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a b s t r a c t

In classical adaptive control the parameters are assumed to be fixed or slowly time-varying. In order to
facilitate parameter estimation/tuning it is desirable to have the set of admissible parameters lie in a
convex set; if this set is not convex, a common trick is to replace it with its convex hull, but the adaptive
control problem is challenging if stabilizability of the set of admissible parameters is lost. However, such
a convexity assumption is an artifact of the approach to the problem, rather than an inherent constraint,
since most logic-based and supervisory approaches to the problem make no such requirement. On the
other hand, herewe show that losing stabilizability on the convex hull of the set of admissible parameters
plays an important role in the adaptive control of rapidly time-varying systems.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

In classical parameter adaptive control, restricting the set of
admissible parameters to a convex set is useful in carrying out pa-
rameter estimation/tuning, e.g. see [1]. Of course, if the set of ad-
missible parameters is not convex, it is natural to replace it with its
convex hull; however, this can create the problem of introducing
uncontrollable or unobservable modes, which can create difficulty
in proving that the associated adaptive controller is stabilizing. This
has spurred a fair bit of effort to get around this problem, e.g. see
[2,3], and [4]. These methods have been successful, and are effec-
tive in controlling plant models whose parameters are either fixed
or slowly time-varying; this is also true of most logic-based and
supervisory approaches to adaptive control, e.g. see [5,6].

Now let us turn to the adaptive control of rapidly time-varying
systems. This problem is very difficult, and only limited results
have been obtained, each of which requires fairly rich structure on
the plant model:

(i) the form of the time-variations (or at least of the fast terms) is
assumed to be known (e.g. see [7,8]);

(ii) the only uncertainty is a gain at the input, e.g. see [9];
(iii) the plant has stable zero dynamics (roughly speaking,

this is the time-varying counterpart of minimum phase),
e.g. see [10–15];
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(iv) the plant has unstable zero dynamics but several stringent
matching requirements must hold—see [16,17].

In this paper our goal is to ascertain performance limitations in
the adaptive control of rapidly time-varying systems. To avoid
imposing unnecessary structure on the set of admissible plant
parameters (such as connectedness), we restrict our attention to
that of jumps in the plant parameters. We demonstrate that, in
two important cases, if the convex hull of the set of admissible
parameters does not possess a weak notion of stabilizability, then
regardless of the controller used, the performancemust necessarily
degrade rapidly as the time between parameter jumps decreases.
This provides an inviolable bound on the achievable performance
of any adaptive controller for such a rapidly time-varying uncertain
system.

2. Mathematical preliminaries

Let Z denote the set of integers, Z+ represent the set of non-
negative integers, N denote the set of natural numbers, R denote
the set of real numbers, R+ represent the set of non-negative real
numbers, and C represent the set of complex numbers.Wewill use
the Euclidean norm to measure the size of a vector: for x ∈ Cn, we
define ∥x∥ := (

n
i=1 |xi|)1/2. The corresponding induced norm of a

matrixA ∈ Cm×n is defined in a usualmanner: ∥A∥ = sup∥x∥≠0
∥Ax∥
∥x∥ .

If x ∈ Cn we use xT to denote the transpose and x∗ to denote the
complex conjugate transpose.
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For a given set S ⊆ Rm×n, we let PC(S) denote the set of all
piecewise continuous functions f : R+

→ S. To measure the size
of f ∈ PC(S), we define
∥f ∥∞ := sup

t∈R+

∥f (t)∥; 1

we let PC∞(S) denote the set of all f ∈ PC(S) forwhich ∥f ∥∞ < ∞.
With Ts > 0, we let PCcon(S, Ts) denote the set of all f ∈ PC(S)
which are piecewise constant with a minimum time of Ts between
discontinuities. Last of all, we let conv(S) denote the convex hull
of S.

3. The setup

Here we will model the plant uncertainty as follows. For a
suitable l ∈ N we start with a compact set Θ ⊂ Rl. With A : Θ →

Rn×n, B : Θ → Rn×m and C : Θ → Rr×n continuous functions, and
θ ∈ PC(Θ), we consider the time-varying plant
ẋ(t) = A(θ(t))x(t) + B(θ(t))u(t), x(0) = x0 (1)
y(t) = C(θ(t))x(t); (2)
here x(t) ∈ Rn is the state, y(t) ∈ Rr is the measured output, and
u(t) ∈ Rm is the control input, and we associate the plant with the
triple (A(θ(·)), B(θ(·)), C(θ(·))), or simply P . While the set Θ as
well as the functions A, B, and C are known, the variable θ ∈ PC(Θ)
is neither knownnormeasurable. The control objective here is a form
of stability, so it is reasonable to restrict θ to a subset of PC(Θ); we
consider the case of time-variations which are simply jumps, with
a minimum distance separating them: with Ts > 0, we consider
the subset PCcon(Θ, Ts). Associated with this set of admissible θ ’s
is the set of possible plant models:
P (Ts) := {(A(θ(·)), B(θ(·)), C(θ(·))) : θ ∈ PCcon(Θ, Ts)}.

Remark 1. It turns out that the choice of C plays no role in the
results which we prove here. However, we will allow a general
form for C(θ) to emphasize the general applicability of the result.

Remark 2. In classical adaptive control many results are proven
for the case of fixed parameters. The setup that we adopt here
allows this—it corresponds to the case of Ts = ∞.

The control objective is to stabilize the system even though
there are rapid variations in θ(t), which is an adaptive control
problem. It is traditional in adaptive control to prove veryweak no-
tions of stability, often proving only that the system iswell behaved
asymptotically, with no uniformity over the admissible models in
P (Ts). However, more recently, techniques such as the supervi-
sory control method of Morse, e.g. see [5,6] (see the Concluding
Remarks Section of the latter), and the periodic probing, estima-
tion and control technique of the author, e.g. see [11,18,15,9,19,
17], have been used to prove stronger uniform notions of stability,
even when the parameters are varying, as illustrated in the follow-
ing definition.

Definition 3. With K : PC(Rr) → PC(Rm) and Ts > 0, we say that
the controller

u = K(y) (3)

is admissible for P (Ts) if, for every P ∈ P (Ts), the closed-loop
system is well-posed: for every x0 ∈ Rm there are unique u ∈

PC(Rm) and y ∈ PC(Rr) which satisfy the plant model Eqs. (1)–(2)
and the controller Eq. (3), in which case we let Φ(x0, P) denote the
map x0 →


x
u


from Rn

→ PC(Rn) × PC(Rm). If K is admissible for
P (Ts) then we say that K stabilizes P (Ts) if

1 Here we will be allowing sampled-data controllers, so we cannot use ‘‘ess sup’’
here.
(i) Φ(0, P) = 0 for every P ∈ P (Ts) and
(ii) the following quantity

γ (K , P (Ts)) := sup


∥Φ(x0, P)∥∞

∥x0∥
:

x0 ∈ Rn is nonzero and P ∈ P (Ts)


is finite.

From Definition 3 we see that if K stabilizes P (Ts), then

∥Φ(x0, P)∥∞ ≤ γ (K , P (Ts))∥x0∥

for every x0 ∈ Rn and P ∈ P (Ts). Here the goal is to bound
γ (K , P (Ts)) in certain circumstances. As observed in Remark 1,
C(θ(·)) plays no role in our result. To this end, we now define the
convex hull of the admissible (A(·), B(·)) pairs: with µ playing the
role of a dummy variable, we define

H := conv{(A(µ), B(µ)) : µ ∈ Θ}. (4)

The question at hand is: if there is a pair in H which
loses stabilizability, what is the consequence on stabilizing the
corresponding set P (Ts)? Of course, if Ts = ∞, then we have the
classical adaptive control setup of no time-variations, and there are
general techniques such as supervisory control [5,6] as well as the
periodic probing, estimation and control technique of [18] which
yield stability. So the real concern is that this loss of stabilizability
may impact the situation when Ts < ∞, measured in terms of a
lower bound on γ (K , P (Ts)). Here we will show, under suitable
assumptions, that γ (K , P (Ts)) must necessarily be large if Ts is
small. We consider three situations:
• In Section 4, we consider the case of B being fixed, andwe prove

that if ‘‘weak stabilizability’’2 is lost then γ (K , P (Ts)) → ∞ as
Ts → 0.

• In Section 5, we assume that A is fixed and B is variable, and
provide an example from the literature which demonstrates
that no general result is provable.

• In Section 6, we consider the general case of allowable
variations in both A and B, but consider a special controller
structure associatedwith step tracking; in this situation a result
similar to that of Section 4 can be proven.

4. The Case of time-variations in A(θ(·)) Only

In this case we assume that the only variation is in A, i.e. we
assume that B(θ(·)) is constant, so we simply represent it by B. To
proceed, we first define

A := {A(µ) : µ ∈ Θ} ⊂ Rn×n.

We now introduce a weak notion of stabilizability, which
differs from the classical notion of stabilizability by not deeming
eigenvalues on the imaginary to be in the ‘‘bad region ’’.

Definition 4. (A, B) is weakly stabilizable if

rank

A − λI B


= n (5)

for all λ ∈ C satisfying Re λ > 0; H ⊂ Rn×n
× Rn×m is weakly

stabilizable if every pair (A, B) ∈ H is weakly stabilizable.

We now prove that if (conv(A), B) is not weakly stabilizable,
then the closed-loop performance provided by a controller for
P (Ts) is bounded below by a function of Ts. Before proceeding,
define

ā := sup
θ∈Θ

∥A(θ)∥, b̄ := ∥B∥.

2 This is a slightly weaker version of the usual notion of stabilizability and will be
defined shortly.
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Theorem 5. If (conv(A), B) is not weakly stabilizable then for
every T̄s > 0, there exists a constant γ̄ > 0 so that if Ts ∈ (0, T̄s) and
K stabilizes P (Ts), then

γ (K , P (Ts)) ≥
γ̄

Ts
. (6)

Remark 6. This theorem shows that if conv(A) has an element
A for which (A, B) is not weakly stabilizable, then any controller
which stabilizes P (Ts) provides performance which necessarily
degrades rapidly as the switching time Ts tends to zero.

Remark 7. If Ts is large enough, then regardless of whether
(conv(A), B) is weakly stabilizable or not, as long as (A(µ), B(µ))
is controllable for every µ ∈ Θ and (C(µ), A(µ)) is observable for
every µ ∈ Θ , then the approach of [19] can be used to design a
controller which stabilizes P (Ts). If Ts is small and (conv(A), B) is
not weakly stabilizable, then the existence of a controller K which
stabilizesP (Ts) is an open problem; however, this Theorem shows
that the performance would be so poor that the existence of a
controller may be of little interest from an engineering point of
view.

Example 8. Consider the case of Θ = {θ1, θ2} with A(θi) = Ai
given by

A1 =


1 0
0 2


, A2 =


2 0
0 1


,

with

B =


1
1


.

It is easy to verify that (Ai, B) is weakly stabilizable for i = 1, 2, but
that ( 1

2 (A1 + A2), B) is notweakly stabilizable. The key idea in the
proof of the theorem is that if you switch between A1 and A2 fast
enough, spending half your time at each, then you can make the
time varying plant look like

ẋ =
1
2
(A1 + A2)x + Bu,

with the accuracy of this model improving as the switching speed
increases.

To prove the theoremwe need the following preliminary result.

Lemma 9. If A ∈ Rn×n, B ∈ Rn×m, and λ ∈ C satisfy

rank

A − λI B


< n, (7)

then there exist v, w ∈ Cn with a norm of one which satisfy

v∗

A − λI B


= 0, (8)

v∗w = 1, (9)

v∗eAtB = 0, t ≥ 0, (10)

and

v∗eAt = eλtv∗, t ≥ 0; (11)

if λ ∈ R then we can choose v, w ∈ Rn.

Proof. See the Appendix.

Proof of Theorem 5. Suppose that (conv(A), B) in not weakly
stabilizable and let T̄s > 0 be arbitrary. Choose p ∈ N, Ai ∈ A,
i = 1, . . . , p, and ci > 0, i = 1, . . . , p, satisfying
•
p

i=1 ci = 1, and
• Ā :=

p
i=1 ciAi is such that (Ā, B) is not weakly stabilizable.

Without loss of generality, we can assume that c1 ≤ c2 ≤ · · · ≤ cp;
define h̄ :=

T̄s
c1
.

Now we define a time-varying θ(·) for which A(θ(·)) jumps
among the Ai’s. To this end, first choose θi ∈ Θ satisfying

A(θi) = Ai.

With h ∈ (0, h̄) arbitrary, define θh(t) to be the discontinuous
periodic function of period h described by

θh(t) =


θ1 t ∈ [0, c1h)
θ2 t ∈ [c1h, (c1 + c2)h)
...

...
θp [(c1 + · · · cp−1)h, h).

It follows easily that

1
h

 h

0
A(θh(τ )) dτ = Ā (12)

and that the smallest time between discontinuities in θh(t) is c1h.
Next, suppose that the controller u = K(y) stabilizes P (c1h);

we will provide a lower bound on the performance γ (K , P (c1h)).
With x0 ∈ Rn arbitrary, let u = K(y) be applied to the plant (1)–(2)
with θ = θh, yielding a closed-loop response given by

x((k + 1)h) = x(kh) +

 (k+1)h

kh
A(θh(τ ))x(τ )dτ

+

 (k+1)h

kh
Bu(τ )dτ

= x(kh) +

 (k+1)h

kh
A(θh(τ ))x(kh)dτ

+

 (k+1)h

kh
A(θh(τ ))[x(τ ) − x(kh)]dτ

+ B
 (k+1)h

kh
u(τ )dτ

= [I + hĀ]x(kh)

+

 (k+1)h

kh
A(θh(τ ))[x(τ ) − x(kh)]dτ  

=:f1[k]

+ B
 (k+1)h

kh
u(τ )dτ  

=:f2[k]

= eĀhx(kh) + f1[k] + f2[k]

+ (I + Āh − eĀh)x(kh)  
=:f3[k]

. (13)

At this point we investigate each of fi[k], i = 1, 2, 3. Now it is easy
to see that

∥ẋ(t)∥ ≤ ∥A(θh(t))∥ × ∥x(t)∥ + ∥B∥ × ∥u(t)∥
≤ (ā + b̄)γ (K , P (c1h))∥x(0)∥, t ≥ 0;

this means that

∥x(t) − x(kh)∥ ≤ h(ā + b̄)γ (K , P (c1h))∥x(0)∥,
t ∈ [kh, (k + 1)h],
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so

∥f1[k]∥ ≤ ā(ā + b̄)h2γ (K , P (c1h))∥x(0)∥,

t ∈ [kh, (k + 1)h]. (14)

Now define

uk :=
1
h

 (k+1)h

kh
u(τ ) dτ ; (15)

it is clear that

∥uk∥ ≤ γ (K , P (c1h))∥x(0)∥ (16)

and

f2[k] = hBuk. (17)

Last of all, since

eĀh − I − Āh =

∞
i=2

Āihi

i!
=

Ā2h2

2!

∞
j=0

2Ājhj

(j + 2)!
,

we see that

∥eĀh − I − Āh∥ ≤
ā2h2

2
eāh,

which means that

∥f3[k]∥ ≤
ā2h2

2
eāhγ (K , P (c1h))∥x(0)∥. (18)

If we incorporate (15) and (17) into Eq. (13), we end up with

x((k + 1)h) = eĀhx(kh) + hBuk + f1[k] + f3[k],

so if we solve this equation starting at zero, we end up with

x(kh) = eĀkhx(0) + h
k−1
j=0

eĀ(k−1−j)hBuj

+

k−1
j=0

eĀ(k−1−j)h
[f1[j] + f3[j]], k ≥ 0. (19)

At this point we analyze this equation and use the bounds on
∥f1[k]∥ and ∥f3[k]∥ given in (14) and (18) to construct the desired
performance bound. To proceed, we examine two separate cases.
Case 1: There exists a real eigenvalue λ > 0 which satisfies

rank

Ā − λI B


< n.

In this case it follows from Lemma 9 that there exist v, w ∈ Rn

of unit norm which satisfy (8)–(11) (with A replaced by Ā). We set
x(0) = w and consider the scaled output

φ(t) := vT x(t).

Then using (19) together with (9)–(11) (in the last two equations
we replaced Awith Ā), it follows that

φ(kT ) = vT eĀkhw + h
k−1
j=0

vT eĀ(k−1−j)hBuj

+

k−1
j=0

vT eĀ(k−1−j)h
[f1[j] + f3[j]]

= eλkhvTw +

k−1
j=0

eλ(k−1−j)hvT
[f1[j] + f2[j]]

= eλkh
+

k−1
j=0

eλ(k−1−j)hvT
[f1(j) + f2(j)].
This immediately implies that

|φ(kT )| ≥ eλkh
− eλkh ∥vT

∥

eλh − 1
max

j∈{0,1,...,k−1}
(∥f1[j]∥ + ∥f3[j]∥).

Using the bounds on ∥f1[j]∥ and ∥f3[j]∥ given in (14) and (18),
respectively, as well as the fact that ∥w∥ = ∥v∥ = 1, we obtain

|φ(kT )| ≥ eλkh
− eλkh 1

eλh − 1


ā(ā + b̄)h2

+
ā2

2
h2eāh


× γ (K , P (c1h))

= eλkh

1 −

1
eλh − 1


ā(ā + b̄)h2

+
ā2

2
h2eāh


× γ (K , P (c1h))} .

Now φ(kT ) must be a bounded function of k since γ (K , P (c1h)) is
finite, so the term on the RHS in ‘‘{·}’’ must be less than or equal to
zero, which provides a lower bound on γ (K , P (c1h)):

γ (K , P (c1h)) ≥
eλh

− 1

ā(ā + b̄)h2 +
ā2
2 h2eāh

.

Define f1(h) by h times the RHS of the above inequality:

f1(h) :=
eλh

− 1

ā(ā + b̄)h +
ā2
2 heāh

.

It is clear that

lim
h→0

f1(h) =
λ

ā(ā + b̄) +
ā2
2

> 0;

using the fact that f is continuous and positive for h > 0, it follows
that

γ1 := inf
h∈(0,h̄]

f1(h) > 0.

We conclude that

γ (K , P (c1h)) ≥
γ1

h
, h ∈ (0, h̄].

Using a simple variable substitution we see that

γ (K , P (Ts)) ≥
γ1c1
Ts

, Ts ∈ (0, T̄s].

Since the quantity γ1c1 is independent of the choice of Ts ∈ (0, T̄s],
the desired result holds for this case.
Case 2: There exists a complex eigenvalue λwhich satisfies Re λ >
0 and

rank

Ā − λI B


< n.

Here we follow the same general approach of Case 1, but with
some suitable modifications. In this case it follows from Lemma 9
that there exist v, w ∈ Cn of unit norm which satisfy (8)–(11)
(with A replaced by Ā). We first consider the situation in which
x(0) = Re(w), and label the corresponding state and control signal
response to be xr(t) and ur(t), respectively; next of all, we consider
the situation in which x(0) = Im(w), and label the corresponding
state and control signal response to be xi(t) and ui(t), respectively.
If we now define f r1 [k], f i1[k], f

r
3 [k], f i3[k], u

r
k, and ui

k in a natural way,
then we end up with the natural counterparts of Eq. (19) derived
above:

xr(kh) = eĀkhxr(0) + h
k−1
j=0

eĀ(k−1−j)hBur
j

+

k−1
j=0

eĀ(k−1−j)h
[f r1 [j] + f r3 [j]], k ≥ 0, (20)
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xi(kh) = eĀkhxi(0) + h
k−1
j=0

eĀ(k−1−j)hBui
j

+

k−1
j=0

eĀ(k−1−j)h
[f i1[j] + f i3[j]], k ≥ 0. (21)

Now define

φ(t) := v∗
[xr(t) + ixi(t)],

f1[k] := f r1 [k] + if i1[k],

f2[k] := f r2 [k] + if i2[k],

uk := ur
k + iui

k.

Using (9)–(11) (in the latter two equations we replace Awith Ā), it
follows that

φ(kT ) = v∗eĀkhw +

k−1
j=0

v∗eĀ(k−1−j)hBuj

+

k−1
j=0

v∗eĀ(k−1−j)h
[f1[j] + f3[j]]

= eλkh
+

k−1
j=0

eλ(k−1−j)hv∗
[f1[j] + f2[j]].

If λr denotes the real part of λ, it follows immediately that

|φ(kT )| ≥ eλr kh − eλr kh 1
eλrh − 1

× max
j∈{0,1,...,k−1}

(∥f1[j]∥ + ∥f3[j]∥). (22)

From (14) we have that

∥f r1 [k]∥ ≤ ā(ā + b̄)h2γ (K , P (c1h))∥xr(0)∥,

and

∥f i1[k]∥ ≤ ā(ā + b̄)h2γ (K , P (c1h))∥xi(0)∥,

which means that

∥f1[k]∥ ≤ ∥f r1 [k]∥ + ∥f i1[k]∥

≤ ā(ā + b̄)h2γ (K , P (c1h))(∥xr(0)∥ + ∥xi(0)∥)
≤ 2ā(ā + b̄)h2γ (K , P (c1h))∥w∥

≤ 2ā(ā + b̄)h2γ (K , P (c1h)).

Similarly,

∥f3[k]∥ ≤ 2
ā2h2

2
eāhγ (K , P (c1h)).

Using the bounds on ∥f1[j]∥ and ∥f3[j]∥ in (22) yields

|φ(kT )| ≥ eλr kh − eλr kh 2
eλrh − 1


ā(ā + b̄)h2

+
ā2

2
h2eāh


× γ (K , P (c1h))

= eλr kh

1 −

2
eλrh − 1


ā(ā + b̄)h2

+
ā2

2
h2eāh


× γ (K , P (c1h))} .

Now φ(kT ) must be a bounded function of k since γ (K , P (c1h)) is
finite, so the term on the RHS in ‘‘{·}’’ must be less than or equal to
zero, which provides a lower bound on γ (K , P (c1h)):

γ (K , P (c1h)) ≥
1
2

eλrh − 1

ā(ā + b̄)h2 +
ā2
2 h2eāh

.

Proceeding as in Case 1, we see that there exists a constant γ2 so
that

γ (K , P (Ts)) ≥
γ2

Ts
, Ts ∈ (0, T̄s].

Hence, the desired result holds in this case as well. �

Remark 10. Notice that this proof did not use the fact that only
y could be measured and that θ and x could not be; furthermore,
it did not require causality. Hence, this Theorem can be applied
to a much larger class of controllers than the ones that we have
considered here.

Remark 11. It turns out that the bound asserted to exist by
Theorem 5 can be computed for simple cases. For instance, let us
consider Example 8. Using the notation of the proof, we can set
c1 = c2 =

1
2 , so that

Ā =


1.5 0
0 1.5


.

Turning to Lemma 9, we set λ = 1.5 and

v = w =


1

√
2

−
1

√
2

 .

In this case

ā = 2, b̄ =
√
2.

Following the Proof of Theorem 5, we have, for any stabilizing
controller K , the following bound:

γ


K , P


h
2


≥

eλh
− 1

ā(ā + b̄)h2 +
ā2
2 h2eāh

=
e1.5h − 1

2(2 +
√
2)h2 + 2h2e2h

,

so with Ts =
h
2 , or equivalently h = 2Ts, we have

γ (K , P (Ts)) ≥
e3Ts − 1

8(2 +
√
2)T 2

s + 8T 2
s e4Ts

.

5. The case of time-variations in B(θ(·)) only

In this case we cannot, in general, prove a comparable result to
that of the previous section. To see this, consider the plant

ẋ(t) = A0x(t) + θ(t)B0u(t),
y(t) = C0x(t)

with (A0, B0) controllable, (C0, A0) observable, and θ(·) ∈ Gwith G
compact and not including zero. In the paper [9] the goal is that of
achieving near optimal tracking of an exogenous reference signal
in the presence of time-variations in θ(·). However, if we set the
exogenous input to zero then it is easy to see that the controller
designed there would provide the kind of stability considered in
this paper. The controller presented there is linear periodic of
period T , which we label K(T ); with a bit of analysis one can prove
that there exists a constant γ̄ so that, for every Ts > 0, if we choose
T sufficiently small then

γ (K(T ), P (Ts)) ≤ γ̄ .

Hence, for this specific case we are unable to duplicate a result
similar to that of the previous section,whichmeans that no general
result is proveable in the case of A(θ(·)) constant but B(θ(·))
varying.
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6. The case of time-variations in both A(θ(·)) and B(θ(·))

Given the observation in the previous section, we clearly cannot
prove a comparable result to Theorem 5 in the general case
considered here. However, we can provide a bound on the closed-
loop performance if a particular common controller configuration
is adopted. More specifically, a classical tracking objective is step
tracking, and a common trick3 to convert a step tracking problem
to a stabilization problem is to augment an integrator to the plant
as follows:
ẋ(t)
u̇(t)


=


A(θ(t)) B(θ(t))

0 0


  

=:Anew(θ(t))


x(t)
u(t)


  
xnew(t)

+


0
I



=:Bnew

ν(t), (23)

y(t) =

C 0

  
=:Cnew


x(t)
u(t)


; (24)

we represent this plant by the triple (Anew(θ(·)), Bnew, Cnew), which
we label Pnew, and we define Pnew(Ts) in the natural way. Here
ν(t) plays the role of the new input, and the goal is to now find
a controller to measure y(t) and generate ν(t).4 Indeed, this is
the approach adopted by Morse in his ground-breaking work on
supervisory control [5,6]. It turns out that the stabilizability of
(A, B) is connected to that of (Anew, Bnew):

Lemma 12. (

A B
0 0


,

0
I


) is weakly stabilizable iff (A, B) is weakly

stabilizable.

Proof. This follows easily from the PBH test.

Notice that the model provided in (23)–(24) is of exactly the
same form as given in Section 4, so the approach adopted there is
applicable. With H given by (4), this leads to

Corollary 13. If H is notweakly stabilizable then for every T̄s > 0,
there exists a constant γ̄ > 0 so that if Ts ∈ (0, T̄s) and K stabilizes
Pnew(Ts), then

γ (K , Pnew(Ts)) ≥
γ̄

Ts
. (25)

Proof. This follows immediately from Theorem 5 and
Lemma 12. �

Example 14. Here we examine the example of [6]: a system with
a transfer function of

s −
θ+2
6

s2 + θs −
2
9θ(θ + 2)

is considered; here θ ∈ [−1, 1]. Of course, since we would like
to allow time-variations in the parameter θ , we cannot use a
transfer function model, though a state-space model will do. We
will choose a form for which C is constant:

ẋ(t) =


0 1

2
9
θ(t)(θ(t) + 2) −θ(t)


x(t) +


1

−
7
6
θ(t) −

1
3


u(t),

y(t) =

1 0


x(t).

3 This is not the only way to approach this problem—it is equally common to
simply use unity feedback and force any LTI controller to have an integrator.
4 It is common to introduce a reference signal r and let the measured output be

r − y; however, here we are focussed on stability so we will not do so in our setup.
It is easy to see that (A(µ), B(µ)) controllable for all µ ∈ [−1, 1].
Hence, with

Anew(θ(t)) :=

 0 1 1
2
9
θ(t)(θ(t) + 2) −θ(t) −

7
6
θ(t) −

1
3

0 0 0

 ,

Bnew(θ(t)) :=

0
0
1


,

it follows from the classical PBH test that (Anew(µ), Bnew) is
controllable for all µ ∈ [−1, 1]. However, consider

Ānew =
24
49

Anew(−1) +
25
49

Anew(0.4) =

0 1 1

0
14
49

0
0 0 0

 .

It is easy to verify that the eigenvalue of Ānew at 14
49 is not

controllable (w.r.t. Bnew), i.e. (Ānew, Bnew) is not weakly stabilizable.
As for the case of Example 8 we can use the details of the proof of
Theorem 5 to derive an explicit lower bound on γ (K , Pnew(Ts)) for
any stabilizing K , yielding

γ (K , Pnew(Ts)) ≥
e0.583Ts − 1

32.6T 2
s + 11.4T 2

s e4.78Ts
.

Hence, while a suitably designed supervisory controller will
stabilize the set of admissible LTI plants, its tolerance to time-
variations is limited in the sense that the performance necessarily
degrades as the frequency of jumps in the plant parameters
increases.

Remark 15. This result demonstrates that if the goal is to control
a system with rapidly time-varying parameters, then there are
ramifications to placing an integrator at the plant input.

7. Summary and conclusions

Here we consider the problem of adaptively stabilizing a
rapidly time-varying plant with jumps in the parameters. We
demonstrate that, in two important cases, if the convex hull
of the set of admissible parameters does not possess a weak
notion of stabilizability, then regardless of the controller used,
performancemust necessarily degrade rapidly as the timebetween
parameter jumps decreases. This provides an inviolable bound on
the achievable performance of any adaptive controller for such a
rapidly time-varying uncertain system.

In this paper the output parameter C(θ(·)) plays no role; the
focus is on the loss of stabilizability. It is not at all clear how to
prove a comparable result if detectability is lost.
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Appendix

Proof of Lemma 9. There clearly exists a non-zero v ∈ Cn

satisfying (8); it follows immediately that we can choose v to be
real if λ ∈ R. Without loss of generality, we may as well assume
that ∥v∥ = 1 (if it is not, then simply replace it with 1

∥v∥
v,

and it is easy to check that it also enjoys the above properties).
Furthermore, the first equation of (8) immediately implies that

v∗eAt = v∗eλt , t ∈ R,

so (11) holds. If we combine this with the second equation of (8),
we conclude that (10) holds. Last of all, if we set w :=

1
v∗v

v, then
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it is easy to see that ∥w∥ = 1 and v∗w = 1, which means that (9)
holds. �
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