-
controller pairs. Let the uncertainty set be quantized by a
fine grid with equal spacing of Aq;) = 0.01. Initializing the
proposed optimization algorithm with this configuration, and
I' = 10 shows that further improvements are possible, leading
to the optimized configuration shown in Fig. 7(b). The corre-
sponding evolution of the coverage functional throughout the
gradient descent is shown in Fig. 7(c).

It can furthermore be shown that the distribution of nine
model-controller pairs is too conservative. Optimization stud-
ies reveal that, even if N is reduced to five nominal systems,
the proposed algorithms converge to a stabilizing controller dis-
tribution, which is shown in Fig. 8. Even though the initial
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Fig. 9. Comparison of control performance with (a) the original nine

model-controller pairs from Fig. 7(a), and (b) the five optimized model-
controller pairs from Fig. 8.

configuration in [20] did not claim optimality, this example
gives a good impression of how much benefit may be generated
with the proposed algorithms.

Note that reducing the number of nominal controllers does
not compromise stability. This is shown in Fig. 9, where
reference signal tracking is achieved under time varying
spring constants, i.e., q)(t) = 0.2+ 1.655; and g3 (t) =
0.2 4 1.2sin(0.02¢)?. The controllers are synthesized with the
above introduced combination of H-controller synthesis and
loop shaping [36, Sec. 9.4.2]. Other design constants are
a=p0=1,1=0.5,and h = 0.2. Fig. 9 furthermore shows that
fewer nominal models result in less switching, which in turn re-

1.7
1.3
0.9

o~

- - 0.5
0.1

q(3) an

Fig. 10.  Optimized model distribution for the four-cart system with un-
certain parameters q(1), q(3) € [0.1,1.7] and ¢(2y € [0.7,1.7].

TABLE |
OBTAINED COVERING FOR THREE UNCERTAIN PARAMETERS ¢(1), 4(2) q(3)

P1r P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 Pis

pi1y 02 02 02 03 03 05 06 06 07 1.0 1.1 1.2 13 13 13
piz) 0.8 1.3 1.2 1.4 09 09 1.5 1.2 14 09 08 14 14 09 14
pi3y 0.8 1.2 02 05 03 1.0 1.3 0.1 0.6 02 05 02 05 13 13

duces transient effects in the system outputs due to controller
reinitialization [12]. Finally, the visualization of true parame-
ters ¢ and estimated parameters ¢, i.e., the constant parameters
associated with the currently active model-controller pair, sug-
gests that a greater number of nominal systems enables a more
precise tracking of the actual parameters. Nonetheless, a satis-
factory tracking is maintained for five optimized models.

Finally, the systematic nature of the proposed algorithms
makes the consideration of additional uncertain parameters
straightforward. To demonstrate this, assume that also the in-
ner spring constant ¢y takes values from an uncertainty set
ranging from 0.7 to 1.7 N/m. Note that this uncertainty set
is smaller than before to keep the number of required models
reasonable. For a grid with equal spacing of Ag(;) = 0.1 and
design parameter I = 10, it is sufficient to distribute a total of
15 model-controller pairs inside the uncertainty set as shown in
Fig. 10. The obtained values are given in Table I.

VI. CONCLUSION

In Multiple-Models Adaptive Control, a finite set of nominal
model-controller pairs is needed to ensure stability of the con-
trolled system, which is characterized by large parameter uncer-
tainties. The coverage control methodology applied in this paper
yields a first systematic approach to optimize the distribution of
nominal model-controller pairs in the uncertainty set. The un-
derlying coverage function, which needs to be minimized, eval-
uates for each configuration the expected control performance
of the closest nominal controller and integrates these individual
costs to obtain the overall coverage. Distances are thereby mea-
sured in terms of the v-gap metric, which, in combination with
the maximum generalized stability margin, enables stability
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considerations needed to ensure that each system is stabilizable
by at least one nominal controller. As evaluating the coverage
function is computationally involved due to the v-gap metric,
a discretization is proposed, which reduces the optimization to
an efficient graph-search. At the same time, this quantization
of the uncertainty set limits the problem to near optimal solu-
tions. For the minimization of the discretized coverage func-
tional, two algorithms are presented. First, a gradient descent
drives initially suboptimal configurations to centroidal config-
urations, which constitute local minima. Second, a pairwise
optimization strategy yields pairwise optimal configurations at
the cost of increased computational load. Finally, combining the
two algorithms yields an algorithm which combines the advan-
tage of the gradient descent in form of reduced computational
load with the pairwise optimal solutions obtained by the second
algorithm.

Interesting directions for future work are the consideration of
unstructured uncertainties in the controlled systems and the ap-
plication to related topics such as modeling with LPV systems
or gain scheduling. Also analyzing the positive effect optimized
coverings may have on chattering in MMAC is an interest-
ing task. Finally, finding an efficient solution to the continuous
problem formulation could remove the quantization step and
the corresponding tradeoff between accuracy and elegance of
the continuous representation against computational efficiency
of the discrete graph.
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