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Abstract— We show that for an adaptive controller that uses
recorded and instantaneous data concurrently for adaptation,
a verifiable condition on linear independence of the recorded
data is sufficient to guarantee exponential tracking error and
parameter error convergence. This condition is found to be less
restrictive and easier to monitor than a condition on persistently
exciting exogenous input signal required by traditional adaptive
laws that use only instantaneous data for adaptation.

I. INTRODUCTION

Adaptive control has been widely studied for control

of nonlinear plants with modeling uncertainties with wide

ranging applications. Many of these approaches rely on

the popular Model Reference Adaptive Control (MRAC)

architecture which guarantees that the controlled states track

the output of an appropriately chosen reference model. Most

MRAC methods achieve this by using a parameterized model

of the uncertainty, often referred to as the adaptive element

and its parameters referred to as adaptive weights. In MRAC,

the adaptive law is designed to update the parameters in

the direction of maximum reduction of the instantaneous

tracking error cost (e.g. V (t) = eT (t)e(t)). While this

approach ensures that the parameters take on values such

that the uncertainty is instantaneously suppressed, they do

not guarantee the convergence of the parameters to their

ideal values unless the system states are Persistently Exciting

(PE) [9], [7], [10], [2]. Boyd and Sastry have shown that

the condition on PE system states can be related to a PE

reference input by noting the following: If the exogenous

reference input r(t) contains as many spectral lines as the

number of unknown parameters, then the plant states are

PE, and the parameter error converges exponentially to

zero [3]. However, the condition on persistent excitation

of the reference input is restrictive and often infeasible to

monitor online. For example, in flight control applications,

PE reference inputs may cause nuisance, waste fuel, and may

cause undue stress on the aircraft. Furthermore, since the

exogenous reference inputs for many online applications are

event based and not known a-priori, it is often impossible

to monitor online whether a signal is PE. Consequently,

parameter convergence is often not guaranteed in practice

for many adaptive control applications.

In this paper we present a method that can guarantee

exponential tracking error convergence and weight conver-

gence in adaptive control without persistency of excitation.
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The presented method, termed as Concurrent Learning, uses

recorded and current data concurrently for adaption in the

framework of MRAC. The concurrent use of past and current

data is motivated by the intuitive argument that if the

recorded data is made sufficiently rich, and used concurrently

for adaptation, then weight convergence can occur without

the system states being persistently exciting. In this paper

we formalize this intuitive argument and show that if the

stored data has as many linearly independent elements as

the dimension of the basis of the linearly parameterized

uncertainty then exponential parameter and tracking error

convergence to zero can be achieved.

II. ADAPTIVE PARAMETER ESTIMATION

WITHOUT PERSISTENCY OF EXCITATION

Adaptive parameter estimation is concerned with using

measured output and regressor vectors to form an estimate

of unknown system dynamics online. We assume that the

unknown system dynamics are linearly parameterized; that

is letting y : ℜm → ℜ denote the output of an unknown

model whose regressor vectors Φ(x(t)) ∈ ℜm are known,

bounded, and continuously differentiable, and whose un-

known parameters are contained in the constant ideal weight

vector W ∗ ∈ ℜm, the unknown system dynamics are given

by:

y(t) = W ∗TΦ(x(t)). (1)

Let W (t) ∈ ℜm denote our online estimate of the ideal

weights W ∗; since for a given x the mapping Φ(x) is known,

then an online estimate of y can be given by the the mapping

ν : ℜm → ℜ in the following form:

ν(t) = WT (t)Φ(x(t)). (2)

This results in an approximation error ǫ(t) = ν(t) − y(t),
which can be represented as ǫ(t) = (W −W ∗)T (t)Φ(x(t)).
Letting W̃ (t) = W (t)−W ∗ we have,

ǫ(t) = W̃T (t)Φ(x(t)). (3)

In the above form it is clear that ǫ(t) → 0 as t → ∞ if the

parameter error W̃ → 0 as t → ∞. Therefore, we wish to

design an adaptive law Ẇ (t), which uses the measurements

of x(t), y(t), and the knowledge of the mapping Φ(.), to

ensure W (t) → W ∗. Assuming that the full state x(t) is

available for measurement, a well known choice for Ẇ (t)
is the following gradient based adaptive law which updates

the adaptive weight in the direction of maximum reduction

of the instantaneous quadratic cost V = ǫT (t)ǫ(t)[10],[7]:

Ẇ (t) = −ΓΦ(x(t))ǫ(t). (4)
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When using this adaptive law, it is well known that

W (t) → W ∗ if and only if the vector signal Φ(x(t)) is

persistently exciting [10],[2], [7], [1],[9]. Various equivalent

definitions of excitation and the persistence of excitation of

a bounded vector signal exist in the literature [2],[9], we will

use the definitions proposed by Tao in [10]:

Definition 1 A bounded vector signal Φ(t) is exciting

over an interval [t, t + T ], T > 0 and t ≥ t0 if there exists

γ > 0 such that

∫ t+T

t

Φ(τ)ΦT (τ)dτ ≥ γI. (5)

Definition 2 A bounded vector signal Φ(t) is persistently

exciting if for all t > t0 there exists T > 0 and γ > 0 such

that
∫ t+T

t

Φ(τ)ΦT (τ)dτ ≥ γI. (6)

As an example, consider that in the two dimensional case,

vector signals containing a step in every component are

exciting, but not persistently exciting; whereas the vector

signal Φ(t) = [sin(t), cos(t)] is persistently exciting.

On examining equation 4 we see that the adaptive law

uses only instantaneously available information (x(t), ǫ(t))
for adaptation. If the adaptive law used specifically se-

lected and recorded data concurrently with current data for

adaptation, and if the recorded data were sufficiently rich,

then intuitively it should be possible to guarantee parameter

convergence without requiring persistently exciting Φ(t). We

now present a concurrent learning algorithm for adaptive

parameter identification that builds on this intuitive concept.

Let j ∈ {1, 2, ...p} denote the index of a stored data point

xj , let Φ(xj) denote the regressor vector evaluated at point

xj , let ǫj = W̃TΦ(xj), let Γ > 0 denote a positive definite

learning rate matrix, then the concurrent learning gradient

descent algorithm is given as:

Ẇ (t) = −ΓΦ(x(t))ǫ(t)−

p
∑

j=1

ΓΦ(xj)ǫj . (7)

Without loss of generality, let Γ = I , then the parameter

error dynamics for the concurrent learning gradient descent

algorithm can be found by differentiating W̃ and using

equation 7:

˙̃
W (t) = −Φ(x(t))ǫ(t)−

p
∑

j=1

Φ(xj)ǫj

= −Φ(x(t))ΦT (x(t))W̃ (t)−

p
∑

j=1

Φ(xj)Φ
T (xj)W̃ (t)

= −[Φ(x(t))ΦT (x(t)) +

p
∑

j=1

Φ(xj)Φ
T (xj)]W̃ (t).

(8)

This is a linear time varying equation in W̃ . We now

present a condition on the linear independence of the stored

data that characterizes the richness of the recorded data.

Condition 1 The recorded data has as many linearly

independent elements as the dimension of Φ(x(t)). That is,

if Z = [Φ(x1), ....,Φ(xp)], then rank(Z) = m.

This condition requires that the stored data contain suf-

ficiently different elements to form a basis for the linearly

parameterized uncertainty. This condition differs from the

condition on PE Φ(t) in the following ways: 1) This condi-

tion applies only to recorded data which is a subset of all

past data, whereas persistency of excitation applies also to

how Φ(t) should behave in the future. 3) This condition is

conducive to online monitoring since the rank of a matrix

can be determined online . 4) It is always possible to record

data such that condition 1 is met when the system states are

exciting over a finite time interval. 5) It is also possible to

meet this condition by selecting and recording data during

a normal course of operation over a long period without

requiring persistence of excitation.

The following theorem shows that condition 1 is sufficient

to guarantee global exponential parameter convergence for

concurrent learning gradient descent law of equation 7.

Theorem 1 If the stored data points satisfy condition 1,

then W̃ is globally exponentially stable when using the

concurrent learning gradient descent weight adaptation law

of equation 7.

Proof: Let V (W̃ ) = 1

2
W̃ (t)T W̃ (t) be a Lyapunov

candidate. Since V (W̃ ) is quadratic, there exist α > 0 and

β > 0 such that α‖W̃‖2 ≤ V (W̃ ) ≤ β‖W̃‖2. Differentiating

w.r.t. time along the trajectories of 8:

V̇ (W̃ ) = −W̃ (t)T [Φ(x(t))ΦT (x(t))

+

p
∑

j=1

Φ(xj)Φ
T (xj)]W̃ (t).

(9)

Let Ω(t) = Φ(x(t))ΦT (x(t)) +
p
∑

j=1

Φ(xj)Φ
T (xj), and note

that P =
p
∑

j=1

Φ(xj)Φ
T (xj) > 0 due to condition 1. Hence,

Ω(t) > 0 for all t. Furthermore, since Φ(x(t)) is assumed to

be continuously differentiable, there exists a λm > 0 such

that,

V̇ (W̃ ) ≤ −λmW̃ (t)T W̃ (t) ≤ −λm‖W̃‖2. (10)

Hence, using theorem 4.6 from [6] exponential stability of

the zero solution W̃ ≡ 0 of the parameter error dynamics of

equation 8 is established. Furthermore, since the Lyapunov

candidate is radially unbounded, the result is global.

Remark 1 The above proof shows exponential conver-

gence of parameter estimation error without requiring per-

sistency of excitation in the signal Φ(x(t)). The proof

requires that
p
∑

j=1

Φ(xj)Φ
T (xj) be positive definite, which

is guaranteed if condition 1 is satisfied. Furthermore, note

that the Lyapunov candidate does not depend on the number

of recorded data points.
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III. ADAPTIVE CONTROL WITHOUT

PERSISTENCY OF EXCITATION

In this section, we consider the problem of tracking error

and parameter error convergence in the framework of Model

Reference Adaptive Control (MRAC) (see [9], [7], [2] and

[10]).

A. Model Reference Adaptive Control

This section discusses the formulation of MRAC. Let

x(t) ∈ ℜn be the known state vector, let u ∈ ℜ denote

the control input, and consider the following system where

the uncertainty can be linearly parameterized:

ẋ = Ax(t) +B(u(t) + ∆(x(t))), (11)

where A ∈ ℜn×n, B ∈ ℜn, B = [0, 0, ..., 1]T , and ∆(x) ∈
ℜ(x) is a continuously differentiable function representing

the scalar uncertainty. We assume that the system in 11

is controllable. A reference model can be designed that

characterizes the desired response of the system:

ẋrm = Armxrm(t) +Brmr(t), (12)

where Arm ∈ ℜn×n is a Hurwitz matrix and r(t) denotes a

bounded reference signal. A tracking control law consisting

of a linear feedback part upd = K(xrm(t)− x(t)), a linear

feedforward part ucrm = Kr[x
T
rm, r(t)]T , and an adaptive

part uad(x) is proposed to have the following form

u = ucrm + upd − uad. (13)

Define the tracking error e as e(t) = xrm(t)− x(t); with

an appropriate choice of ucrm such that Bucrm = (Arm −
A)xrm+Brmr(t), the tracking error dynamics are found to

have the form

ė = Ame+B(uad(x)−∆(x)), (14)

where the baseline full state feedback controller upd = Kx

is assumed to be designed such that Am = A − BK is a

Hurwitz matrix. Hence for any positive definite matrix Q ∈
ℜn×n , a positive definite solution P ∈ ℜn×n exists to the

Lyapunov equation

AT
mP + PAm +Q = 0. (15)

We now state the following assumptions:

Assumption 1 The uncertainty ∆(x) can be linearly pa-

rameterized, that is, there exist a vector of constants W =
[w1, w2, ...., wm]T and a vector of continuously differentiable

functions Φ(x) = [φ1(x), φ2(x), ...., φm(x)]T such that

∆(x) = W ∗TΦ(x). (16)

Consider the case where the form of the linearly param-

eterized uncertainty is known, that is the mapping Φ(x) is

known. In this case letting W denote the estimate W ∗ the

adaptive element is chosen as uad(x) = WTΦ(x). For this

case it is well known that the adaptive law

Ẇ = −ΓWΦ(x(t))eTPB (17)

where ΓW is a positive definite learning rate matrix results in

e(t) → 0; however 17 does not guarantee the convergence (or

even the boundedness) of W [10]. For this baseline adaptive

law, it is also well known that a necessary and sufficient

condition for guaranteeing W (t) → W is that Φ(t) be

persistently exciting [9],[7],[10]. The condition on PE states

is required to guarantee parameter error convergence to zero

for many classic and recent adaptive control laws as well (e.g.

σ-mod [7], e-mod [9], Q-mod [11], L1 adaptive control [4],

and backstepping adaptive control [8]).

B. Proof of Stability

In this section we present two key theorems to guarantee

global tracking error and parameter error convergence go

to zero when using concurrent learning adaptive control;

without requiring persistency of excitation.

Theorem 2 Consider the system in equation 11, the con-

trol law of equation 13, the case of structured uncertainty

(case 1), and the following weight update law:

Ẇ = −ΓWΦ(x(t))eTPB −

p
∑

j=1

ΓWΦ(xj)ǫj , (18)

and assume that the stored data points satisfy condition 1,

then the zero solution e(t) ≡ 0 of tracking error dynamics of

equation 14 is globally exponentially stable and W (t) → W ∗

exponentially.

Proof: Consider the following positive definite and

radially unbounded Lyapunov candidate

V (e, W̃ ) =
1

2
eTPe+

1

2
W̃TΓW

−1W̃ . (19)

Let ξ = [e, W̃ ], and let λmin(.) and λmax(.) denote oper-

ators that return the smallest and the largest eigenvalue of a

matrix, then we have 1

2
min(λmin(P ), λmin(ΓW

−1))‖ξ‖2 ≤

V (e, W̃ )
≤ 1

2
max(λmax(P ), λmax(ΓW

−1))‖ξ‖2. Differentiating 19

along the trajectory of 14, the Lyapunov equation (equation

15), and noting that
˙̃
W = −

p
∑

j=1

Φ(xj)Φ
T (xj)W̃ (t) −

ΓWΦ(x(t))eTPB, we have

V̇ (e, W̃ ) = −
1

2
eTQe+ eTPB(uad −∆)

+ W̃T (−

p
∑

j=1

Φ(xj)Φ
T (xj)W̃ (t)− ΓWΦ(x(t))eTPB).

(20)

Canceling like terms and simplifying we have

V̇ (e, W̃ ) = −
1

2
eTQe−W̃T (

p
∑

j=1

Φ(xj)Φ
T (xj))W̃ (t). (21)

Let Ω =
p
∑

j=1

Φ(xj)Φ
T (xj), then due to condition 1 Ω > 0.

Then, we have

V̇ (e, W̃ ) ≤ −
1

2
λmin(Q)eT e− λmin(Ω)W̃

T W̃ (t). (22)
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Hence,

V̇ (e, W̃ ) ≤ −
max(λmin(Q), 2λmin(Ω))

min(λmin(P ), λmin(ΓW
−1))

V (e, W̃ ), (23)

establishing the exponential stability of the zero solution e ≡
0 and W̃ ≡ 0 (using Lyapunov stability theory, see Thm. 3.1

in [6]). Since V (e, W̃ ) is radially unbounded, the result is

global and x tracks xref exponentially and W (t) → W ∗

exponentially as t → ∞.

Remark 2 The above proof shows exponential conver-

gence of tracking error e(t) and parameter estimation error

W̃ (t) to 0 without requiring persistency of excitation in

the signal Φ(x(t). The only condition required is condition

1, which guarantees that the matrix
p
∑

j=1

Φ(xj)Φ
T (xj) is

positive definite.

Remark 3 The inclusion or removal of new data points

in equation 18 does not affect the Lyapunov candidate.

Remark 4 The rate of convergence is determined by the

spectral properties of Q, P , ΓW , and Ω, the first three are

dependent on the choice of the linear gains Kp and the

learning rates, and the last one is dependent on the choice

of the stored data.

Remark 5 For evaluating the adaptive law of equation

18 the term ǫj = ν(xj)−∆(xj) is required for the jth data

point where j ∈ [1, 2, ..p]. The model error ∆(xj) can be

observed by noting that

∆(xj) = BT [ẋj −Axj −Buj ]. (24)

Since A,B, xj , uj are known, the problem of estimating

system uncertainty can be reduced to that of estimation of ẋ

by using 24. In cases where an explicit measurement for ẋ is

not available, ẋj can be estimated using an implementation

of a fixed point smoother [5].

In theorem 2 the adaptive law does not prioritize weight

updates based on the instantaneous tracking error over the

weight updates based on stored data. Such prioritization can

be achieved by enforcing separation in the training law by

restricting the weight updates based on past data to the

nullspace of the weight updates based on current data. To

achieve this, we let Ẇt(t) = Φ(x(t))eTPB and use the

following orthogonal projection operator:

Wc(t) =

{

I − Ẇt(Ẇt(t)
T
Ẇt(t))

−1Ẇt(t)
T

if Ẇt(t) 6= 0

I if Ẇt(t) = 0
(25)

For this case, the following theorem ascertains that global

asymptotic stability of the tracking error dynamics and

asymptotic convergence of the parameter error to 0 is guar-

anteed subject to condition 1.

Theorem 3 Consider the system in equation 11, the con-

trol law of equation 13, the definition of Wc(t), let for each

time t NΦ be the set containing all Φ(xj) ⊥ Ẇt(t), that

is NΦ = {Φ(xj) : Wc(t)Φ(xj) = Φ(xj)}, and consider the

following weight update law:

Ẇ = −ΓWΦ(x(t))eTPB − ΓWWc(t)
∑

j∈NΦ

Φ(xj)ǫj , (26)

furthermore assume that the stored data points Φ(xj) satisfy

condition 1. Then the zero solution e(t) ≡ 0 of tracking error

dynamics of equation 14 is globally asymptotically stable and

W (t) → W ∗.

Proof: : Consider the following positive definite and

radially unbounded Lyapunov candidate

V (e, W̃ ) =
1

2
eTPe+

1

2
W̃TΓW

−1W̃ . (27)

Differentiating 27 along the trajectory of 14, the Lya-

punov equation (equation 15), and noting that
˙̃
W =

−ΓWWc(t)
∑

j∈NΦ

Φ(xj)Φ
T (xj)W̃ (t) − ΓWΦ(x(t))eTPB,

we have

V̇ (e, W̃ ) = −
1

2
eTQe+ eTPB(uad −∆)

+ W̃T (−Wc(t)
∑

j∈NΦ

Φ(xj)Φ
T (xj)W̃ − ΓWΦ(x(t))eTPB).

(28)

Canceling like terms and simplifying we have

V̇ (e, W̃ ) = −
1

2
eTQe

− W̃T (Wc(t)

p
∑

j∈NΦ

Φ(xj)Φ
T (xj))W̃ .

(29)

Note that W̃ ∈ ℜm can be written as W̃ (t) = (I −
Wc(t))W̃ (t)+Wc(t)W̃ (t), where Wc is the orthogonal pro-

jection operator given in equation 25, furthermore W 2
c (t) =

Wc(t) and (I −Wc(t))Wc(t) = 0. Hence we have:

V̇ (e, W̃ ) = −
1

2
eTQe

− W̃TWc(t)

p
∑

j∈NΦ

Φ(xj)Φ
T (xj)Wc(t)W̃

− W̃TWc(t)

p
∑

j∈NΦ

Φ(xj)Φ
T (xj)(I −Wc(t))W̃ .

(30)

However, since the sum in the last term of V̇ (e, W̃ ) is

only performed on the elements in NΦ we have that

for all j Φ(xj) = Wc(t)Φ(xj), therefore it follows that

W̃TWc(t)
p
∑

j∈NΦ

Wc(t)Φ(xj)Φ
T (xj)Wc(t)(I − Wc(t))W̃ =

0, hence

V̇ (e, W̃ ) = −
1

2
eTQe

− W̃TWc(t)

p
∑

j∈NΦ

Φ(xj)Φ
T (xj)Wc(t)W̃ ≤ 0.

(31)

3677



This establishes Lyapunov stability of the zero solution

e ≡ 0, W̃ ≡ 0. To show asymptotic stability, we must

show that V̇ (e, W̃ ) = 0 only when e = 0 and W̃ = 0.

Consider the case when V̇ (e, W̃ ) = 0, since Q is positive

definite, this means that e = 0. Let e = 0 and suppose ad

absurdum there exists a W̃ 6= 0 such that V̇ (e, W̃ ) = 0.

Since e = 0 we have that Ẇt = 0, hence from the definition

of Wc (equation 25) Wc = I . Therefore it follows that the

set NΦ contains all the stored data points, therefore we have

that W̃T
p
∑

j=0

Φ(xj)Φ
T (xj)W̃ = 0. However, since the stored

data points satisfy condition 1, W̃T
p
∑

j=1

Φ(xj)Φ
T (xj)W̃ > 0

for all W̃ 6= 0, contradicting the claim. Therefore, we have

shown that V̇ (e, W̃ ) = 0 only when e = 0 and W̃ = 0. Thus

establishing asymptotic stability of the zero solution e ≡ 0
and W̃ ≡ 0. Guaranteeing x tracks xrm asymptotically and

W → W ∗ as t → ∞. Since the Lyapunov candidate is

radially unbounded, the result is global.

Remark 6 The above proof shows asymptotic conver-

gence of tracking error e(t) and parameter estimation error

W̃ (t) without requiring persistency of excitation in the

signal Φ(x(t)). The only condition required is condition

1, which guarantees that the matrix
p
∑

j=1

Φ(xj)Φ
T (xj) is

positive definite. Remarks 3 to 5 are also applicable to this

theorem.

Remark 7 V̇ (e, W̃ ) will remain negative even when NΦ

is empty at time t if e 6= 0. If e = 0, NΦ cannot

remain empty due to the definition of Wc. Furthermore, If

e(t) = 0 or Φ(x(t)) = 0 and W̃ (t) 6= 0, V̇ (e, W̃ ) =

W̃T
p
∑

j=0

Φ(xj)Φ
T (xj)W̃ < 0 due to condition 1 and the

definition of Wc(t) (equation 25). This indicates that param-

eter convergence will occur even when the tracking error or

system states are not PE.

Remark 8 For practical applications the

following approximations can be used: NΦ =
{Φ(xj) : ‖Wc(t)Φ(xj)− Φ(xj)‖ < β}, where β is a

small positive constant, and Wc(t) = I if |e(t)| < α where

α is a small positive constant.

IV. NUMERICAL SIMULATIONS

In this section we present results of numerical simulations

that support the developed theory.

A. Adaptive Parameter Estimation

In this section we present a simple two dimensional

example to illustrate the effect of condition 1. Let t denote

the time, dt denote a discrete time interval, and for each

t+ dt let θ(t) take on incrementally increasing values from

−π continuing on to 2π with an increment step equal to

dt. Let y = WTΦ(θ) be be the uncertainty to be estimated

online with W = [0.1, 0.6] and Φ(θ) = [1, e−|θ−π/2‖2

]. We

note that y is the output of a RBF Neural Network with

a bias term and one neuron. Figure 1 compares the model

output y with the estimate ν for the concurrent learning

parameter estimation algorithm of theorem 1 and the baseline

gradient descent algorithm of equation 4. The concurrent

learning gradient descent algorithm outperforms the baseline

gradient descent. Figure 2 compares the trajectories of the

online estimate of the ideal weights in the weight space. The

dotted arrows denote the direction of update based only on

current data, whereas the solid arrows denote the direction of

weight updates based only on stored data. It can be seen that

at the end of the simulation the concurrent learning gradient

descent algorithm of theorem 1 arrives at the ideal weights

(denoted by ∗) while the baseline gradient algorithm does

not. On observing the arrows, we see that the weight updates

based on both past and current data combine two linearly

independent directions to improve weight convergence. This

illustrates the effect of using recorded data when condition

1 is met. For this simulation the learning rate was set to

Γ = 5 for both concurrent learning and baseline gradient

descent case. Data points satisfying ν(t)− y(t) > 0.05 were

selected for storage and were used by the concurrent learning

algorithm.
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Fig. 1. Performance of online estimators
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B. Adaptive Control

In this section we present numerical simulation results of

adaptive control of a nonlinear system. Let θ denote the

angular position and δ denote the control input, then the

unstable dynamics under consideration are given by:

θ̈ = δ + sin(θ)− |θ̇|θ̇ + 0.5eθθ̇. (32)

A second order reference model with natural frequency and

damping ration of 1 is used, the linear controller is given by
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K = [1.5, 1.3], and the learning rate is set to ΓW = 3.5.

The initial conditions are set to x(0) = [θ(0), θ̇(0)] = [1, 1].
The model uncertainty is given by y = W ∗TΦ(x) with

W ∗ = [−1, 1, 0.5] and Φ(x) = [sin(θ), |θ̇|θ̇, eθθ̇]. A step

in position (θc = 1) is commanded at t = 20sec. Figure 3

compares the reference model tracking performance of the

baseline adaptive control law of equation 17, the concurrent

learning adaptive law of theorem 2, and the concurrent

learning adaptive law theorem 3 (Wc(t) as in 25). It can

be seen that in both cases the concurrent learning adaptive

laws outperform the baseline adaptive law, especially when

tracking the step commanded at t = 20sec. The reason

for this becomes clear when we examine the evolution of

weights, for both concurrent learning laws, the weights are

very close to their ideal values by this time, whereas for

the baseline adaptive law, this is not true. This difference

in performance is indicative of the benefit of parameter

convergence. We note that in order to make a fair comparison

the same learning rate (ΓW ) was used, with this caveat, we

note that the concurrent learning adaptive law of theorem

2 outperforms the other two laws. Note that increasing ΓW

for the baseline case may result in an oscillatory response.

Furthermore, note that approximately up to 3 seconds the

tracking performance of the concurrent learning adaptive

law of theorem 3 is similar to that of the baseline adaptive

law, indicating that until this time the set NΦ is empty. As

sufficient stored data points become available such that the

set NΦ starts to become nonempty the performance of the

concurrent learning adaptive law of theorem 3 approaches

that of the concurrent learning adaptive law of theorem 2.
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Fig. 3. Tracking performance of adaptive controllers

V. CONCLUSION

We presented a verifiable condition for guaranteeing global

exponential stability of tracking error and parameter error

dynamics in adaptive control problems when using Con-

current Learning. The presented condition requires that the

recorded data have as many linearly independent elements as

the dimension of the basis of the uncertainty. We also showed

that if the adaptive law is structured such that weight updates

on current data are given higher priority by restricting weight

updates based on stored data to the nullspace of weight

updates based on current data, then the same condition is

sufficient to guarantee global asymptotic tracking error and
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Fig. 4. Evolution of adaptive weights

weight convergence. Classical results require the exogenous

input signal to have as many spectral lines as the dimension

of the basis of the uncertainty (Boyd and Sastry 1986)

and are well justified for adaptive controllers that use only

current data for adaptation. Our results showed that if both

recorded and current data is used concurrently for adaptation,

then the condition for convergence relates directly to the

spectrum of the recorded data. Such concurrent learning

adaptive laws results in great performance benefits, and

can guarantee exponential stability and convergence without

requiring persistency of excitation.
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