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of Variations.
By GirBerT AMES BLiss.
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674 Buriss: The Problem of Lagrange in the Calculus of Variations.

INTRODUCTION.

The problem of the calculus of variations principally considered in this
paper is that of finding in a class of arcs

(1) yi =1y (z) (T =Srs=2;0=1,-+-,n)
satisfying a set of differential equations
(2) ¢a($:?/1,' ) 'Jyn;yl,;' N ',y.n’)==0 (a:l’. . .’1n<n)

and joining two fixed points in the space of points (z,4:,- - -, ¥a), one which
minimizes an integral of the form

(3) I=f f(z,yl,' s Yny yl,:' ! ':y",)dz~

A number of paragraphs are also devoted to the similar problem for which
the end-points are variable.

The problem seems to have been first formulated by Lagrange for the
general case here studied, though somewhat less precisely than in the state-
ment above. He also gave the multiplier rule described in Section 5 below
which had been previously deduced by Euler and himself for a number of
more special cases. Important additions to the theory have been made by
Clebsch, A. Mayer, Kneser, Hilbert, von Escherich, Hahn, Bolza, and many
others. Comprehensive treatments of the problem have been given by Bolza
[3] * and Hadamard [4], that of Bolza being the more complete. In Chapter
V below a brief sketch of the history of the problem is given with a biblio-
graphy of the more important papers on which the text of this paper is based.

Since the literature of the problem is extensive and widely scattered, and
since recent developments make possible important simplifications, even as
compared with the excellent treatments of Bolza and Hadamard, it seemed
justifiable to the author of this paper to attempt anew the presentation of
those parts of the theory leading to the necessary conditions for a minimum,
and to those sufficient to insure a minimum. The paper is a record of lec-
tures which the author has given at intervals for some years past at the Uni-
versity of Chicago.

Some special features of the methods used may perhaps be mentioned.
The deduction of the Euler-Lagrange multiplier rule in Sections 3-5 is based
upon suggestions in papers by Hahn [13,p. 271] and the author [16, pp. 307,
31%], but is different from the proofs hitherto given. The definition of

* The figures in the square brackets refer to the bibliographical list at the end
of the paper.
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normal arcs in Sections 7 and 8 is that of Bolza [19, p. 440]. A new ap-
plication of the definition, in Section 15, makes it possible to deduce without
the use of special methods the multiplier rule for the case when the func-
tions ¢, contain none of the derivatives y;’, as a corollary to the rule deduced
in Section 5. The discussions of the necessary conditions of Weierstrass and
Clebsch, and of the envelope theorem with the associated deduction of the
necessary condition of Mayer, are essentially those of Hahn [21] and Bolza
[3, pp. 603-10], but are greatly simplified by the use of the auxiliary formulas
of Section 21. The analytic proof of the necessary condition of Mayer in
Section 26, by means of the minimum problem associated with the second
variation, was suggested by the author for simpler cases [27] and applied
to the problem of Lagrange by D. M. Smith [28]. By means of the theory
of the minimum problem of the second variation the very elaborate theories
of that variation due to Clebsch [29], von Escherich [31], Hahn [33], and
others, can be much simplified, as the author has shown [35]. The applica-
tions important for this paper are in Sections 26 and 32. The theory of
Mayer fields in Sections 28 and 29, and the proofs of the sufficiency theorems
in Sections 30 and 31, have been simplified as far as seemed possible.

An effort has been made in each theorem to state clearly the underlying
hypotheses. The proof of the multiplier rule in Section 5, for example, is
independent of the assumption that the determinant R of page 11 is different
from zero. In many of the succeeding theorems, however, this assumption is
either made explicitly or else is a consequence of the property III” which
appears frequently.

CHAPTER 1.

THE EULER-LAGRANGE MULTIPLIER RULE.

1. Hypotheses. In this first chapter the famous multiplier rule of Euler
and Lagrange, describing the differential equations satisfied by a minimizing
arc for the problem of Lagrange stated in the introduction, is to be deduced.
For convenience in the following pages the set (z,91," * *, Yn, Y1,* = - 5 ¥n")
will be represented by (z,y,v").

As usual we concentrate attention on a particular arc E,. with the equa-
tions (1) and inquire what properties it must have if it is to be a minimizing
arc. The analysis is based upon the following hypotheses:

(a) the functions y;(z) defining E,. are continuous on the interval z,z,
and this interval can be subdivided into a finite number of parts on each of
which the functions have continuous derivatives;
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(b) in a meighborhood R of the values (z, y, ') on the arc E;, the
functions f, ¢, have continuous derivatives up to and including those of the
fourth order;

(c) at every element (z, y, ') on E,, the m X n-dimensional matrix
| ¢ap, || has rank m.

The subscript y;” here indicates the partial derivative of ¢, with respect
to y/. In the following pages literal subscripts, following the indices of
functions and elsewhere, will be frequently used to indicate partial derivatives.
The hypothesis (¢) implies that the equations ¢o=0 are all independent
near E;, when regarded as functions of the variables y;’.

R. Ezamples. A common example of a Lagrange problem is that of the
brachistochrone in a resisting medium [3, p. 5]. The differential equation of
the motion [5, p. 44] becomes for this case

dv/dt = d?s/dt* = g (dy/ds)— R (v),

where R(v) is the retardation on the particle per unit mass due to the
resistance of the medium. Multiplying by ds/da =(ds/dt) (dt/dz)= vdt/dx
we find the equation

(4) w =gy —R(v)s =gy —R(v) (1 +y*)*

where the primes denote derivatives with respect to z. The problem is then
to find among the pairs of functions %(z), v(x) which have the end-values

Y(z) =91, v(z)=nv1, y(22)= Y

and satisfy equation (4) one which minimizes the time integral

1= " (asm— (/) @+ y7)¥a

It should be noted that this problem is not precisely like that stated in sec-
tion 1 since the value of v is not prescribed at # —x,. It is in fact a problem
of Lagrange with second end-point variable.

The so-called isoperimetric problems form a very large class, and all of
them may be stated as Lagrange problems. For example we may seek to find
among the ares y = y(2) (2. =z = z.), joining two given points and having
a given length, one which has its center of gravity the lowest. This
is the problem of determining the form of a hanging chain suspended between
two pegs at its ends. Analytically the problem is to find among the functions
y(z) (2, =z = z,) satisfying the conditions
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y(@) =91, y(@2)=1s, L (14 y2)tdos —1

one which minimizes the integral

(5) I= [ "y(1 4 y*)hde.

This problem may be made over into one of the Lagrange type by introducing
the new variable

2(@)= [ (14 yhis

satisfying the differential equation 2 =(1 4 y2)%. The problem is then to
find among the pairs y(z), 2(z) satisfying y(z:)=1y1, 2(2:)=0, y(2:)= ¥,
z2(z:)=1, 7 =(1 + y’?)* one which minimizes the integral (5).
More generally suppose we wish to find among the functions y(z)
satisfying
y(@) =y y(z:)=9

fwzg(% v,y )de =k, fw‘h(z, v,y )de =1

one which minimizes
. T2
(6) 1— ["f@9.v)d

The problem is equivalent to that of finding among the sets of functions y(z),
u(z), v(z) satisfying

y(@1)=1vy1, u(z:)=0, v(z)=0,
y($2)= Yo, u(x2)= k: 'l)($2)= Z;
v=g(z,3Yy), V=~hz9Y),

one which minimizes the integral (6). Evidently a similar transformation
of the probiem could be made no matter how many isoperimetric integrals
were to have prescribed constant values.

These illustrations suffice to show the wide applicability of the Lagrange
problem.

3. Admissible arcs and variations. An admissible arc
(") yi =yi(z) =15 =c=uz)

is one with the continuity properties (a) of Section 1, whose elements (z, v, ¥’)
all lie in the region M, and which satisfies the equations ¢, =0. If a one-
parameter family of admissible ares
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(8) ?/i=?/i($:b) ("/=1: . ':n)

containing a particular admissible arc E,, for the parameter value b = b, is
given, the functions

ﬂi($)= yib(% bO) (i=15' . ':n),

where the subscript b indicates as usual a partial derivative of y:(z,b), are
called variations of the family along E,.

In the tensor analysis it is agreed that a product GizHj shall stand for
the sum 3;@izHy. In other words, when an index ¥ occurs twice in the same
term it is understood that the term really represents the sum of n terms of
the same type. The index with respect to which the sum is taken is called
an umbral index.

With this convention in mind we may define for the arc E;, mentioned
above the so-called equations of variation by the formula

(9) <I)a(‘x—' 7 77,)=¢uy{7]i +¢M/t"’]i’=0 (“= 1, 'Jm)

in which ¢ is an umbral index with the range 1,- - -, n, and the coefficients
day:> Pay,’ are supposed to have as arguments the functions y;(z) belonging
to Ei.. These equations are satisfied by the variations »;(z) along E.. as
we may readily see by substituting the functions (8) in the equations ¢, =0,
differentiating for b, and setting b =1"b,. A set of functions 5;(x) with the
continuity properties described in (a) of Section 1 and satisfying the equa-
tions of variation (9) is called a set of admaissible variations, a nomenclature
which is justified by the following very important theorem:

For every set of admissible variations ;i (x) along the admissible arc E.
there exists a one parameter family (8) of admissible arcs containing Ei. for
the value b =0 and having the functions ni(z) as its variations along E..
For this family the functions yi(z,b) are continuous and have continuous
derivatives with respect to b for all values (x,b) near those defining Eiz,
and the derivatives yiz(z,b) have the same property except possibly at the
values of x defining corners of Eis.

To prove this theorem we enlarge the system ¢, — 0 to have the form
(10) 1=O,"’;¢m=0, Pmer = Zm+1," " > Pn=—2n

where Zms1,* * *,2n are new variables and ¢ém.i, * * °, ¢o are new functions
of , y, ¥’ such that the functional determinant | d¢:/dys’ | is different from
zero along E;..* By means of the last n — m of these equations the functions

* For a proof of the possibility of this adjunction see Bliss [16, pp. 307, 312].
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yi(x) belonging to E,, define a set of functions z,(z) (r=m +1,- - -,n).
We have a corresponding system of equations of variation

(11) <I)1=O,"‘,‘I’m=0, q’rn+1=Cm+1,"',<I)n=cn

along E.», the last n — m of which define a set & (z) (r=m +1,- - -,n)
corresponding to every set of admissible variations 7;(z).

Suppose now that the set 7;(z) is an admissible set of variations for E.
defining a set {-(z) by means of equations (11). Since the functional deter-
minant | d¢;/0y:’ | is different from zero along E;, the existence theorems for
differential equations * tell us that the system

(12) ¢a=0, ¢r=2(2)+ b (z) (a=1,-: -, m;r=m-+1, - -,n)

determines uniquely a one-parameter family of solutions y; = y;(, b) with the
initial values y;(2:)+ byi(2:) at € = «,. This family contains E,, for b =0
and has variations which have the initial values 5;(2,) at =z, and which
satisfy the equations (11) with the functions ¢-(z). The variations of the
family are therefore identical with the functions 5;(z) originally prescribed,
since when the ¢,(z) are given there is only one set of solutions of equations
(11) with given initial values 5;(z:) at z = 2.

Some slight modifications in the existence theorems referred to are re-
quired in order to prove the continuity properties of the family y; = yi(z,b)
described in the theorem. These are due to the fact that the functions 2;(z)
defined by the arc E,, are continuous but not necessarily differentiable. The
results described can be derived without difficulty, however, when the arc Ei,
has no corners. If the arc E,, has corners the existence theorems must be
applied successively to the z-intervals between the cornmer-values of z with
initial conditions at the beginning of each interval so chosen that the func-
tions y;(x, b) are continuous.

CoroLiARY. If a matriz

M ° " " M

/> . T

whose columns are u sets of admissible variations along an admissible arc
Ei», ts giwen, then there exists a p-parameter family of admissible arcs
Yi =Y (2, b1, * ,bu) containing Ei, for the values by=" - - =bp=0 and
having the functions nis (=1, - +,n) as its variations with respect to bs
along Ei.. The continuity properties of the family are similar to those de-
scribed in the preceding theorem.

* Bolza [3, pp. 168 ff.]; Bliss [14, 15].
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This is proved as above with the equations
$a=0, ¢r=2r(2)F badrs + -+ * 4 bplrn
(=1, - ,m;r=m-+1,---,n)
replacing equations (12).
4. The first variation of I. If the functions y;(z, b) defining a one-

parameter family of admissible arcs containing E;» for b — 0 are substituted
in I then I becomes the function of b defined by the formula

10)= [ le.y(@b), ¥ (2,0)1d.

The derivative of this function with respect to b at the value b =20 is the
expression

(13) L= [ Guars + fuen o

where 4 is as agreed an umbral symbol and the arguments of the derivatives
of f are the functions ;(z) defining E:».

The expression I, (n) is called the first variation of I along the arc E..
For the proofs of the succeeding sections it is desirable to have another form
of it. Let Ao be a constant and Ai(z) (1=1,- - -,n) functions of z on the
interval z:2,, and let F' be defined by the equation

F(z, 9, ¥, A)=Aof + M1+ * * + Angpn.
Since the variations 7, ¢ satisfy the equations (11) the value of Aol;(n) is not
altered if we add the sum Ag®q -+ Ar(®r — &r) to its integrand. Then we have

&
(14) ML) = [ (Fuini + Fuend — M) da.

So far the functions A;(z) have been entirely arbitrary. We now deter-
mine them so that the equations

(15) Foo = [ Fudo+ s (i=1- ", n)
&1

are satisfied for an arbitrarily selected set of constants Ao, ¢;. This is possible
since if we introduce the new variables

(16) | vi=Fy = Afy, + sy + - + Mnuyy’
(t=1,---,n)

the equations (15) are equivalent to the equations and initial conditions

(17) dvi/dz = Fy,— Aiyvs + - -+ Ainvn + Bi, vi(z1)=cs
(i=15' ' ':n)
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the coefficients 4, B being found by solving the equations (16) for A;,- + +, An
and substituting in Fy,. The equations (17) have unique solutions v;(z)
which are continuous on the interval z;z. and which have continuous deriva-
tives except possibly at the values of » defining the corners of E;, where the
coefficients A, B may be discontinuous. Equations (16) then determine
uniquely the functions A;(z) continuous except possibly at the corner values
of z.

With the help of equations (15) the expression (14) for A.li(n) now
takes the form

(18) Aoly ()= — st/\r&'dﬁ? — Cini (21) + i (22) Fy, (22)

where Fy,' (z,) represents the value of F,,; at z =,. This auxiliary formula
will be useful in the next section.

5. The Euler-Lagrange multiplier rule. We are now in a position to
deduce the famous multiplier rule giving the differential equations which must
be satisfied by a minimizing arc E,, for the Lagrange problem. The rule was
discussed for a special case by Euler in 1744, and generalized by Lagrange
whose proof was exceedingly faulty. One difficulty with Lagrange’s proof
was overcome by Mayer in 1886, and the proof was finally completed when
Kneser in 1900 and Hilbert in 1905 removed the last serious defects.* The
proof given here is quite different in some respects from those in the literature
and is an extension of them.

Suppose that a matrix whose columns are 2n -} 1 sets of admissible
variations

Mir T Mi,2men
(19) .-
M1 °  ° ° Mn,2n41

is given. We have seen above that there is a (2n - 1)-parameter family
Yi(, by, * *, bansa) of admissible ares containing By, for by =" * * = bap,y =0
and having the columns of the matrix above as its variations. When the
functions defining this family are inserted in the integral I that integral
becomes a function I(by,- * -, bensa) which for by =" * + = byn,, = 0 takes
the value I, of the integral along the arc Ei,. If we let (21,911, * *, Yn1)
and (@2, Y12, * *, Yae) Trepresent the two end-points on the arc E;, then the
equations

* For the details of the objections to Lagrange’s proof and an excellent historical
sketch see Bolza [3, p. 566].
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I(b1, Y b2n+1)=Io + u,

(20) %(931; bl, Y b2n+1)= Yia,
Yi (5172, bu Tty b2n+1)= Yiz,
(i=1,--,n)
in the variables w, by, - -, bans have the initial solution (u,b1,* * *, b2ne)
=(0,0,- - -,0). If the functional determinant of the first members of these
equations with respect to by,* -+ *, bonyy is different from zero at this solution,

then well-known implicit function theorems tell us that the equations (20)
have solutions not only for w =0 but also for every value of u near u==0.
There are therefore arcs in the family yi(«, by, © -, bonss) joining the end-
points 1 and 2 of E,, and giving I values I, + u greater than I, when u is
positive, and similar arcs giving it values less than I, when u is megative,
which is impossible if E;. is a minimizing arc. Hence the functional deter-
minant of the equations (20) must be zero at (u, b1, " -, bans1)=(0,0,- -+, 0).
The value of this functional determinant is

11(’71) SR 1 (ﬂznu)
M11 (xl) T T Mena (271)
(21) "7n1(fl31) ot "ln,2n+1($1)
ma(@2) 0 Prenea (@)
ma(@2) ¢ ¢ T, 2ns1 (T2)

where in the first row only the second subscripts of the »’s are indicated.
It must vanish for every choice of the matrix (19) of admissible variations.
Suppose p < 2n + 1 the highest rank attainable for (21) and suppose the
matrix (19) chosen so that this rank is actually attained. Let Ao, ci, di
(¢==1,- - -, n) be a set of constants not all zero satisfying the linear equa-
tions whose coefficients are the columns of the determinant (21). Normally
the constant A, will be different from zero, but in Section 7 the case Ay =10
is discussed in more detail. In both cases the equation

Nol1 () + cini (21) + dini (22)=0

must be satisfied for every set of admissible variations 5;(z) whatsoever, since
otherwise by deleting a suitable one of the columns of the determinant (21)
and replacing it by a set I:(5), i (21), ni(22) which does not satisfy the last
equation, the determinant could be made to have the rank p 4 1. If the first
term of the last equation is replaced by its value (18) the equation takes
the form
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— f " Moz + i () [di + Fye (22)] =0

and it must be satisfied for every choice of the admissible variations #:(z),
i.e. for every choice of the functions ¢,(z) and the end values 5;(z.), since
for every such choice there is a set of admissible variations defined by the equa-
tions (11). It follows readily that the conditions

(22) Ar(2)=0, di=—"Fy (22)
(r=m-41,---,n;i=1,---,n)

must be satisfied. For the set of multipliers A, Ai(z) (1=1,- - -,n) for
which the equations (15) are satisfied it is evident then that all are identically
zero except the first m 4 1. The first m 4 1 of them are not all identically
zero, however, since otherwise ¥ would vanish identically and equations (15)
and (22) would require the constants ¢;, d; all to be zero as well as Ao, which
we know net to be the case. Hence we have the following theorem:

For every minimizing arc E,. there exists a set of constants c;
(t=1,- - +,n) and a function

(23) F(z,y, vy, M)=Af +M(2)p1 + - -+ An(2) b
such that the equations
(24) Fu—= | Futato

[%

are satisfied at every point of Ei.. The constant Ao and the functions Aq(z)
(e=1,- - -, m) are not all identically zero on z,z, and are continuous except
possibly at values of x defining corners of E;..

This is a modification of the Euler-Lagrange multiplier rule. We get
the rule in its classical form by differentiating the equations (24). The two
following corollaries are immediate :

CorOLLARY I. THE EULER-LAGRANGE MULTIPLIER RULE. On every sub-arc
between corners of a minimizing arc E., the differential equations

(25) ¢‘a($,y,?/)=0, (d/d‘%)Fm' =Fy, (a=13' cr,my =1, - ',n)
must be satisfied, where F is the function (23).

CoroLiARY II. THE CORNER CONDITION. At every corner of o minimizing
arc Ei, the conditions

(%6)  Fy [2,9,4'(2—0), Mz —0)]="TFy [z, 9,9 (z 4 0),A(z + 0)]
(t=1,---,n)
must be satisfied.
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Condition (26) is a consequence of the fact that the second member of
(R4) is continuous at a corner as well as elsewhere.

There is a third consequence of the equations (24) which is also im-
portant. If the functions and multipliers belonging to E:, are yi (), Ao, Aa(2)
then the n 4 m equations

Py [o9(2), 2 0] — L Fylzy(2), ¥ (), M(z) 1de + c,

¢a[03;y($),2]=0 (i=1>"':n;a=1"":m)

have as solutions the n 4 m functions z; = yi’(z), pa =Aa(z). If the func-
tional determinant
By oy Pay;’

R I—=
Payy’ 0

of the first members of these equations with respect to the variables zi, p, is
different from zero at a point of E,, then the existence theorems for implicit
functions tell us that the solutions zi —=yi’(¢), pa=2Aa(z) of the equations
have continuous derivatives of as many orders as the equations themselves have
continuous partial derivatives in the variables z, 2i, us. Between corners this
is at least one, and we have the following third corollary:

CoroLrary III. THE DIFFERENTIABILITY CONDITION. Near a point of
a minimizing arc Ei» at which the determinant R is different from zero the
functions y;(x) defining E., have continuous second derivatives and the multi-
pliers Ao(z) have continuous first derivatives.

The proof given above for the FEuler-Lagrange multiplier rule is an ex-
tension of the ones ordinarily given because the hypothesis (c) Section 1 is
less restrictive than usual. The unsymmetrical assumption commonly made
is that a particular one of the determinants of the matrix | ¢y || stays
different from zero at every point of E,. The enlargement of the system
¢a =0 to the system (10) is the device which permits the generalization here
made. Equations (24) are recent developments which were unknown to Euler
and Lagrange and which are not always deduced even in modern presentations
of the subject. They justify the useful Corollaries IT and III besides the
multiplier rule.

6. The extremals. An admissible arc and set of multipliers

(R7) Yi=9i(2), Ao, Aa=2Aa(2)
(i=1, - ,nya=1, " m;s, S2=2,)

is called an eztremal if it has continuous derivatives yi’(2), ¥’ (2), A’ ()
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on the interval z,2,, and if furthermore it satisfies the Euler-Lagrange equa-
tions (25). The minimizing curves for applications of the theory of the
calculus of variations are found among the extremals and it is highly desirable,
therefore, that we should examine more thoroughly the differential equations
defining these curves and determine how large a family the extremals really
form. A minimizing curve must always be a solution of the equations (25),
even if it has corners or is without the derivatives y;”(z), A (2) mentioned
above, but such minimizing curves are relatively rare.

The most direct way to characterize the family of extremals satisfying
equations (25) is to replace these equations by the equivalent system

(d/dw)Fm" '_Fm = Fm'w + Fﬁ'ﬂky]ﬂ’ + Fm'ﬂk' yk” + Fm")\phﬂ,_Fﬂ& =0,
(28) (d/dx) ba = Pax + ¢aﬂkyk, + Pays’ fI/k” = 0>
Pa [xb 1/(951); y,(xl)] =0.

The first two of these equations are linear in the variables #i”, Ag’ and
the determinant of the coefficients of these variables is precisely the deter-
minant R of page 684. Near an extremal E;, on which R is different from
zero these two equations can therefore be solved for yi”, Ag" and they are
readily seen to be equivalent to a system

(R9) dyp/de =, dy'/dv= Gu(z,y,y,)N), drg/de= Hg(z,y,y,\)

in the so-called normal form.* XKnown existence theorems for differential
equations now tell us that an extremal E,, along which R is different from
zero is a member of a family of solutions of equations (29) depending upon
2n 4 m arbitrary constants, since the number of dependent variables yx, ¥,
Ag in these equations is 2n 4 m. If we impose further the m relations in the
third row of equations (28) then m of these constants will be determined as
function of the 2n others, so that the final result is that an extremal along
which R is different from zero is a member of a 2n-parameter family of
extremals satisfying equations (25).

For theoretical purposes the properties of the 2n-parameter family of
extremals may be determined most conveniently by a second method.t For
the purpose of introducing » new variables v; and eliminating the n -4 m
variables ¥, A let us consider the system of n + m equations

(30) Fi/c" (17, Y, :[/1 ’\)= Vi, an(%, Y, y’): 0.

The functional determinant of the first members of these equations with respect

* Bolza [3, p. 589].
+ Bolza [3, p. 590].
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to the variables %, Ag is again the determinant R of page 684. Known
theorems on implicit functions tell us then that near an extremal E;. on
which R is different from zero the equations (30) have solutions

(31) g =W(z,y,v), Ap=Tg(z,9,v)

possessing continuous partial derivatives of the first three orders since the
first members of equations (30) have such derivatives. The system of equa-
tions (%5) is now equivalent to the system in normal form

(32) dyk/d$ = ‘I’k(x; Y, 7)), dvy/da = F!Ii [(13, Y, \I,(x: Y, ’l)‘), H((IJ, Y, 7))]

in the variables z, yx, v Evidently every solution yx (), Ag(z) of equations
(5) defines a set of functions vx(z) satisfying equations (30) and (31), and
therefore also the system (32). Conversely every solution yx(z), vx(z) of
equations (32) defines a set of functions Ag(z) by means of equations (31)
with whick it satisfies equations (30)} and therefore also the original system
(25).
Through every initial element

(Zos Yos Vo) =(To; Y105~ * "> Ynos V105" * * 5 Umo)
in a neighborhood of the set of values (z,y,v) on the extremal E,, there
passes a unique solution
(33) Yi ==Y (T, To, Yo, Vo), Vi =i (T, To, Yo, Vo)

of the equations (32) for which the functions yi, ¥is, vi, viz have continuous
partial derivatives of the first three orders since the second members of equa-
tions (32) have such derivatives. The equations expressing the fact that the
solutions (33) passes through (zo, %0, vo) are

Yio=1Yi (330: Zos Yo, 7}0)’ Vio == ;i (1170, Zos Yos vo):
and from them we find

i =(0/0%x0) Yi (Zos o, Yo, Vo), 0 =(0/9vx0) Yi (To, Tos Yos Vo)

34
B 0 (0/0ga0) 04 0 T Yor 00), B ==(8/00ka) 01 (30, T, Yoy 00),

where 8i is 1 or 0 when k=1 or k 41, respectively. Since every curve of
this system (33) has on it an initial element for which =2, we lose none
of the curves if we replace z, by the fixed value ;. Let us for convenience
rename the constants yio, vio and call them as, b; respectively. Then the
family (33) takes the form

(35) yi=vi(z,a,b), vi=wi(z,a,b)
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and it follows readily from equations (34) that the determinant

By 0ys
B b
(%) o
aak 0bk

has the value 1 at z ==,. When we substitute the functions (85) in equa-
tions (31) a set of functions Ay(z,a,b) is determined, and we have the
final result:

Every extremal B, along which the determinant R is different from zero
is a member of a 2n-parameter family of extremals

(37) Yi=19i(2,a,b), A=2As(z,a,b)

for special values ao, bo of the parameters. The functions Yi, Yiz, Vi, Viay, Ag
have continuous partial derivatives of the first three orders in a neighborhoad
of the values (z,a,b) defining E.», and at the special values (&1, ao, bo) the
determinant (36) is different from zero.

Thus. again we have established the existence of a family of extremals
containing 2n arbitrary constants.

V. Normal admissible arcs. An admissible arc y; = yi(z) (2. =z = 2,)
is said to be mormal if there exist for it 2n sets of admissible variations for

which the determinant

M11 (-'151) T Men (5131)
Nn1 (931) ot 77n,2n($1)
(38) "111(9:2) ot "71,27»(-732)
Nn1 (xz) R/ ) (372)

is different from zero. It is normal on a sub-interval &&, of z,z, if there
exist 2n sets of admissible variations for which the last determinant is different
from zero when z; is replaced by &, and z, by &. In the sequel we shall
frequently need to restrict our proofs to arcs which are normal on every
sub-interval of x,x,.

These definitions doubtless seem at first sight somewhat artificial. If an
admissible arc E;. is not normal, however, it is in general true that no other
admissible arcs near it pass through the end points 1 and 2 of E;., and hence
that near E,, the class of arcs in which we seek to minimize the integral I
has in it only E,, itself. The minimum problem in such a case would not be
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of interest. We shall presently see that there are always an infinity of ad-
missible arcs through the ends of E;, when E,, is normal.

A necessary and sufficient condition that an admissible arc be normal is
that there exists for it no set of multipliers Ao, A (z) having Ao = 0 with which
it satisfies the equations.

Py — f * Fdz+ o
'S

For a normal extremal arc multipliers in the form Ao =1, Ae(z) always exist
and in this form they are unigue.

The processes of Section 5 show that an admissible arc which is not
normal has surely a set of multipliers with A, =0, since the linear equations
whose coefficients are the columns of the determinant (21) have for such an
arc a set of solutions Ao, ¢;, di with A, =0. The first sentence of the theorem
will then be justified if we can show that a normal admissible arc has no set of
multipliers with Ao =0.

Suppose that there were a normal admissible arc with a set of multipliers

having Ao =0. Its function ¥ would have the form
F=)\1¢1+' © Amdm

and every set of admissible variations along it would satisfy the equation

Z2 @2
0— f " Nado= [ (Fyonu+ Poond)da = Ty (@) (22)— P (@2)7:(22)
&1 @y

on account of the equations of variations (9) and the equations of the theorem
above. Since there is a determinant (38) different from zero it follows that
the derivatives Fy,» would all vanish at z, and 2, on our extremal. If we define
the variables v; again by equations (30), or by equations (16) with Ao —= Ay
=" =, =0, then in equations (17) the coefficients B; and the initial
values v;{21)=Fy, (2;) would all vanish. The only continuous solutions
of equations (17) under these circumstances are the functions v; (2)=0, and
equations (16) then imply that the multipliers A;(2) would all vanish identi-
cally, which is not the case. Hence a normal admissible arc can not have a
set of multipliers with constant multiplier A, equal to zero.

Wher an extremal arc has multipliers with A, =0 the multipliers
can evidently all be divided by A, to obtain a set of the form Ao =1, Aq(2).
If there were a second set Ay =1, Aq(z) the differences 0, Aq — A would also
be a set of multipliers for £, with the constant multiplier zero. We have just
seen that this is impossible for a normal extremal unless Ay, — A, =0, so that
the multipliers Ay =1, Aq(z) of a normal extremal E;, are unique.
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In every neighborhood of a normal admissible arc E.» there are an in-
finity of admissible arcs with the same end-points 1 and 2.

To prove this consider the set of 2n admissible variations for E;, ap-
pearing ir the determinant (38) and an additional set 5;(z). From the
results of Section 3 we know that there is a family of admissible arcs
Yi =Y :i(2,b,04, b, - +,bsm) containing F;, when b=0b;=" - - =bpm=120
and having the sets i (), nis(2z) (s=1,- - -,2n) as its variations. The
2n equations

(39) Y'l (wl) b; bl; Y bzn)= Yi1, Y'b (xZJ b; bl) Y bzn)= Yiz

have the initial solution (b, by, - -+, b22)=(0,0, - -,0) at which the func-
tional determinant of their first members with respect to by, - -, ban is the
determinant (38) and different from zero. Hence by the usual implicit func-
tion theorems these equations have solutions b, = B;(b) (s=1, - - -, 2n)
with initial values Bs(0)= 0, and the one parameter family of admissible ares

(40) yi=Yi[2,b, Bi(D)," * -, Ban(b)] = yi(z,b)

defined by them contains the extremal E;, for b =0 and has all its curves
passing through the points 1 and 2.

CoroLiARY. If each function ui(z) of a set of admissible variations for
a normal admissible arc E,, vanishes at x, and z, then there is a one-parameter
family of admissible arcs yi = yi(z, b) passing through the points 1 and 2,
containing By, for the parameter value b =0, and having the set 5;(x) as its
variations along Ei,.

Let us suppose that in the construction of the family (40) the set 5i(z)
of the Corollary has been used. Since these functions all vanish at z; and .
we find from equations (39), by differentiating with respect to b and setting
b =0, that

7i5(€1) Bs"(0)= 0,  7is (22) Bs"(0)=0.

Since the determinant (38) is different from zero these imply that all the
derivatives B,”(0) vanish. Hence the family (40) has the variations

Yio(z, 0)=1i(2)+ Y, Bs (0)=ni(2).

We know already that the family contains E,, for b =10 and has all of its
curves passing through 1 and 2.

8. Problems with variable end-points.* It happens that a number of
important applications of the theory of the Lagrange problem are of a slightly

* See Bliss [16].
2
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different type from that described in Section 1. In order to include them as
special cases we must permit variable end-points for the curves of the class
in which we are seeking a minimum for I. We shall endeavor to find among
the arcs

yi = yi(z) (t=1--,n; 5 =c=1)

satisfying the system of equations

¢a(z)?/:?/)=0 (a=1:' :m<n)
and having end-points satisfying the equations
(41) Yu (21, y(21), T2, y(22) ] = 0

(p=1--,p=2n+2)

one which minimizes the integral I. The number p must not exceed the
number 2n 42 of end values @i, %1, %2, ¥i- since otherwise equations (41)
would in general have no solutions. The problem of Section 1 is a special
case of this one with the system (41) having the special form

Ty — Oy = Yir — Bir = T — Uz = Yis — Biz=0

for which p has exactly the value 2n -+ 2.

Suppose now that E;, is a minimizing arc for the new problem with end
values (21, Yi1, T2, ¥iz). We add to the hypotheses (a), (b), (¢) of Section 1
the assumption

(d) the functions yu have continuous derivatives up to and including
those of the fourth order near the end-values (&1, ¥is, @2, ¥i2) of Eis, and at
these values the p X (2n 4 2)-dimensional matrix

(4:2) ” Vpay 'Pl‘l/u Yuos Yo "
has rank p.

The last part of this assumption implies that the equations g = 0 are all
independent.

It is evident that the arc E;, must minimize I in the class of admissible
arcs having the same end-values, and 'we can infer at once that it must have
a system of multipliers with which it satisfies the necessary conditions deduced
in Section 5. But it is important that we should analyse the situation some-
what more closely. Let

(43) yi=1yi(z,0) [2.(0)=2=2:(D)]

be a one-parameter family of admissible arcs containing E,, for b = 0 whose
end-values satisfy the equations
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Yul{@1(8); yi[2:(D), D], @2 (b)), ya[w2(b), b]} = 0.

If we use the notations #:5(0) = &, #.3(0)= £, the derivatives of these equa-
tions with respect to b for b = 0 are the system

(44) Y (€, 1) = (Yuor + Yy i) & 4 Yo (1)
+ (‘l’l’«"'e + ‘l’#ﬁlwy,’i?)& + ‘/’M/ie’?i (xZ) .

These are the equations of variation on E;, for the functions yu. When the
family (43) is substituted in the integral I we find for the first variation the
formula

Il(f} "7)= j;mz (fﬂlmi + fm"'?i’)d@‘ + f(x2)§2 —f($1)€1

where f(z;) and f(z.) are the values of f at the points 1 and 2 on E;,. With
the help of the expression (18) we may also write

(45)  ML(Em)=— |, Aede — Mof (21)&
— cini (21) + Aof (@2) &2 + i (22) Fyyr (2)

where the constants ¢; may be arbitrarily chosen.

A set of admissible variations for the present problem is a set &, &, 7:(z)
in which ¢; and ¢ are arbitrary constants and the functions 7;(z) form a set
of admissible variations in the sense of Section 3. For a matrix

&1 - - - f1,p+1
YRR 52,p+1
M1 " Mpsa
M1 ° ° ° TMn,pa

whose columns are sets of admissible variations there exists a family

Yi =yi($, by, - - P bml)

46
( ) $1(b1;' : ':bp+1)§$§$2(b1,' : ‘,bp+1)

containing Ey, for (bs,* * +, bp)=(0,* - -, 0) and having the sets &.o, &0,
nic(z) (e=1,- - -, p-+ 1) as its variations along E;, with respect to the
parameters bo. Such a family is that of the Corollary on page 679 with the
functions

@p(by, "+ + 5 bpu) = Tp + bopo, (p=1,2)

adjoined. When the equations of the family (46) are substituted in the in-
tegral I and the functions yy, these become functions of by, - *, bps. The
first members of the equations
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I(bh T, bp+1)=10 +’ u,
l/’#(blz ) bp+1)= 0
must have their functional determinant equal to zero for (bi,- * -, bp1)

=(0,- - -,0) by the same argument as that on page 682. This determi-
nant is

I, (51; 771) R (fpu; "Ip+1)
(47) .\I’l (51; "71) S 71 ($p+1; "717+1)
Yp(é,m) = - Up(&pers par)

in which only the second subscripts of the sets &, &0, 7ic have been indicated.
From its vanishing we argue as on page 682 that there exists a set of con-
stants Ao, ds,* - -, dp not all zero such that the equation

Mol1 (€, 7+ dp¥y (& 7)=20

must hold for every set of admissible variations &, &, 5:(2). With the help
of formulas (44) and (45) this becomes

— Jj’ Arlrdz 4 [— Aof (21) 4 dp (Yo, + Yy ') ] &

4 [Aof (%2) + dp(Ypo, + iy i) ] &2
+ [— ¢i + dpy.] ni(21)
+ [Py (22) + dyuy,,] mi(22)=0.

After the arbitrary constants ¢; in (45) have been so chosen that the coeffi-
cients of the terms in #; () in the last expression all vanish it follows by an
argument like that of page 683 that Ay,=---=A\,=0 and that the
coefficients of &, &, »i(2.) also vanish. This result is equivalent to saying
that all the determinants of order p + 1 of the matrix

—Aof (21) — By, (21) Aof (22) By, (22)
Yo, + ‘I”l’-ﬂuyill Yuyi Yuz, + ‘PPIItz:’/iZ, Ypyis

are zero, since the constants ¢; are from equations (15) the values Fy, (z.),
and since the multipliers 1, dy,- - -, dp satisfy all the linear equations whose
coefficients are columns of the matrix. The rank of the last matrix is un-
changed when one column is multiplied by a factor and added to another, and
Aof = F on the admissible arc E;z, so that these results can be formulated as
follows:

For every minimizing arc for the problem of Lagrange with variable end-
points there exists a set of constants ¢; (i=1,- - -, n) and a function
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F(2,9, 9, \)=Af +M(2) b1+ * =+ (@) b

such that the equations
&z
Fyo = f Fudo+ o
&1

are satisfied at every point of Ei.. The constant Ao and the functions Ag(z)
(a=1,- - -, m) are not all identically zero on =z iz, and are continuous
except possibly at values of z defining corners of Ei,. Furthermore the end-
values of Ei, must be such that all the determinants of order p -1 of the
matric

—F (1) + yu'Fyy (21) — Fyy (1) F(22)—yi'Fy (22)  Fypr (a2)
‘I’Maa ¢IWu ']’l-'@z ‘p}ww

are zero. These last conditions are the so-called transversality conditions.

(48)

It is clear that the multipliers Ao, Aa(z) can not all vanish identically
on z,xz,. Otherwise the constants dy, - -, dp would have to satisfy the linear
equations whose coefficients are the columns of the matrix (42) which has
rank p. The constants Ao, dy, - * -, dp would then all be zero which is not
the case.

9. Normal admissible arcs for problems with variable end-points. A
normal admissible arc for the problem of Lagrange with variable end-points
is one for which there exist p sets of admissible variations &, &, 7ip()
(p=1,- - -, p) such that the matrix

¥ (ém) - 0 Uulépm)
(49)
Yp(énm) - - Bléym)
is different from zero. In the elements of the matrix only the second sub-
scripts of the sets &y, &op, mip(2) are indicated.

A necessary ond sufficient condition that an admissible arc for the
problem of Lagrange with variable end-points be normal is that there ewists
for it no set of multipliers Ao, Aa(z) having Ao==0 with which it satisfies
the conditions of the last theorem. For a normal extremal arc satisfying the
conditions of the last theorem multipliers in the form Ao=1, Aa(z) always
exist and in this form they are unique.

The proof of Section 8 shows that an admissible arc which is not normal
has surely a set of multipliers with A, =0, since the linear equations whose
coefficients are the columns of the determinant (47) have for such an arc
solutions Ao, dq, - * -, dp with Xy =0.
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Suppose now that there were a normal admissible arc satisfying the con-
ditions of the theorem of Section 8 and having A = 0. Since the matrix pre-
ceding (48) is of rank less than p -4 1 we should then have constants d
(u==1,- - -, p) such that

F(21)= du(Ype, + Yuy.¥"i1),
By (21)= dupyers
— F(22) = du(Yuas + Yiifiz)
—Fy, ($2)= Ay

The numbers F(z;), F(z.) would be zero since Ao==0 and along an ad-
missible arc F==\,f. After multiplying these equations respectively by
&1, mi(21), &2, 9i(22) and adding we should have

01 (21) Py (@1)— i (22) Fyy (22)= dp¥u (&, ).

The first member of this equation would vanish for every set of admissible
variations »;(z), as was proved in Section 7, page 688, and the second member
would necessarily have the same property. Since there is a determinant (49)
different from zero we should then have dy==0 for every p, and equations
(50) show that Fy, (z,) and Fy (z.) would all vanish. As in Section 7,
page 688, this would necessitate the vanishing of Ao, Ay (2) which is impossible.
The proof of the uniqueness of the multipliers Ao =1, Aq(2) is precisely that
of Section 7.

(50)

In every neighborhood of a normal admissible arc E., for the Lagrange
problem with variable end-points there is an infinity of admissible arcs
satisfying the end conditions yu = 0.

The proof is similar to that of the corresponding theorem in Section 7.
Select arbitrarily an admissible set of variations &, &, 7i(2) and p other such
sets &1y, Eop, nip(z) with determinant (49) different from zero. There is a
p -+ 1-parameter family

51 ’lJi=Yi($:b:bl;‘ : ':bp)
(61) Xo(b by - )= = Xo(b, by, - -, bp)

of admissible arcs containing FE,» for (b,bs,* - +,by)=(0,0,- + -,0) and
having the sets &, &, ni(x) and &y, &op, nip(2) as .its variations along Ei..
The existence of the functions Y; is a consequence of the corollary of
Section 3 above, and we may take Xp =ap + bép 4 buépp (p=1,2). Each
function yy becomes a function yu(d, by, -+, bpy) when the functions (51)
defining these arcs are substituted. The equations

(52) Yu(, by,- -, 0p) =0
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have the initial solution (b, bs,* - - bu)==(0,0,- - -,0) at which the func-
tional determinant of their first members with respect to bs,- - -, by is the
determinant (49) different from zero. Hence these equations have p solutions
bp==Bu(b) with initial values Bu(0) == 0. The one-parameter family

(53) f/i=Yi[$: b:Bl(b))' : ',Bp(b)]=yi($, b)
21 (0) =z = 22(b)
where
Zp(b)=Xp[b, B1(b)," - -, By(b)] (p=1,%)

contains E;; for b =0 and satisfies the equations ¢ = 0.

CorOLLARY. If a set of admissible variations &, &, ni(z) for a normal
admissible arc E.» for the Lagrange problem with variable end-points satisfies
the equations ¥u(£,7)=0, then there exists a one parameter family

i =19:i(z,0), 2.(b)=2=2.(b)

of admissible arcs satisfying the end-conditions yu=0, containing Ei, for
the parameter value b =0, and having the set &, &, ni(z) as its variations
along E».

If the set &, &, 5i(2) of the Corollary is used in the construction of the
family (53) then we find, by differentiating equations (52) with respect to b
and setting b = 0, that

W (& 1)+ ¥u(év, ) B (0)=0.

But since the first terms in these equations vanish, and since the determinant
(49) is different from zero, it follows that By’ (0)=0 for every n. Hence
the variations of the family (53) are the functions

yin(z, 0)=ni (&) + Yo, B (0)=n:i(2),
be(0)=§p+XpbﬂBp,'(0)=§p’ (P=1, 2)

as required in the Corollary.

CHAPTER II.

APPLICATIONS OF THE EULER-LAGRANGE MULTIPLIER RULE.

10. The brachistochrone in a resisting medium. Analytically the problem
of the brachistochrone in a plane and in a resisting medium is, as we have
seen in Section 2, that of finding among the ares

y=y(), v=0o() (B=T=2z)
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satisfying the conditions
v’ —gy + R(v) (1 +y*)% =0,
(54) 561—“1=:’/1—B1=’Ul—y=x2-———a2=y2_ﬁz=0’

one which minimizes the integral

1= [ (/) (1 + g2y

In these expressions primes denote derivatives with respect to z. To apply
the Euler-Lagrange rule and the transversality conditions of Section 8 we
construct the function

F=(1/v)(1 +y2)% 4 A[ve" — gy’ + B(1 + y2) %]

— H(1 + ¢/2)% + Ao/ — gy)
where H is a convenient symbol * for the expression
(55) H=(1/v)+ AR (v).
The differential equations of the normal extremals are then easily found to be
(56) H{(dy/ds)=Ag +a, v(d\/ds)= H,, v(dv/ds)=g(dy/ds)—R
where s is the length of arc defined by the equation

ds =(1 4 y'2)%dz

and ¢ is a new constant of integration. By eliminating dy and ds from
equations (56) we find

H(Hydv + Rd\)=(gA -+ a) gda,
which gives at once, since H) = R, the relation
(57) H? —(gA + a)? + b2
where b is a second constant of integration. The constant can be taken
squared since the first equation (56) shows that H? is always greater than

(rg + a)2.
Equations (56) and (57) give further

dy_dy ds___v(g+a)
v~ ds dv g(Ag+a)— RH’
(58) 4 s .
de dx ds 2 ds _ v
?.z‘=£__[ +( )] g0y +a)—RH

* Bolza [3, p. 577].
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Equation (57) is quadratic in A and when its solution A =A(v,4a,b) is
substituted in the last equations the values of # and y may be found by
quadratures in the form

(59) t=¢(v,a,0)4+¢, y=vy(v,a,b)4d,

where ¢ and d are again constants of integration. These are the equations
of the minimizing arc in parametric form.

It is very easy to set up the matrix (48) for our function F and the
five end conditions. It is.a square matrix with six rows and columns and
its vanishing prescribes the single condition A(zz)v(22)==0. From the equa-
tion (57) multiplied by v2? and equation (55) we then find at # =z, that
v,2(a? + b2)=1. For the determination of v, and the four constants of
integration in equations (59) we have therefore in accordance with conditions
(54) the five equations

¢(v1,a,0)+ ¢ = ay, ¢ (v2,0,0)+ ¢ = ag,
(60) Y(vi,0,b)4 d= B4, 4/’('02; a,b)+ d=_,
v22(a2 + b2)= 1.

If the resistance function R (v) were known we should now have in equations
(57), (56), and (60) the mathematical mechanism for determining possible
normal minimizing curves. The adjective possible is used here because the
conditions deduced so far have only been shown to be necessary for a normal
minimizing arc. They have not been proved to be sufficient to insure a
minimum.

11. Parametric problems in space. Let us now consider space curves
whose equations are given in the parametric form

(61) z=2x(s), y=1y(s), z2=2(s) (51 =5=s,).

The problem to be studied is that of finding among the arcs of this type
which satisfy the equation

(62) 24y /2 —1=0

and join two given points 1 and 2 in wyz-space, one which minimizes an in-
tegral of the form

I = fszf(a:, y,2,2,y,2") ds.
8

Primes now denote differentiation with respect to s. Equation (62) restricts
the parameter s to be the length of arc measured along the curve (61). If
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we agree t¢ measure this length always from the point 1 then the conditions
for the curve (61) to pass through 1 and 2 are
Q=T — =Y —PFh=2— =Ly — O ="Yp— Po=—12,— 7y, =0

where (a1, 81, 1) and (@, Bz, y:) are the coordinates of these points. Evi-
dently our problem is one with a variable end-point in szyz-space since s, is
undetermined.

The function F for normal minimizing ares is

F=f4+A/R) (@24 y24+22—1)
and the differential equations determining such arcs are

fo—(d/ds)fsr — XN’ —ra” =0,

fy—(d/ds)fy — XNy —Ay” =0,
fo—(d/ds) s — N7 — A" =0,

&2 4y 4 =1,

The sum of the first three of these multiplied, respectively, by (L;’ .y, 2 gives,
with the help of the last one,

(64) (d/ds) (f —&'far —yfy —2f2 —2)=0.

The matrix (48) for this problem has eight rows and columns and the vanish-
ing of its determinant demands that at the value s,

(63)

(65) A=f—dfo —yfy —2fx.

On account of equation (64) this must be an identity in s.
A very important case is the one for which the function f is positively
homogeneous and of the first order in z’, ¥/, 7/, i.e. the one for which the

equation
(66) f(@y, 2.k, by, k) =kf (2, 4,2, 2, ¥, 2")

is an identity in its arguments for all £ > 0. The integral I then has the
same value for all parametric representations of the arc (61). The inte-
grands of the length integral and of many other integrals important in the
applications of the theory of the Lagrange problem satisfy this condition.
When equation (66) is differentiated for ¥, and the substitution & =1 after-
ward made, we find the identity

(67) “fo +yfy + s =1.

From equation (65) it is evident that in this case A = 0 and equations (63)
become
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(68) fo—(d/ds)for =0, fy—(d/ds)fy =0, fo—(d/ds)fsr =0,

(69) @24y 42— 1=0.

Only three of these can be independent, since one finds readily that
@P +yQ + /R =(d/ds) (f —for — o/ fy —#f) =0

where P, ¢, R are symbols for the first members of equations (68).

12. Isoperimetric problems. Suppose that we seek to find in the class

of arcs
y=1y(z) (Ti=c=1,)

joining two given points and satisfying relations of the form

z3
(70) f g'i(% Y, y’)dx=li (¢= 1,---,n)
o0

one which minimizes an integral

I— 19,9 ds.

We can transform such a problem into a Lagrange problem by introducing
new variables o

(1) zi(z)= j: gi(z, 9,y ) da.

The problem just stated is then equivalent to that of finding in the class
of arcs
y=9(), z=2z(z) (=1L ,n; e =2=u)

satisfying the conditions
gi (w: .1/3 yj)_ 2i == 0,
(72) Y(@)=191, y(@2)=1s
2i(21)=0, 2zi(2:)=1, (1=1,---,n)
one which minimizes I.
The function F for a normal minimizing arc for this problem has the
form

(73) F=f4Xi(gi—2)
and the differential equations determining such an arc are
(74) Fy—(d/dz)Fy =0

and the n equations
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Fo, —(d/dz)Fay —(dAi/dz)—= 0

which show that the multipliers A; are in this case all constants. The solu-
tions of equations (74) form a family of the type

y=?/($;0ob;)\1,‘ : ',)\m)-

It contains n 4 2 arbitrary constants, and that is precisely the number of
relations which the end-conditions (72) impose upon them as one readily
verifies. It is evident that the equation (74) is unaltered -if we think of
the function F in it as defined by the equation

(75) F=f4 \gi

instead of equation (73).

For & minimizing arc which is not normal.there would be a function F
defined by equation (75) without the first term. .It is clear that the equation
(74) would then be defining the minimizing arcs for the problem of mini-
mizing one of the integrals (70), say the first one, in the class of curves
joining 1 with 2 and keeping the others constant. An arc E;, satisfying
equations (74) and these conditions would'in general be a minimizing arc
for this problem, and it is evident that in that case there could be no other
arc near Ky, giving the first integral its minimum value /;. Hence in a
neighborhood of E;, the class of arcs joining 1 with 2 and satisfying con-
ditions (70) would consist of E;, alone, and the original minimum problem
would be a very trivial onme in that neighborhood. Evidently the normal
minimizing arcs are by far the most important ones. A similar but somewhat
more complicated argument justifies the definition of normal minimizing arcs
for the general Lagrange problem given in the preceding sections.

13. The hanging chain. It is a principle of mechanics that a chain
suspended on two pegs will hang so that its center of gravity is as low as
possible. In Section 2 it was seen that the form of the chain is therefore
that of a minimizing arc for the problem in which we seek among the arcs
y=1y(x) (21 = 2= x,) satisfying the conditions

(6) y(@) =1 Y(@:)—= s, f:’(l Lyt dr —1,

one which minimizes the integral

@
I= f "y(L+ y?)hda.
The function F for a minimizing arc has the form

F—(y+0) (1 +y2)*
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and since A is now constant the differential equation (74) is equivalent to
F—yFy =(y+N/(1+y)%—b.

The integration of this equation has been many times discussed * and its
solutions are the catenaries

y+A=>bch[(z—a)/b].

This is a larger family than that of the catenaries for the problem of finding
a minimum surface of revolution since it contains an arbitrary constant A
besides @ and b. The extra constant is needed, however, for the problem of
the hanging chain since there are three conditions (76) to be satisfied for
that problem instead of the first two only.

14. Soap films enclosing a given volume. Let C; and C. be two circular
dises with a common axis whose edges are joined by a soap film. It is well
known that when the volume of air inclosed by the discs and the film is a

y i

fixed constant % the form of the film surface will be that of a surface of
revolution enclosing the volume % and having a minimum surface area. To
determine the shape of the film we must seek therefore among the arcs
y=1y(z) (2. =2 = 2,) satisfying the conditions

(@) =191, Y(@2)=Yo f : y2de =Fk/=

one which minimizes the integral
I— [y 4%

* See, for example, Bliss [5, p. 91].
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The function F is F=y(1 -+ 4'2)* -+ Ay?2 and the equation (74) is
equivalent to
(77) F—yFy =y/(1+y)¢t—MP=c.
If we solve this equation for 4’ and separate the variables we find the solution
in the form

o= f {(c—\g2) /[y? —(c — M) ?T%}dy + d.

The integral here is an elliptic integral which can be treated by well known
methods.

The solutions of equations (77) can be characterized geometrically in an
interesting fashion.* If an ellipse rolls on a straight line, as in the accom-

panying figure,. its focus ' describes a curve whose tangent is at every point
perpendicular to FM. The coordinates (z,y) of F, and (@1,%1) of Fy,
therefore satisfy the equations

y=r(de/ds), y,=ri(dz/ds)

since by a well known property of the ellipse the angles made by » and r,
with the tangent at M are equal. The equations

r+ =2, yy,=0b?

express two further well known properties of an ellipse, and elimination of
7, 71, ¥, from these and the preceding ones gives the differential equation

y? — 2ay(dz/ds)+ b2 =0

* See, for example, Moigno-Lindelsf [6, p. 220].
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for the locus of the point F. Equation (77) is identical with this if we set

=—1/2a, ¢=">02%/2a. It can similarly be shown that for suitable deter-
minations of A and ¢ equation (77) is also satisfied by the locus of the focus
of a parabola or a hyperbola which rolls on the z-axis. The curves generated
as described above by the foci of conics rolling on the z-axis are called un-
duloids and nodoids.

15. The case when the functions ¢q contain no deriwvatives. The problem
of this section is that of finding among the arcs

(78) yi =Yi(z) (=1 ,n; 2 S2=15)

joining the two given points 1 and 2 and satisfying a set of equations of
the form

I

¢a (@ Y1* * * 5 4n)=10 (=1, ,m<In)

one which minimizes an integral
xg ,
I= f f(z, 9,y)dz.
21

Let E,, be a particular arc whose minimizing properties are to be studied.
It is always presupposed that in a neighborhood of the set of elements (z, y, ¥')
on E;, the functions f, ¢, have continuous partial derivatives, say of the
first four orders, and that the matrix |0¢./9y; | has rank m at every point
of E,,.

In order to give this problem the usual Lagrange form we replace. it by
an equivalent one as follows. We may suppose without loss of generality that
at the point 2 the determinant |d¢a/0ys| is one of those of the matrix
|| 9a/0y; | which is different from zero. Then we seek to find among the
arcs (78) satisfying the conditions

‘( 79) dqsd/dx = das _I_ 4"11/4/1’ = 0)

(80) x1_°‘1=yi1—,311=-'172—°‘2=yr2-—ﬂr2=0
(i=13' ceynyr=m-+1,- - '}n)

one which minimizes I. The codrdinates (@, 8i1) and (@, Biz) are those of
the points 1 and 2 and necessarily satisfy the equations ¢o==0. The new
problem is evidently equivalent to the old one, at least in a neighborhood of
E,,, since every arc (78) which joins 1 with 2 and satisfies the equations
¢o =0 also satisfies (79) and (80); and since, conversely, every arc suffi-
ciently near E,, and satisfying (79) and (80) will also satisfy the equations
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¢a =0 and pass through 1 and 2. This follows because the last n—m 4 1
equations (80) and the equations ¢o =0 at 2 imply ya2 — Baz = 0.

Every extremal arc for the new problem is necessarily normal. The
determinant analogous'to (49) for the end-conditions (80) is in fact

&1 ot fm

N1 ($1) ot M (501)
N1 (1) o (@)
& ot fzp
Nma1,1 (5172 ) O Thmap (xz)
1 (22) o ()

where p=2n—m + 2, and we can prove that the sets &, &wo, 7i0(z)
(6 =1, - -, p) can be chosen so that this determinant is different from zevo.
The equations of variation are in fact readily seen to be the equations

(d/dx) Saymi =10

which are equivalent to the system

(81) ¢a,yi($)7]i($)=¢ay¢($1)'ﬂi(x1).

If the end-values s (21), n-(2.) are selected arbitrarily these equations deter-
mine uniquely the end-values 74(2.) since the determinant | d¢s/dyp | is by
hypothesis different from zero at the point 2. Then the equations (81) and

(82) bro (2)mi (€)= & (2),

where the auxiliary functions ¢,(z,y) are chosen so that the determinant
| 0i/0yx | is different from zero along F., determine the end-values ¢r(21),
¢r(2) uniquely when 5: (1), 9-(2:) are given. If functions ¢ () are chosen
with the end-values ¢(z:), {r(2.) but otherwise arbitrarily then equations
(81) and (82) determine uniquely a corresponding set of variations #;(x)
with the arbitrarily prescribed end-values #4;(2:), 5-(:). Since & and &
are arbitrary it is evident that the sets &i0, &0, 760 (2) can be chosen so that
the determinant above is different from zero.

The function F for the Euler-Lagrange multiplier rule of the new
problem can be taken in the form

F = f + Ma(ﬁbaw + ¢a1/k:’/’0’)'

By a simple calculation the Euler-Lagrange equations are found to be

f?h _(d/dx)f%' ’—/’-a'fﬁwy; = 0.
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If we set Ay =—p, these are equivalent to the Euler-Lagrange equations
calculated for the function

F =+ Aata
and we have the following result:
For the problem of finding among the arcs yi —=yi(z) (v=1," " ,n;
T =@ =) joining two gwen points and satisfying the equations
¢a(@,y)=0 (==1," - ,m <n)

one which minimizes the integral

I— @y 1),
the extremal arcs all satisfy n 4 m equations of the form
Fy,—(d/da)Fyy =0, ¢a=0
where F is a function of the form F = f - Aada.

16. Geodesics on a surface.* The problem of finding the shortest curve
joining two given points on a surface is analytically that of finding among
the ares

z=ua(t), y=y(t), z=2(%) (L=t=1t,)

satisfying the equation

of the surface and joining the two given points, one which minimizes the
integral

7}
I— f (272 + g2 + 2/2)%dt.
4y

The function F for this problem, according to the results of the last
section, is
F=(a?+y?+22)% 42
and the Euler-Lagrange equations are ¢ =0 and
(d/dt)For — Fo = d/dt[a’/ (2" + y* 4 2'2)%] — Ao =0,
(d/dt)Fy —Fy=d/dt[y’/(a"* + y'* + 2"%) %] — Ay =0,
(d/dt)Fy — Fo=d/dt[7 /(2" + y2 + 2/2)%] — Ap, = 0.

If these are written in the form

* Bolza [3, p. 553].
3
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Pe/ds® = pdo, dPy/ds® = pdy, d°2/ds? = pds, ¢ =0,

where s is the length of arc, they express the fact that at each point of a
minimizing arc the principal normal of the arc must coincide with the normal
to the surface. Curves which have this property are called geodesic lines on
the surface. Shortest arcs on a surface must always be sought among the
geodesics.

For a sphere the equation (83) has the form

224+ y2422—1=0
and the further equations of the geodesics are
(84) d?x/ds? = pz, dPy/ds®=py, d?z2/ds® = pz.

Let us determine constants a, b, ¢ so that the expression

u=ax + by 4 cz

vanishes with its first derivative at one point of a geodesic on the sphere.
Then % must be identically zero on the geodesic since the equation uss = pu
is a consequence of equations (84), and since the only solution of this last
equation which can vanish with its derivative is w=0. It follows readily
that the geodesics on a sphere are great circles cut out of the sphere by the
planes u = 0.

17. Brachistochrone on a surface.* Consider a particle of mass m moving
in a field of force of such nature that when the particle is at the point
(z,y,2) the force acting on it has the projections

(85) mX = m0U/0z), mY =m0U/dy), mZ = m(0U/0z)

on the three codrdinate axes, where U is a function of the codrdinates z, ¢, 2
only. A constant gravitational field in the direction of the negative z-axis,
for example, would have

X=0, Y=0, Z=—g, U=—ga.

If a particle were constrained to move on a curve-in such a fleld we should
have the force in the direction of the tangent expressed in the two forms

mv’ =m [X (da/ds)+ Y (dy/ds)+ Z (dz/ds) ]

where v is the velocity in the tangent direction, s is the length of arc measured
along the curve, and the prime denotes a derivative with respect to the time ¢.
Since v = ds/dt this gives

* Moigno-Lindelsf [6, p. 301].
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w =X/’ +Yy + 722 =1
V2 =20 + ¢ =2(U —Us)+ v:?

where U; and v; are values of U and v at an initial point 1. For a particle
started at 1 with the velocity v; the velocity v at a point (z,y, 2) is evidently
a function of z, y, z and the same for all arcs joining 1 with this point. For
an arc

(87) z=a(t), y=y(t), z=2(t) (L=t=t)

joining two fixed points 1 and 2 the time of descent of a particle starting at 1

with the velocity v, is

r— s — ft (U)o 4 g+ 2R

(86)

where v is the function of z, y, z defined in equation (86).
The problem of finding an arc of quickest descent from a point 1 to a

point 2 on a surface
(88) ¢(z,9,2)=0

for a particle starting at 1 with a given velocity v, is equivalent analytically
to that of finding among the arcs (87) joining the two given points and
satisfying the equation (88), one which minimizes the integral 7'

The function ¥ for this problem is '

F=(1/v) (@2 +y*+2%)%+ 2
and the Euler-Lagrange equations have the form

d dldx_l_q)wds

gl =g o G M0
d _ad 1l dy v ds i
gl —P=g 52 T =0
d d 1 dz ds

A Al I it A el

to which must be adjoined the equation ¢ = 0. When multiplied through by
dt/ds the equations above become

—(vs/v?) s + (1/0) @55 + (v0/0?)— ppo = 0,

—(vs/v2)Ys + (1/0) Yss + (v9/0?) — ppy = 0,

—(vs/v*) 25 + (1/@) 255 + (02/0*)— pps = 0.

Multiplied respectively by the direction cosines I, m, n of the direction tan-
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gent to the surface, perpendicular to the extremal, and making an acute angle
with its principal normal, these give

(1/) (lzss + myYss + n2ss) 4 (1/02) (val 4 vym + van)=0

from which we can show that
(89) (v%/p) cos & + Reos B =0

where p is the radius of curvature of the curve, « the angle between the radius
and the direction 7:m:m, R the total impressed force, and B the angle be-
tween the force and l:m:n. This result follows immediately since the
numbers pZss, pYss, pzss are the three direction cosines of the principal normal
to the curve on which the radius p lies, and since from equations (86)

7)7)@ = Um, 7)7)1/ == Uy, ’l”)z b Uz

and U, Uy, U, are the projections on the codrdinate axes of the force R.
The equation (89) justifies the following characteristic property of brachisto-
chrones on a surface:

Consider a surface ¢(x,y,2)=0 lying in o field of force whose vector
at (z,y,2) has magnitude R and components X, Y, Z defined by a force
function U(x,y,2), as indicated in equations (85). The centrifugal force
of a particle moving on a curve is by definition directed in the direction
opposite to that of the radius p of the first curvature, and has magnitude v2/p
where v 1s the velocity of the particle. Equation (89) shows that at each
point of a brachistochrone curve on the surface ¢ =20 the projection of the
centrifugal force on the particular normal to the curve which is also tangent
to the surface, is equal to the projection on that same line of the impressed
force R.

This is a characteristic property of brachistochrones. Equation (89)
shows that the radius of geodesic curvature p, = pseca is defined by the
equation

(90) 1/py = — (B/v?) cos .

On a surface whose equations are in parametric form with parameters u, v
the geodesic curvature of an arc defined by an equation v = v (u) is expressed
in terms of v(w), v’(u), (%) while the quantities in the second members
of the last equation involve only v(u) and v’(u). This equation is conse-
quently a differential equation of the second order. Through each point and
direction on the surface there passes therefore one and only one extremal are
for the brachistochrone problem. Ome can readily verify that the equation
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(90) is satisfied by the brachistochrones on a plane which are the well-known
cycloids.

18. The curve of equilibrium of a chain hanging on a surface.* Let us
accept from the theories of mechanics the statement that the potential energy
of a chain of the form

(91) r=z(t), y=y(t), z=2(%) (L=t=t,)

in a field of force like the one described in the last section is

82 7
P=—f Uds=—f’U(a;'2+y'2+z'2)%dt,
81 tl

and the statement that a chain at rest will be in equilibrium when the po-
tential energy is a minimum. The problem of finding the position of equi-
librium of a chain of given length ! joining two given points 1 and 2 and
lying on a surface

¢ ({IJ, Y, Z) =0

in such a field is then that of finding among the arcs (91) joining 1 with 2
and satisfying the conditions

1
SR @ b eysa =1, $(oy,9)=0
123

one which minimizes the integral P. In a gravitational field the value of
Uis —ga.

This problem is partly of the isoperimetric and partly of the Lagrange
type. By methods used above one readily verifies that its function F now
has the form

Fm (U +2) (@ + 972 o+ 22)% + g,

where A is a constant, and that its extremal arcs satisfy ¢ =0 and the

equations
d/dt[(U + N’/ (@ +y? + 22) %] — Ua (e + y* + 2%) % —pp =0,
a/atl (U +Ny'/(a? + y? + 22)%] — Uy (a2 + 9% + #2)% — ppy — 0,
a/gt[(U 4+ A2’/ (2”2 + y2 + 22) %] — Uy (22 + 92 + 72)% — pdp = 0.

These are equivalent to

sts +(U +A)$ss— Uw"_V(]S,z-: 0,
Usys + (U + XN)yss — Uy — vy =0,
Uszs +(Z] + )\)Zs.s -_ Uz "—V¢'z = O.

* Moigno-Lindelsf [6, p. 313].
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Multiplied respectively by the direction cosines 7, m, n of the direction tan-
gent to the surface, perpendicular to the extremal, and making an acute angle
with its principal normal, these give

(U 4 A) cos a/p==R cos 3,
or ps =(U + 1) sec B/R,

where p, pg, @, B have the significance of the last section. Like the equation
(90) this defines a two-parameter family of extremals arcs on the surface
¢ =0.

For the particular case of a gravitational field of force U = —gz, R =g,
and B is the angle between the negative z-axis and the direction I:m:n so
that cos 8 =—n. Hence in this case

po=1[(z—2)/g]/n

which says that at each point of a curve of equilibrium the radius of geodesic
curvature is equal to the segment PM in the figure, bounded on the line

l:m:n perpendicular to the curve and tangent to the surface ¢ — 0 by the
point P and the plane z =A/g. This is a well known property of a catenary
y=c—+bch[(x—a)/b], which is the curve of a hanging chain in a vertical
plane. The surface ¢ = 0 is in this case the wy-plane, the radius p, is the
radius of curvature of the catenary, and the plane z = /g is to be represented
by the line y —¢. The radius of curvature at a point P of the catenary is
equal to the intercept on the normal to the catenary at P between the point P
and the line y = c.

19. Hamilton’s principle.* Suppose that the n particles whose codrdi-
nates and masses are i, ¥, 2i, mi (=1, - -,n) move in a field of force

* Bolza [3, p. 554].
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in space such that the force acting at any instant on the i-th particle has
components
Xi = Uz,;; Y% = U:l/u = LTZU

where U is a function of the time ¢ and the 3n codrdinates z;, i, z;. Suppose
further that the motions of the particles are restricted by conditions of the
form

$o =0 (a=1,- - -,m < 3n),

where the functions ¢, also depend upon ¢ and the codrdinates. The differ-
ential equations of motion of the particles, as established in treatises in
mechanics, are

mixi” = I]wi + Ea)\a.¢‘az‘u
(92) miyi” - U?H + EGA@‘#MH:

msz; = U.zi —l— za)\a‘#uzn

‘where « has the range from 1 to m. In this and the following sections of this
chapter sums will be indicated as usual and no umbral indices will be used.

Hamilton’s principle is simply the statement that the differential equa-
tions (92) are the differential equations of the minimizing arcs of the problem
of finding in the class of 3n-dimensional arcs

s=n(t), yi—=yi(), n=un(l) (W=t=t;i=1-"",n)

joining two given points and satisfying the equations ¢,=0, one which
minimizes the integral

I— ft (T + U)dt

where U is the force function and T' the so-called kinetic energy
T = Yo3imvi® = YoZim; (2i'2 4 442 4 24"2).

It is very easy to show that the equations (92) are the Kuler-Lagrange
equations for this problem. We have only to set up these equations for the
function

F=T+4U + Sohate.

An important application of Hamilton’s principle is that of determining
the equations of motion in terms of the so-called generalized codrdinates of
Lagrange. The number of codrdinates @i, #i, 2; is 3n and the number of
equations ¢, =0 is m. It is in general possible in an infinity of ways to
express these codrdinates as functions of ¢ and 3n-— m arbitrary parameters
g1," * *, Qsn-m satisfying identically the equations ¢, — 0 and giving all the
solutions of these equations. The functions 7" and U then take the form
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T=T(tqq), U=U(q),

and the problem is transformed into that of finding among the arcs ¢» — ¢ (%)
(r=1,- - -,3n—m) joining the two given points one which minimizes the
integral I. No adjoined conditions ¢, =0 are now necessary. The differ-
ential equations of the minimizing arcs for the new problem are the equations

d T 0
T W—E(T—}U):O (r=1, ,3n—m).

The important result is'that the form of these equations is the same no matter
what new coSrdinates ¢i,° - -, ¢sn-m With the properties described above are
used.

0. Two forms of the principle of least action.* Let us now consider
the somewhat special case where the functions U and ¢, of the last section
do not contain the time ¢ explicitly. If the equations (92) are multiplied
by @', yi', 2, respectively, added, and integrated we find the well-known
relation

T=U+h

where & is a constant of integration. This is the principle of the conservation
of energy which says that the sum of the kinetic energy’ T' and the potential
energy — U of a system satisfying equations (92) is always a constant.

Jacobi’s form of the principle of least action states that the totality of
dynamical trajectories satisfying equations (92) and having a given energy
constant h is identical with the totality of extremals for the problem of finding
among the arcs

si=ai(u), yi=yi(v), zi=2) (=L - ,nuSuSu)
joining two given points and satisfying the equations ¢;=0 one which

minimizes the integral

I— f [2(U 4 1) S]%du,
Lt
where § is simply a notation for the sum
S = Zimy (CEWZ + yiuz + Ziuz)-

The parameter % is not in this case the time, but if at the time ¢, the particles
are at the places defined on their trajectories by the parameter value uo, then
it turns out that the time at the place defined by u is

* Bolza [3, pp. 556, 586].
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(93) t—tot | (8/2(0 + W1 Y¥du,

as one would expect from the relation S(du/dt)2 =2T=2(U + ).
To prove these statements we note that the function F for the minimizing-
problem just described is

F= [2(U + h)S]]/z + Zapada-
A typical one of the Euler-Lagrange equations is

(@/du) {[2(U+ 1)1/8Ybmiwiu — Uai{S/[2(U + h)1}* — Sapatbas, = 0.

If we introduce the parameter ¢ along a solution of this equation by means of
the formula (93) then the equation itself takes the form

mizs’ — Uw; —_ Ea)\a‘ﬁaa}g =0

when Aq = po (du/dt), which is the same as the first equation (92).

Lagrange’s form of the principle of least action is again a principle for
describing those mechanical trajectories which satisfy equations (92) and
have a given energy constant h. They are extremals for the problem of
finding among the arcs

xi:x’i(t): y%':yi(t): zi:zi(t) (7:=1:' PR tlgtSt2)

passing through given initial values of the codrdinates for a given initial time
11, passing through given end-values of the codrdinates for an unspecified time
t2, and satisfying the equations

(94) T—U—h=0, ¢q=0

one which minimizes the integral

123
I— f Tdt.
1

This is a problem with a variable second end-point since ¢, is not specified.
The function F for it is

F=T4MT—TU—h)+ Zapada
and a typical Lagrange equation is
(95) (d/dt) (1 + )t)m/ﬂh' + )\Uws - zall'a‘l’am = 0.

When this equation is multiplied by «;” and added to the other similar ones,
it is found with the help of equations (94) that
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A=(k/T)—1/2
where k is a constant.
If all the end-values except @, are fixed in the theorem of pages 692-3,
then the matrix (48) is square and its vanishing requires that

F(xz)—— zfi,yizlpry;' ($2)= 0.

Interpreted for the function F above this gives A = — 1/2 at t — ¢,, with the
help of equations (94). It follows that in the formula deduced above for A
we must have k¥ = 0 and hence that A = —1/2 for all values of . Equation
(95) then takes the form of the first equation (92) when we set Ay = 2p,.

CHAPTER III.

FurTHER NECESSARY CONDITIONS FOR A MINIMUM.

In this third chapter three further necessary conditions on a minimizing
arc for the Lagrange problem will be developed, analogous to those of Weier-
strass, Legendre, and Jacobi for the simpler types of problems of the calculus
of variations. The analogue of Legendre’s condition was first deduced by
Clebsch [20] and the analogue of Jacobi’s condition by A. Mayer[ 24]. For
the deduction of these necessary conditions and for a number of other pur-
poses we shall find the auxiliary theorems of the next section convenient.

R1. Two important auziliary theorems. Consider a one parameter fam-
ily of admissible arcs

(96) Yi=yi(2,b), @3(b) <= 2.(D), (i=1,- -, n)

for which the functions @5(b), #.(d), yi(z,b), yi’(z,b) are continuous and
have continuous derivatives with respect to b in the domain of values
(2, b) defined by the inequalities ' < b = b", 2;(b) =z = 2,4(b), and whose
end values describe two arcs €' and D. The values of I taken along the arcs
(96) are given by the formula

1) = f “floy(@,0), ¥ (2,1)1ds

which has the derivative
"
I'®) =fali+ [ Gugo + Fora}da.

The index here is umbral and we shall use umbral indices freely elsewhere in
this chapter. Since the arcs (96) are all admissible this result may also be
written in the form
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(97) AT (®) = Fali+ [ (Fugo+ Py a)de,
@3
where the multipliers Ao, A (2) in the function
F= /\of + )\aﬁba

are entirely arbitrary. If now a particular arc of the family (96) satisfies
the equations

@
By, =f Fﬂtdx + ¢

with a set of multipliers A, Ay(2), then the introduction of these multipliers
enables us to replace formula (97) by

)\oI,(b) = wa + Fyl' Yiv té

where b is the particular value defining that arc. Since the-equations of C
and D are deduced from

r=1a(b), yi=yi[z(D),b]

by replacing #(d) by #5(b) and x,(b), respectively, it follows that along either
of these arcs
dy = y'ide + yudb,
and therefore that
Mdl = Fdx + (dys — yi'dz) Fy,' | 3.

Hence we have the following theorem :
AvuxiniArY THEOREM. I. Let
(98) y¢=yi(x,b), xl(b)sxsx2(b)’ (i=1:' : ':'"’)

be a one-parameter family of admissible arcs without corners whose end-points
describe two arcs C and D. If one of the arcs (98) satisfies the equations
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(99) F@/t' =f Fﬂidx + ¢

with a set of multipliers Ao, Ao () then for the value of b defining it the values
of I along the arcs (98) have a differential defined by the equation

(100} Nodl = Fdz 4 (dys — yi/dz) Fy, |4.

In this formula the differentials dx, dy; at the point 8 are those of C, and at
the point 4 those of D.

If the particular arc along which the equation (99) holds is a normal
arc then A, can be taken equal to unity in formula (100). If each of
the curves (98) has a set of multipliers Ao (), Aq(z, b) with which it satis-
fies equations (99), then the formula (100) holds along every arc of the
family. We suppose that the functions A,(d), As(2,b) are continuous for
V=0=10", 25(b) =2 =12,(b), and then we have

AvxiLiary THrOREM II.  Suppose that the arcs of the family (98) are
all extremal arcs with multipliers of the form XAo==1, Ay(z,b). Then the
values of I on two arcs Kz, and Ese of the family satisfy the equation

I(E56) —I(E34) = I*(D4s) '_I*(Oss)

with the values of the integral

I* — f (Pdz + (dyi — yi'dz) Fy }

along the corresponding segments Css and Dig shown in the last figure.

This is readily found by integrating both sides of formula (100) with
respect to b from the value b” defining simultaneously the points 8 and 4 to
the value b” defining similarly 5 and 6. The integrand of the integral I*
is readily seen to be a continuous function of b on the arcs Cs; and D, cor-
responding to the interval 3’6”’, on account of the properties of the functions
x(b), yi(x, b) defining the family (98).

RR. Necessary conditions analogous to those of Weierstrass and Legendre.
Suppose that the equations
yi = yi(z) (t=1, ", ny e ==u2,)

are those of a minimizing arc F,, for our problem.
We shall designate a set of values (=,9,4’) as admissible if it lies in the
neighborhood % of page 1, satisfies the equations ¢, = 0, and gives the matrix
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| ¢y || the rank m. Let 3 be an arbitrary point on the arc E;, and
let (s, Yis, Y'is) be an admissible set. There is always an admissible arc
(©) yi — Yi(a) (¢ <o =a, +h)
through this set since the equations ¢ — 0 determine uniquely m of the func-
tions Y;(x) passing with their derivatives through the values prescribed by
this initial set when the n — m other functions ¥';(z) have been chosen with
initial values of themselves and their derivatives through their corresponding
initial values of the set.
C

3

Suppose now that the arc F,, is normal on every sub-interval, and let
4 be so near to 3 on Ky, that the arc F, contains no corner. There is a 2n-
parameter family of admissible arcs yi = y; (2, by, * * -, bzx) containing E,,
for (by,* * +,b2m) = (0, - +,0) and having 2n sets of variations »;(x) for
which the determinant (88) with @i, z, replaced by z,, #, is different from
zero. The 2n equations

yi(iI?s, bl:' * ',bzn) =Y’il($5)’ yi($43 bl)' : ')bZn) = Yis
have the initial solution (@5, b1, * *,ban) = (23, 0,- - +,0) at which their
functional determinant for by, - * -, bsy is the determinant (88) with z; — s,

x, =, and different from zero. Hence they determine 2n functions bp=
Byu(z5) which vanish for ¢;=ua,. The family

yi=yi[@, B:(25)," * +, Ban(ws)] =yi(w, z5)
is now a one-parameter family of arcs joining the curve C of the figure to

the point 4. The sum
@(25) =I(Css) + I(Bs4)

— [Tt v, 70+ [ o y(@ ), (0,30) 1o

must have its derivative = 0 at z; if I(Ey;) is to be a minimum. But with
the help of formula (100) this derivative is seen to be
& (23) = E(z, 9,9, Y, M) |?



718 Buiss: The Problem of Lagrange in the Calculus of Variations.

if we define the E-function by the formula
(101) B = F(x) Y, Y, )\) - F(x: Y, y/: ’\) _(Yi’ - yi’)Fm’ (z, Y ?/,, )‘) .

The multipliers in # are those associated uniquely with the normal minimizing
arc E,,. Evidently one may always replace f by F for admissible sets
(#,9,9"). We have then the following necessary condition:

ANALOGUE OF WEIERSTRASS NECESSARY CONDITION. At each element
(z, 9, 4,0 of a minimizing arc which is normal on every sub-interval the
inequality
E(z,y,v,Y,0) =0
must be satisfied for every admissible set (z,y,Y’) 5= (2,9, 9).

The proof just given does not apply to the values z, 9, 4, A at the right-
hand end of an arc abutting on a corner, but it can be modified easily to be
applicable by taking the point 4 at the left of 3, or one can infer the desired
result by continuity considerations.

Consider now a set of values m; satisfying the equations
(102) Gay, mi =0
at an element (z,y,y") of E;,. By means of the equations
(108) PpE—

these define n — m further quantities x,. The equations

¢a($;y;p) =0’ ¢7'(CvJpr) =zr—|—‘€Kr

now have the initial solution (e, p1,- -+, pn) = (0,44, * * -, ya’) and deter-
mine uniquely a set of solutions p;(e) with initial values p;(0) = yi/. The
derivatives p;"(0) of these functions satisfy equations (102) and (103) when
inserted in place of the numbers =; and hence must coincide with them. The
sets (z,9, p(e)) are now all admissible for sufficiently small values of ¢, and
according to the last theorem must satisfy the condition

E(z,y,9,p(e),A) =0.

But we readily verify that this expression vanishes with its first derivative for
e at the value e= 0. Its second derivative

Fw’ yp' TiTk

at e = 0 must therefore be = 0, from which we infer the
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NEcEssarY ConDITION OF CLEBSCH. At every element (z,y,y’,\) of a
minimizing arc which is normal on every sub-interval the inequality

Fﬂi'ﬂk' (il?, Y, ?/', /\)ﬂ'i‘”k = 0

must be satisfied by every set (wi, - * +, m) 5= (0,- - -, 0) which is a solution
of the m equations
bav.’ (2,9, 9 )mi = 0.

R3. The envelope theorem. According to the theorem of page 687, every
extremal arc Fi, along which the determinant R is different from zero is a
member of a 2n-parameter family of extremals of the form

yi=yi(2,a4,0), I=»A(z,0,D)

for special values @i, bio of the parameters. The family can be so chosen that
the determinant (36) is different from zero at z,, and we shall see in Section
R7, page 727, that this determinant is in fact different from zero everywhere
on Ei,. 1If the constants as, b; are replaced by functions ai(%), bs(¢) with the
initial values a;(0) = aio, b:(0) = bso a one-parameter family of extremals
is defined containing the arc E,, for the special parameter value t — 0. The
arcs of this family will pass through the point 1 for # =;, and will touch
an enveloping curve .D at the points defined by a suitably chosen function z (%),
if the equations '

Y=k Yl + Yioar + yiobs = kyia,

Yir =Y (5171, a,b)

hold identically in ¢ when @, a;, b; are replaced by the functions of ¢ described ’
above and the primes denote derivatives with respect to £. The first row of
equations imposes the condition that the direction of the tangent to the curve
D shall coincide with the direction 1 : %" : - - - : %, of the tangent to the
extremal. In order that these equations may be true it is evidently necessary
and sufficient that the equations

Yia [:Zﬁ(t), (l(t), b(t)] o’ + Yivy [w(t)) a(t)’ b(t)] b’ = 0,
Yia [ml,a(t): b(t)] a’ + Yivg [:vl:&(t); b(t)] b = 0,

hold identically in ¢. If the derivatives ax’, bx” are not zero it follows that the
determinant
Yiay (2,0, D) Yir,(z,a,b)

104 Az, z1,0,b) =
( ) ( ' ) yiak(zliaﬁb) y’ibk(xha,b)

vanishes identically in ¢ when 2 (%), a;(¢), b:(t) are substituted.
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DEFINITION OF A CONJUGATE POINT. A value z; 5% z, is said to define a
point 3 conjugate to 1 on the extremal arc H,, if it is a root of a determinant
A(Z, T1, @, bo) belonging to a Rmn-parameter family of extremals y; =
Yi(2, a,0), Ag=2Xg(x,a,b) for which the determinant

Yiay Yivy

Viay, Viby

is different from zero on E;, as described on page 727.

Suppose now that 3 is such a conjugate point, and furthermore one at
which the derivative A, does not vanish. It is evident that if A, =% 0 one at
least of the minors of order 2n — 1 of A does not vanish at 38, and that the
same property is therefore possessed by one at least of the determinants of
order 2n of the matrix

Ay Ag, Ay,
0 yiak(xl a, b) yibk(x: a, b)
0 %ia(21,0,0) Yiv, (21,0, b)

since one at least of these determinants is the product of A; by a non-vanishing
minor of A. Then the first of the differential equations

As(z, 21, 0, b)de + A, (2, 241, @, b) dag + Ao (2, 21, @, 0)dbr, = 0,
(105) Yia (2, @, b)day, + ?/ibk(% a,b)dby =0,
yiak(xll a, b)d{lk + y’wk(xll a, b)dbk == 0:

with 2n—1 of the others determine functions z(t), ax(t), bx(¢) with the
initial values (0) = @3, ax(0) = axo, bx(0) = bro, and with derivatives a7,
ax/, bi’ not all zero at t = 0. Since A, 5= 0 at 3 it follows further that ax’, by’
can not all vanish at £ =10. Since A vanishes at these initial values and has
its derivative with respect to ¢ identically zero, it must be itself identically
zero in . Ome sees readily then that the one remaining equation (105) is a
consequence of the others when (%), ax(¢), bx(t) are substituted. The fol-
lowing theorem is established :

Let Ei» be an extremal arc along which the determinant R 1s different
from zero, and let 3 be a point conjugate to 1 on Ei, at which the derivative
Ay of the determinant (104) is different from zero. Then there exists through
the point 1 a one-parameter family of extremals

(106) yi=vyi(, 1), Aa=Na(w, 1)

containing B, for the parameter value t = 0 and having an envelope D which
touches E.» at the point 8. The functions yi, Yis, Ao and the function x(t)
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defining D have continuous derwatives in a neighborhood of the values x, ¢
belonging to the arc Hy,.

The last statement of the theorem is a consequence of the hypothesis (b)
of page 676. For as a result of this hypothesis the functions yi, yis, Aq of the
theorem on page 687 have continuous derivatives of the second order at least,
and the solutions (%), ax(%), bx(¢) of the equations (105) must therefore
have continuous derivatives of at least the first order.

TaE ENvELOPE THEOREM. If the envelope D of the one-parameter fam-
ily of extremals (106) has a branch projecting backward from 3 toward the

D
EI% 4

Ere )
71 4

point 1, as shown in the figure, then for every position of the point 4 on D
preceding and near to 8 the arc Eiy + Dy -+ Eso is an admissible arc satis-
fying the equations ¢o = 0. Furthermore for every such arc

I(Eu + D43 "I“ Esz) = I(Eu) .
Expressed in integral form the value of I(Fqs + Dys) is

IEu+ Do) = [ Floy(e 0y (o0  do+ [ 1o at

where the arguments in f in the last integral are z(¢), y[z(¢),t],y'[=(t), ¢].
The differential of the first integral with respect to ¢ is given by formula (100)
of page 716, and that of the second integral is readily found. It follows that

dI(E14 —I- .D43) = ——E(:I:, y, y’, Y’, A)da; ‘4

where Y7 is the slope of D. But this vanishes identically in ¢ since ¥’ =y’
at every point of D, and the final conclusion of the theorem is established.
Evidently the envelope D satisfies the equations ¢, = 0 at each point 4 since
it is tangent at that point to the extremal arc Fi,.

R4. The analogue of Jacobi's condition. The analogue of Jacobi’s con-
dition was discovered for the Lagrange problem by A. Mayer. Its statement
is as follows:

4
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THE NECESSARY CONDITION OF MAYER. Let Ei, be an extremal arc for
the Lagrange problem which is normal on every sub-interval of z.x» and has
the determinant
Fyove  dav
Payi’ 0

different from zero at every point of it. If Ei, is a minimizing arc for the
problem then between 1 and 2 on E;, there can be no point 3 conjugate to 1.

R—

The proof of the statement for the case when the envelope has a branch
as described in the envelope theorem is not difficult if one accepts the asser-
tion that every extremal arc of a family y;(z, @, b) whose end-values z;, z, and
parameters a,b are sufficiently near to those of a normal extremal arc of
the family is also normal. The proof of this assertion depends upon the fact
that when the functions y;(«,a,b) are substituted in the equations of varia-
tion, the solutions 7i(z,a,b) of those equations are continuous in the para-
meters a, b as well as . Hence if there are 2n sets of variations 7is (s =1,
++ -, 2n) making the determinant (38) different from zero for the values
T10, T20, Qo, bo defining the normal extremal, then this determinant will remain
different from zero for neighboring values z, z,, a, b.

If the arcs Bi4 + Dys + Es, of the envelope theorem were all minimizing-
arcs they would necessarily have continuous multipliers since they have no
corners. According to the assertion discussed in the last paragraph those
sufficiently near to F;, would be normal on the intervals z;z, and .z, since
by hypothesis F,, is normal on every sub-interval and hence E,; and Fs, are
both normal. It follows readily that the composite arc E.; + Dy + Es
would have the multipliers of the extremal F,, along E,,, the multipliers of
the extremal tangent to D,; at each point of that arc, and the multipliers of
the extremal F,, along F;,. Hence on the composite arcs near F,, the value
of R would be everywhere different from zero as on F,,, and by the differen-
tiability condition of page 684, each such arc would necessarily be an extremal.
The extremal F,, is, however, the only one having its values y;, vi at = 2,,
or what is the same thing, its values yi, yi’, A¢ at £=1x,. Hence the arcs
Eis -+ Dy -+ Ege can not all be minimizing arcs since otherwise all of them
and the envelope D would necessarily fall upon F;, and their multipliers
would coincide with those of Ei.. But this is impossible because the deriva-
tives ax’ (£), bx’(¢) of the family as determined on page 720 do not all vanish.

If an arc B4 + Dy + Ese is not a minimizing arc it is always possible
to find a neighboring admissible arc which joins the points 1 and 2 and gives
the integral I a smaller value than I(Eis -+ Dy + Es2), that is, a smaller
value than I(E,.), and hence I(#,;) can not be a minimum.
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The preceding proof of the necessary condition of Mayer is a very satis-
factory one geometrically because it emphasizes the geometrical interpretation
of the conjugate point and the envelope theorem. But it rests upon two
restrictive assumptions, namely, the non-vanishing of the derivative A, at
the conjugate point 3, and the requirement that the envelope have a branch
projecting from 3 toward 1. In the following sections a proof of an entirely
different sort is given which is free from these disadvantages.

R5. The second variation for a normal extremal. It has been proved
on page 17 that if the functions 5;(z) of a set of admissible variations for a
normal extremal arc F;, satisfy the relations 5;(z:) == 5i(22) =0, then there
is a one-parameter family of admissible arcs

yi =19i(z,b) (T =zr=1x)

joining the points 1 and 2, containing E,. for the parameter value b==0,
and having the functions »;(z) as its variations along E;,. When the various
members of the equations

1) = 1l y(@,9), ¥ (2,0) 1da,
0= an[(E, y(ﬁ, b)> y’(CU, b)]
are differentiated for b it is found that

@) = | Guyo + forya') o,
0 = dayYiv + bavyir'>

and a second differentiation gives for b = 0

(2]
I7(0) = L (Fuyivr + fui' Yivd” + fowmine + v nim” + fuir w0 dez,
0 = day.yiv> + baye’ Yivd' + Paveine + Rbavewy’ nim’ + bavs’ v’ ni"m -

When the last equations are multiplied by the factors A4, integrated from =z,
to z., and added to I”7(0) this derivative is found to have the value

(107) 17(0) = 7 (Bugin -+ Fucgins + 20)do
&1
where '
(108) Ro (@, n, 1) = Fymine + 2Fymins’” + Fy gy ni'ne

On account of the equations
(d/de)Fyy = Fy,
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the first two terms in the integral (107) have the anti-derivative Fy, y:m and
this vanishes at «; and «, as one readily sees by differentiating the equations

Yin = ?/i(ilh, b): Yie=—=1Yi ($2: b)
twice with respect to b. Hence the following conclusions are justified:

Along a normal extremal arc E.» the second variation of the integral I
18 always expressible in the form

o3
17(0) = " 20 (2,7, da

where 2o s the quadratic form defined by equation (108). If I(E.;) s a
manimum for the Lagrange problem then this second wvariation must be = 0
for every set of admissible variations n;(x) whose functions satisfy the rela-

tions
(109) 7 (®1) = ni(2s) =0.

Since admissible variations satisfy the differential equations of variations

(110) Do (@, 0, 1") = bayni + baysni’ =0

it is clear that these properties of the second variation suggest a minimum
problem in ax-space of the same type as the original Lagrange problem in
zy-space. There is an integral I’ (0) which must be = 0 in the class of arcs
ni =7 (2) in zy-space satisfying the differential equations (110) and pass-
ing through the two fixed points (2,91, -, ) = (2, 0,- - -,0) and
(91, * *,mm) = (2,0, - -,0), as indicated by equations (109). Evi-
dently the minimum of I”(0) in this class of arcs must be = 0 if F,, is to be
a solution of the original Lagrange problem.

The differential equations of the extremal arcs for the problem in ax-space
are the equations

(111) (d/dx)Qm' = Oy, (2, m, 7]/)= 0
where Q is a function of the form
(112) Q(x: ya "7,: P) = Mow + +aPa.

These are called by von-Escherich [31, Vol. 107, p. 12367 the accessory system
of linear differential equations. They are the analogues of the Jacobi differ-
ential equation for the simplest problem in the plane. If the arc E;, is a
normal extremal arc for the original Lagrange problem, then every extremal
arc for the new problem in ax-space has this property, since the equations of
variation of the linear equations ®, = 0 for the 2x-problem are these equations
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themselves. Hence it is proper when E;, is normal to set po — 1, the multi-
pliers po =1, pa () for an extremal arc of the zy-problem being then unique.
The quadratic form Q(z,», %', u) has the properties

(113) 20 = niﬂm + ni,‘Q’m' + Padpg;
(114) Uik, + U'Doy + paQoq= Vi, + Vi’ Quy + 0aQpg,

where the derivatives of Q@ are understood to have the arguments (%, %/, p),
(u, ¥, p), or (v, v, o) as indicated by their subscripts. These are well-known
formulas for quadratic forms which are readily provable and which will be
useful in the following paragraphs.

A final remark concerning the accessory differential equations (111) is
also important. These equations are linear and homogeneous in the variables
iy 0i’s 03”5 pas pa’> and the determinant of coefficients of the variables »:”, po
is the determinant B which will be assumed different from zero along K.
The arguments of Section 6 therefore tell us at once that the accessory equa-
tions have one and but one solution 7;, u, taking prescribed values of 7;, Q.
at a given value of , or, what is the same thing, prescribed values of %3 5/, pa
satisfying the equations of variation. In particular the only solution taking
the values i = Q,' =0, or 5 = 5" = pa = 0, at a given « is the set of func-
tions 7i(2) = pa(2) =0 which one readily sees to be a solution since the
accessory equations are linear and homogeneous in 4i, i, 7:”; pa; o’

26. A second proof of the analogue of Jacobi's condition. Consider now
a minimizing arc E,, for the original Lagrange problem, which has no corners
and along which the determinant B of page 684 is everywhere different from
zero. According to the differentiability condition on that same page the arc
E,, must then be an extremal as defined in section 6. For the developments
of the present section the additional assumption will be made that the extremal
E, is normal on every sub-interval of z;z,.

DEerFiNITION OF CONJUGATE POINT. A value z; is said to define a point
3 conjugate to 1 on the arc E,, if there exists an extremal ;= ui(z),
pa=pa(2) for the axy-problem whose functions u;(z) satisfy the relations
i (#1) = ui(25) = 0 but are not identically zero on z.z5. We shall presently
see that the definition of a conjugate point on page 720 is equivalent to
the one here given.

With this definition agreed upon the necessary condition of Mayer as
stated on page 722 can be proved by showing that if there exists a point 3
conjugate to 1 between 1 and 2 on F,, then there exists also an admissible
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set of variations 5;(z) making I”7(0) < 0. As a first step consider the func-
tions 7;(z), pa(2x) defined by the equations

(115) 7i(2) =us(2), pa(z) =pao(z) on 7, =z =g,
7i(z) =0, pa(z) =0 on o3 =1 =z,

where the functions wi(z), po(x) are those indicated in the definition just
given for the conjugate point. With the help of the equations (112), (111),
(118) it follows readily that for these functions »; ()

I”(O)=fm=2m(x,n,n’)dx=fws 20 (2, u, o/, p) dz
@1 &1

&3
= f (uiQuc + ui’ﬂ“t' + PGQPa)dx
L4
= uiﬂut' Ig =0.

The functions 5;(z) in (115) can not minimize I”/(0), however, since, as will
be shown in the next paragraph, they do not satisfy the eorner conditions

(116) Qm' EAR "7’(97 —0), p(z—0)] =Qm' [z, », "7,(@ +0), u(z + 0)]

at the point z;. Hence there must be other admissible variations 5;(2) van-
ishing at #; and z, and giving I”7(0) a value less than zero, and I(F;;) can
not be a minimum.

To show that the corner conditions are not satisfied one may calculate
readily the values of the derivatives Q,, for the functions (115) at the left
and right of z;. It is found then that the corner conditions (116) would
require that Qu = 0 at the point z; as well as u;=0, and according to a
remark at the end of the preceding section the functions wux(z), ps(z) would
then have to be identically zero, which is not the case. The proof of Mayer’s
condition is now complete.

27. The determination of conjugate points. For a one-parameter fam-
ily of extremals
yi=yi(2,0), Aa=2Aa(2,D)
the equations
(d/dz)Fy, = Fy, e =20

are identities in # and . When they are differentiated with respect to b
we find

(d/dw) (Fﬂt' yYkd + Fm'ﬂn' ykb’ + Fyy )»a)‘ab) = Fﬂwkykb -+ lelk' ykb’ + Fyagrav,
Paniv + Payy Y’ =0,
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and these are precisely the accessory equations with the arguments 5; = y:s,
pa =M. A 2n-parameter family of extremals defined by equations similar
to equations (35) or (37) on pages 686-7 furnishes by this differentiation
process 27 solutions

(117) Yy * "5 Ynars Magy 75 Amay v
Yivgs * ° "5 Ynbys; Mbg 5 Amby (k=1> ) n)

of the accessory equations. The formulas of most importance here are those
for 2n-parameter families for which the determinant (36) is different from
zero at some point, say ;. We shall see in the next paragraph that it is then
different from zero for all values of z.

Since the determinant R is different from zero along ., the equations

L= Qy, (z, 7%, ®); @a(z, Y "7,) =0,

analogous to equations (30) on page 685, can be solved for #’, up. The solu-
tion has the form

(118) w = Gr(z,m,¢), wp=Hp(z,7,0),

and the accessory equations are equivalent to the equations
(119) (dnk/dx) = GJG(% 75 g), (d{k/dx) =‘Q‘ﬂk(w1 s G(% Y C): H(wy 7,£)).

All of these equations are linear and homogeneous in the arguments 7;, 3¢/,
tas &o where they occur. For equations of the type (119) it is well known *
that 2n solutions (7, {x) whose determinant is different from zero at a single
value of x, will have that determinant different from zero for all values z, and
that every other solution is linearly expressible with constant coefficients in
terms of 2n solutions which have this property. Every solution of the acces-
sory equations is therefore expressible linearly with constant coefficients in
terms of the 2n corresponding sets (ux, mg) defined by the second of equa-
tions (118).*

Since the determinant (36) of page 687 is different from zero at z = =,
it follows that it is different from zero for all values of . For the 2n solutions
(117) of the accessory equations define 2n solutions (nx, &) of equations
(119) whose determinant is different from zero. Hence every solution
(i, ma) = (%i, pa) of the accessory equations is expressible in the form

Ui = Cxlfiar, + TYivey Pa = Cihaa, + TrAavy

* See, for example, Goursat, A Course in Mathematical Analysis, translated by
Hedrick and Dunkel, Vol. 2, Part 2, pp. 153-4.
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The values z; determining conjugate points according to the definition on page
725 are those for which the equations

i (2s) = i, (T3) + duyin, (25) =0,
u¢(w1) = CYiay (Z1) + dyiny (21) =0,

have solutions cx, dr not all zero. But these are precisely the values z; for
which the determinant A(z, z;, a, b) vanishes, as indicated in the definition on
page 720. We shall see on page 740 that for every £ on zz, the zeros of
A(z, & a,b) are isolated from & when an extension of E;, is normal on every
sub-interval.

Consider now an n-parameter family of extremals

y’b=yi(fv; bl, RN bn), )\a'=ha($,b1, NN bn)

all of which pass through the point 1, and such that the functions v; = Fy,
for the family have their determinant | v, | different from zero at z;. All
of the derivatives yiy, vanish at z; as one may see by differentiating the
equations

Yir = yi(% by, - -, b‘n)

with respect to bx. Every solution #;, p, of the accessory equations for which
the functions %;(z) all vanish at z; is expressible in the form

N = CklYibyy  Ma = CkAabys

where the coefficients ¢, are constants. For such a solution is uniquely deter-
mined by its set of values i =0, {i =9, at z =wa,. If the constants c
are solutions of the equations

&i(21) = cnviv, (1),

which in fact determine them uniquely, then the two solutions 7;, ms and
CilYivy, Crhap, Of the accessory equations have the same values 7 =0, {; at
x==x, and hence are identical for all values of z. It follows that the points
3 conjugate to 1 on F;, are determined by values z; for which the equations

cilivy (T3) =0

have solutions ¢z not all zero, that is, by values z3 5= 2; which make the deter-
minant D(#,b) = | yi», | vanish. These results may be summarized as
follows :

Let Eq; be an extremal arc which is contained in a 2n-parameter family
of extremals
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Yo=9Yi(Z, 01, " * "5 Ay b1, * * =, bn)y Aa=Aa(Z, Q1" * *, Any b1y * 7, b)
for special values aio, bio of the parameters. Suppose furthermore that the
determinant

Yiag Yivyg
Vig, Viby

of the family, where vi = Fy; (2, 9,9y, N), 1s different from zero at the point
1 on Ei;. Then the points 3 conjugate to 1 on E., are determined by the roots
T3 5= &1 of the function A(z, z1, ay, by) where ‘

Yio(2, 0, D) Yiny (2, a,b)
Yia (T2, 8, 0)  Yivy (21,0, )

Az, 2y,0,0) =

If E,» is a member of an n-parameter family of extremals
yi=yi($,b1,‘ : "b")) }\a'=)‘-a(x;b1;' ,bn)

all of which pass through the point 1, and such that the determinant | viy, |
for the functions vy = Fy,' belonging to the family is different from zero at the
point'1 on Eis, then the points conjugate to 1 on Ei, are determined by the
r00ts 3 7= x; of the function D (x, bo) where

D(z,b)= | yiv |

and the bio are the parameter values defining Ei,.

CHAPTER IV.

SUFFICIENT CONDITIONS FOR A MINIMUM.

The conditions developed in the preceding chapters are conditions which
‘must be satisfied by every minimizing arc for the Lagrange problem, but they
have not been shown to actually insure the minimizing property. In this
chapter it is proposed to discuss sets of conditions which are sufficient for a
minimum. The methods of proof used are in essence those which Weierstrass
applied in similar cases and which have been extended to the Lagrange prob-
lem by A. Mayer, Bolza, and others, but they involve important simplifications
and improvements.

28. Mayer fields and the fundamental sufficiency theorem. The notion
.of a field has been defined in a number of different ways. The definition given
here is not the usual one and is somewhat sophisticated, but it emphasizes
properties which are well known for fields of the simplest problem in the
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plane, and leads promptly to the theorem which is fundamental for all of the
sufficiency proofs. In order to phrase this definition as simply as possible let
us agree to call a set of values (z,y,y") admissible if it lies interior to the
region R where the continuity properties of the functions f and ¢, have been
assumed, and satisfies the equations ¢,=—0, and gives the matrix | ¢ay, |
the rank m.

DErFINITION OF A MAYER FIELD. A Mayer field is a region § of zy-space
containing only interior points and having associated with it a set of functions

pi(x::’/): la(%?/)
with the following properties:
(a) they have continuous first partial derivatives in § ;
(b) the sets (z,y, p(,y)) defined by the points (z,y) in § are all ad-
missible
(¢) the integral

I+ — f {F (2,9, p, D dz + (dys — pida) By (2,9, p, 1)}

formed with these functions is independent of the path in .
The integral I* can also be written in the form

j - f (Ade 4 Bidy:)
where
A(x; y) = F(w) Y, D, l) _'p]\'FUk’ (.’l?, Y P> l))
Bi(z,y) =Fy (2,9, p,1)-
If such an integral is independent of the path every arc is a minimizing arc
for it and the Huler-Lagrange differential equations applied to it give the well-
known conditions

(120) 04 /0y; = 0B;/0x, 0B;/0yx = 0By/0y;
as necessary conditions for its invariantive property. Omne may readily prove
the identities
(121) 04/0yi — 0Bi/0x = Fy,— (0/02) Fyy — pu(0/0y,) Fur
+ px(0B:/0yx — 0Br/0yi) + ¢a 0la/0yi

where the partial derivatives indicated by the symbols 9 are taken with respect
to the independent variables @, y; which occur explicitly and also in the field

functions pi(z, ¥), lu(z, ¥)-
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From these results it is easy to see that in the field § every solution y; ()
of the equations

(122) dyi/dx = pi(2, 9)

is an extremal with the multipliers Ao = lo (¢, y(¢)). For in the first place
such an arc necessarily satisfies the equations ¢q = 0, since the values (z, v, p)
are all admissible ; and in the second place the equations (120) and (121) then
show that along such an arc

Fy,— (d/dz)Fy; — Fy,— (0/02) Fy; — pu(0/0ys) Fyy = 0.

The arcs satisfying equations (122) are called the extremals of the field.
Through each point of § there passes one and but one such extremal arc since
the equations (122) are of the first order. Furthermore the value of I* along
an extremal arc of the field is equal to that of the original integral I, since
the equations dy; — pide =0 are all satisfied along the field extremals.

If Ey; is an extremal arc of a field § then for every admissible arc C.
in the field joining the same two points 1 and 2 the formula

(123)  I(Cw) —1(Be) = | " Elo,p(29), ¥, 1(9) 10
holds, where '

E=F(z,y,9,1) —F(2,y,p,1) — (3 —pi) Py (2,9, p, 1)
and the arguments y(z), y’(z) in the integrand are those belonging to Ci,.

The formula (123) is the analogue of a well-known one of Weierstrass
and the proof of it is very simple. For since I* is independent of the path in
& and has the same values as I along an extremal of the field it follows that

I(Em) b I*(E12) =I*(012),
and hence that
I(Cyz) —I(Ey) =I(0sz) —I*01s).

The last two terms give the integral in the second member of the formula
(123) when the integrand f in I(Ci.) is replaced by F. This is evidently
permissible since C';. is by hypothesis an admissible arc and therefore satisfies
the equations ¢, = 0.

With these results in mind it is now possible to prove the following
important theorem :

THE FUNDAMENTAL SUFFICIENCY THEOREM. If Ey. ts an extremal arc
of a field § and if at each point of the field the condition
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Elz,9,p(z,9),y,l(z,y)] >0

holds for every admissible set (z,y,y’) different from (z,y,p), then the
inequality I(Ci2) > I(Ey) is true for every admissible arc Ci» in the field
and joiming the end-points of K., but not identical with E,.

It is evident from formula (123) that the inequality I(Ci.)=I(E:.)
is necessarily satisfied. The equality sign is appropriate only if the E-function
vanishes at every point of (., that is, only if the equations g’ = p; are
satisfied at each point of (.. But in that case the arc C;» would coincide
with E,, since the equations y;’ = p; have only one solution through the
point 1 and that is E,, itself.

29. The construction of a field. The extremal arcs of a field may be
regarded as forming an n-parameter family since one of them passes through
each point of the field. By analogy with the properties of fields for the
simplest problem of the calculus of variations in the plane it might be expected
that every n-parameter family of extremals which simply covers a region in
zy-space would provide a set of slope functions and multipliers p;(z,¥),
lo(z,y) which would make the integral I* independent of the path in that
region, and hence form a field over the region, but such is not the case. The
n-parameter families which can form fields are special in character in some-
what the same way that a two-parameter family of straight lines in ayz-space
is special if it is cut orthogonally by a surface. It is well known that not
every such family of straight lines has an orthogonal surface.

Let the equations

’(124) yi=yi($; g, ° ° ')a'n); )\a=Aa(w; Ay * ° ';a/n)

be an n-parameter family of extremals with the property that the functions
Yi, Yiz, Ag have continuous first partial derivatives for all values (z, as, - -, an)
satisfying conditions of the form

Si(a, - m)Sz=6(a, 0, ).

125
(125) (@1, * +,ax) in a region 4.

Suppose further that there is an n-space

T=2:(a," " *,a), Yi=yi(T(an" " ",a),a," ", an)

cutting the extremals (124) for which the function ;(a,,- - -, @s) has con-
tinuous first partial derivatives in 4. The extremals (124) are said to simply
cover a field & of points (z, y) if to each: point of the region there corresponds
one and but one set of values «, a:(z, y) satisfying the first n equations (124)



Briss: The Problem of Lagrange in the Calculus of Variations. 733

and the conditions (125), and if the functions a;(z,y) so defined have con-
tinuous derivatives in . The functions

pi(@ y)=yis [z, a(z,9}], la(z,y)=Aa[z, a(z,9)]

are then a set of slope-functions and multipliers for the region &, and the
following theorem can be proved:

Suppose that an n-parameter family of extremals
(126) Yi=Yi(Z, s, * ), Aa=2Na(2, a1, ", )
is intersected by an n-space
(127)  z=21(a1," * 5 n), Yi=0i(221(C," * ", n), Q1" * "5 0n)

and simply covers a region § of zy-space containing only interior points, in
the manner described in the preceding paragraphs. If the parameter values
of the extremal through a point (z,y) are denoted by ai(z,y) then the region
& is a field with the slope-functions and multipliers

(128) pi(@,9) =y [z, a(z, )], lu(zy)=2Alz a(z,y)]
provided that the integral I* is independent of the path in the n-space (127).

The proof may be made with the help of the Auxiliary Theorem II of
page 716.  For an arc D4 in § with equations of the form

z=u(t), yi=1yi(t) H=t=t"

defines a one-parameter family of extremals intersecting it, and a correspond-
ing arc (g in the n-space (127), by means of the functions a;(¢) =
ai[z(t),y(t)]. According to the auxiliary theorem cited it is then true that

I*(Dyg)=I*(Cs5) + I (Es6)— I (Es4).

The three terms on the right are completely determined when the end-points
of Dy are given, since by hypothesis the value I*(Cs;) is the same for all
arcs Cys with the same end-points in the n-space (127). Hence the integral I*
is independent of the path in the whole of the region &, as required by the
definition of a field.

The preceding theorem suggests at once a number of methods of con-
structing fields by means of n-parameter families of extremals. One may take
the n-parameter family through a fixed point O and regard the point O as a
degenerate n-space (127). Certainly on this degenerate n-space the integral
I* i independent of the path. Every region in zy-space simply covered by
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the extremals will then be a field with the slope-functions and multipliers

(128).
If an n-space
(129) x=X(a," ", ), yi:Y’i(al;"'ﬁa’")
and a function W(as,* * -, @) are chosen arbitrarily in advance the n 4 m
equations
(130) FXa; -+ (Yk(u — yk,Xm)Fﬂk' - Wau ba = 0,
where the arguments of F, ¢4 are X, Yy, 94/, Aq, may under certain conditions
be solved for the n - m variables y;’, Aq as functions of @, + +,as. At each

point of the m-space an initial element z, yi, ¥/, Aa of an extremal is thus
determined, and the extremals which have these initial elements form an
n-parameter family. The integrand of the integral I* for this family has
the value dW on every arc in the n-space (129), on account of the equations
(130), since along such an arc the differentials dz, dyx have the values

dz = Xa,dai, dyk = Ykatda,-.

Hence the integral I* will be independent of the path on the space (1R9) and
every region of xy-space simply covered by the family of extremals will form
a field. If the derivatives W,, all vanish then an n-space (129) which satis-
fies the equations (130) with the extremals of the family it is said to cut
the family transversally.

A similar discussion can be made for initial spaces (129) of lower
dimensions.

80. Sufficient conditions for a strong relative minimum. In the follow-
ing paragraphs the necessary conditions deduced in the preceding chapters
will be designated by the numerals I, II, IIT, IV. These are, respectively,
the necessary condition of page 683, the analogue of Weierstrass’ condition on
page 718, the condition of Clebsch on page 719, and the condition of Mayer
on page 722. The notations IT/, IIT” will be used to designate the conditions
IT and IIT when strengthened to exclude the equality sign which occurs in
their statements. Similarly IV is the stronger condition of Mayer which
excludes the conjuate point 3 from the end-point 2 of E., as well as from the
interior of that arc. An arc E,, with multipliers Ay =1, Ao(2) will be said
to satisfy the condition II;” if the inequality

E(z,y,y,Y,0)> 0
holds for every set of elements (z,¥,y’, Y’,A) for which the set (z,,y’, )
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is in a neighborhood of similar sets belonging to Ei., and (z,y, Y*) 7 (2,y,y")
is admissible.

Every extremal arc E;. defined on an interval ,2,, and on which the
determinant R is different from zero, defines an extended extremal on an
interval &, — d = « = z, + d which contains F,, as part of it. We may call
this longer extremal an extension of E,.

With these agreements we can state the following theorem:

SurricieNT CONDITIONS FOR A STRONG RELATIVE MiNiMUM. If an ad-
missible arc Eis, without corners and with an extension normal on every
subinterval, satisfies the conditions I, IIy, IIT’, IV’, then there is a neigh-
borhood § of the points (z,y) on Eis such that the inequality I(C12) > I(E;2)
holds for every admissible arc Ci» which is in § and not identical with Eis.

The minimum furnished by E,. is called a relative minimum because
it is in a class of arcs restricted to lie in a neighborhood § off E;,; and it is
a strong relative minimum because the neighborhood & lays no restriction
on the slopes y;’ of comparison arcs which lie in it.

In order to prove the theorem we should note in the first place that the
condition J and the normality of E;, imply a unique set of multipliers Ao =1,
Aq(z) and constants ¢; with which E,, satisfies the equations (R4) of page 683.

The condition ITI” now implies that the determinant B of page 684 is
different from zero at every element (2, ¥,%’,A) of E,,. For at an element
where R vanished the linear equations

(131) Py g M + dagy pa =0, oy, M= 10

would have solutions ITy, u, not all zero, with the numbers IT; also not all zero
since the matrix | ¢ay, || has rank m. But when the first equations (131)
are multiplied by II, - - -, II, and added it is found that

Fm’ v TLeIly = O}

as a result of the second set of equations (131), which would contradict the
condition ITT",

Since the determinant R is different from zero along Hi, it follows from
the differentiability condition of page 684 that E,;, must be an extremal. Ac-
cording to the developments of Section 6, page 687, there exists a 2n-parameter
family of extremals

yi=yi(xla’:b)a )\a=)\a,($,a,b)

containing ¥, for special parameter values @i, bio. The functions yi, Yis, Aa
have continuous partial derivatives of the first three orders near the values
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(@, @i, b;) belonging to Ei,, and the determinant (36) of page 687 is different
from zero at the point 1 on E,,.

It will be shown in Section 32 that for an arc E,, with an extension nor-
mal on every sub-interval there is always an interval @, —h <z =<2, -+ h
containing no pair of conjugate points, or in other words, containing no two
values z, x, which satisfy the equation A(z, 2o, a,bo) =0, where A is the
determinant (104) of page 719. Hence if #, < 2; be chosen sufficiently near
to @, the function A(=z, z, ao, bo) will be different from zero on the interval
T = 2 =, 4+ h, and different from zero also in the interval z, +h=zr=uz,
on account of the continuity of A and condition IV”. The equations

(132) Yi =yi(2,8,b),  Yio=—yi(z0, a,b)

have now as initial solutions the totality of values (z,y,a,b) belonging to E,,,
and their functional determinant A (=, o, a,b) with respect to the parameters
@i, b; is different from zero at these initial solutions on account of the choice
of x, which has just been made. Well-known implicit function theorems then
justify the statement that there is a neighborhood § of the points (z,y) on
E,, in which the equations (132) have solutions a;(z,v), bi(z,y) with con-
tinuous partial derivatives of the first three orders since the functions (132)
have such derivatives. This neighborhood ¥ is a field with the slope functions
and mutlipliers

pi((l?, y)= ?/iw[%a(% y): b(x: .7/)]: ’\a(wi 3/)"_“)‘0-[50: a(x, y); b(x—v f’/)]

since the extremals which simply cover it all pass through the fixed point 0
corresponding, on F,, extended, to the value z,. If the field § is taken suffi-
c'ently small the values @, y, pi (, y), Aa(, y) belonging to it will remain in so
small a neighborhood of the sets (z,y,4/,A) belonging to E;, that according
to the condition II;" the inequality

(133) Elz,y, p(2,9),y, Mz, 9)] >0

will hold for every admissible element (z,y,y’) 5= (2,4, p) in §. The funda-
mental sufficiency theorem then justifies the theorem which was to be proved.

31. Sufficient conditions for a weak relative minimum. The conditions
I, IIT’, IV” were the only ones used in the last section up to the very last
paragraph. If they only are assumed it is not possible to establish the condi-
tion (133). The E-function for admissible elements (z,y,4’) in the field ¥
is expressible, however, with the help of Taylor’s formula with integral re-
mainder term, in the form

(134)  E= (y/ —ps) (yk’——pk)fol(l —O0)Fy v [2,y, 0+ 0(y—p), A]d6
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where p; = pi(2, ¥), Ada==XAa(2z,y) are the slope-functions and multipliers of
the field, and the differences yi" — p; satisfy the equation

$a(@, 9 ¥')— ba(@, 9, p) = (3’ — pi) folqﬁam' (2,9, p+ 0(y —p)]d§ =0.

On account of the condition ITI” the quadratic form
1 :
L [ (1—0)Fyw [5,9,p + 6( — ), X148

is positive for all sets (z,y,y’, II) for which (z,y,y’) is on the arc E:, where
yi’ = pi(z,y), and for which the numbers II; satisfy the equations

1
Tli—1, T [ o [2,9,p + 60/ — p)1d6 —0.

Hence it stays positive for sets of values (z,y, %', II) for which the numbers
II; satisfy these equations and the set (z,y,y’) lies in a sufficiently small
neighborhood NV of similar sets on E,. It follows readily that the E-function
(184) of the field §F is positive at least for all sets (z,v,%") = (z,9,p) in
the neighborhood N, and the following theorem is therefore justified :

SUFFICIENT CONDITIONS FOR A WEAK RELATIVE MINIMUM. If an ad-
massible arc B, without corners and with an extension normal on every sub-
wnterval, satisfies the conditions I, III', IV then there is a neighborhood N of
the sets of values (x,y,y’) on Ei, such that the inequality I(Ci2) > I(E;s)
holds for every admissible arc C.. whose elements (z,vy,y’) are all in N but
which 1s not identical with E,.

The minimum described in this theorem is called a weak relative mini-
mum because the neighborhood N in which it exists requires the slopes y;’ of
the comparison arcs C2, as well as their points (=, y), to be near those on Ej..

32. The justification of a preceding statement. It was stated on page 736
that there is always an interval #; — b = 2 = x, 4+ h on which no two values
, T, can satisfy the equation A(z, 2o, a0, bo) = 0. The proof of this statement
is not simple, but it can be made with the help of properties of solutions of the
accessory differential equations

(135) (8/d@)Qpy — Qp,— 0,  Quy— B =0

for the arc E,, described on page 724. It is understood that the arc E, is an
extremal with an extension normal on every sub-interval and satisfying the
condition ITI". As a consequence of these properties the determinant R is
different from zero at every point of E,,.

5
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The equation (114) on page 725
Uiy, + u”/’Qv'L' + pafdo, = ViQy, + ’U’l,‘Qui' + apg,
justifies readily the further relation

i[Qo, — (d/d2) Qu,] + paSlag — vi [Qu, — (d/dz) Quy ] — 00Qp,
= (d/dz) (viQu, — Uiy, ).

Hence for every pair of solutions wi, p, and v;, o, of the accessory equations
the expression
50(’(1,, P> Uy 0) = UiQo," — ViQu’

is a constant. If this constant is zero the two solutions are said to be con-
jugate solutions.

There is one and but one set of solutions 7;, pe of the accessory equations
(185) for which n;, {i = Q,, take assigned values at the value z;, as shown
for the original xy-problem on pages 685 and 686. A matrix of n solutions
Wik, pas (BE=1, - -+, n) therefore exists for which at the value z, the matrix
| wix || is the identity matrix and the corresponding matrix of the functions
{i=2Q, has all its elements zero. The solutions wix, pax (k=1, - - -, n)
are conjugate in pairs, as one readily verifies, since their functions ¢; all van-
ish at ;. The notations wi, p, and v;, o, will be used for the linear ex-
pressions

Ui = ArWik, Pa == Qkpak,
Vi = Uik,  Oq = Ok paks

where the coefficients 4z are functions of = to be determined and the variables
ax’ are derivatives of the coefficients ax with respect to #. Primes attached to
expressions involving i, ps OT vi, oo Will always indicate derivatives of those
expressions with respect to z calculated as if the coefficients ax, ax” were inde-
pendent of z. One readily verifies, then, the relations

(Quz' ), = Qu,, (QW' )’ =Qu;, Ui, — Vi, =0,
(d/dx) Quy’ =(Q7M' ), + Qpt = Qu, + Qo

in which it is understood that the differentiation indicated by d/dz takes
account of the fact that the coefficients a; are functions of z.

Let the functions 7;(z) be a set of admissible variations along the arc E1,,
satisfying therefore the equations ®, = 0. The equations

(136)

Ni = Ui = AUiky, Pg = Pa == AkPak
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determine uniquely the coefficients az and the multipliers p, as functions of z
on an interval ; — h = 2 = @, -+ h chosen so small that on it the determinant
| wir | is everywhere different from zero. The derivatives ;" have the values

(137) 77@" = Wi’ —I— adcluq',]c = u; + Vi

With the help of Taylor’s formula, equation (113) of page 725, the equations
(186) and (137) above, and the relations Qp, == ®,==0, one verifies the
further relations

2(0(3}, i 77’) = 29({1;, 7 77,, P) = 29(‘”: u, v + v, P)
= ZQ(:L‘, U, u,)P) + 20iQuy + Fﬂi"ﬂk' ViVk
= UiQu,; + u’l,Qm' + Papg + R0iQuy, + Fm"ﬂk' Vilk
= U [Qm + QW'] +(u1, + vi)Qui,' _I_ F?M' v’ Vilk
= (d/dz) (7iQu; ) + Fyi v (" — wi’) (p — ).

For arbitrary multipliers pe(z) taken with the functions #;(2) it follows
therefore that

20(z, n, 7, w) = (d/d2)0iQuy + Fuy oy (9" —wi’) (0 — w’)
and hence with the help of equation (113) on page 725 that
1 [, —(d/d2) Q] + (d/d) i (e —Quy) = Fyy e (0" — wi’) (o’ — wil).
The last equation justifies the following lemma:

Levmma. There s an interval o, —h =2 ==, + h on which there
exists no solution n;(x), pa(z) of the accessory equations, except the solution
7y == po =0, whose elements n;(x) all vanish at two points &’ and x” of the
interval; or, in other words, there is an interval on which no pair of values
o, 2" can define conjugate points on Ei,.

This is clear since the last equation shows that for a system of solutions
71(2), pa(z) of the accessory equations the sum 7;(Q,, — Qu,) has a non-
negative derivative on 2, —h = 2 = 2, + h, on account of the property 111’
of Eys. If the functions 5;(z) all vanish at two points «” and 2 the differ-
ences 7’ — ui = v; are identically zero on a’z”, and this implies that the
derivatives az” are all zero and the coefficients ax constants. But since the
ni(z) vanish at 2/ and | wi | is different from zero these coefficients are then
all zero, and the functions 5;(z) vanish identically on 2’z”. The multipliers
pa(z) are also zero on 2’z”’. Otherwise they would form with Ay=10 a set
of multipliers for F,,, as one readily sees by examining the accessory equations,
and this is impossible since the extension of FE;. is normal on z'z” if the
interval ©; — h = 2 = @, + h is taken sufficiently small.
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As an immediate consequence of this lemma we have the following
corollary :

CorROLLARY. There is an interval s —h =2z =2a, +h on which the
determinant
Yia(2)  Yinn (@)

A d 2 )b -
(@, 0,0, ) Yian (o)  Yivy (o) ’

formed for a family of extremals yi = yi(,a,b), Aa(z,a,b) as described in
the theorem of page 687, can not vanish for any pair of points (z,, z)= (2, z”).

The solutions 7, p, of the accessory equations are all expressible in the
form

(138) Ni = CxYiay + AiYity,  Pa = Chhaay 1 Tihady,

as was indicated on page 727. If A(z”,2’,a,b)=0 for points 2/, 2" on the
interval z; — h = z'= @, -+ h then there would be constants ¢z, dx not all zero
such that the solution (138) has 5;(2”) = 5:(2”) =0, and by the lemma it
would follow that ; =p,=0. In that case the corresponding functions

L = cviay, + divin, = Q'
would also vanish identically, which is impossible since the determinant

Yia Yivg
Viay, Viby,

of page 687 is by hypothesis different from zero.

CHAPTER V.

Hi1sTORICAL REMARKS.

A complete history of the problem of Lagrange would require an extensive
presentation. The remarks in the following paragraphs are a sketch only of
the development of the theory, in which an effort will be made to point out
the memoirs which have been especially significant in the preparation of this
paper. For more detailed references one should consult the articles on the
calculus of variations in the Encyclopidie der Mathematischen Wissenschaften
by Kneser [1, IT A 8] * and Zermelo and Hahn [1, IT A 8 a], the translations
and extensions of them by Lecat in the Encyclopédie des Sciences Mathé-
matiques [R],.and the treatise by Bolza [3].

* The numbers in square brackets refer to the following bibliography.
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Euler [2, p. 119; 7, p. 114] and Lagrange [8, I, p. 347] both studied
special cases of the Lagrange problem which led up to the formulation of the
more general problem and its multiplier rule by Lagrange [8, X, p. 420].
The proof of the multiplier rule which Lagrange gave was incomplete. The
missing details were provided by A. Mayer [9], Hilbert [10], and Kneser
[11, Sections 57-8]. Hahn [12] extended to the multiplier rule for the
problem of Mayer, which includes that of Lagrange as a special case, the
methods which Du Bois Reymond had applied to simpler problems of the
calculus of variations. The argument in the text above is new but was sug-
gested by papers by Hahn [13, p. 271] and Bliss [16].

The distinction between normal and abnormal minimizing arcs seems to
have been first mentioned by A. Mayer [9, p. 79] but was emphasized by
von Escherich [17] in connection with his theory of the second variation
where it played an important role. Hahn [18, p. 152] adopts the definition
of von Escherich. The definitions in Sections 7 and 8 above are modeled
after that of Bolza [19, p. 440] and are applied to simplify the proof of the
multiplier rule in Section 15 for the case when the functions ¢, contain no
derivatives.

The necessary condition analogous to that of Legendre for simpler
problems was first proved for the problem of Lagrange by Clebsch [20] as
one of the consequences of his rather elaborate theory of the second variation.
The necessary condition analogous to that of Weierstrass seems to have been
first proved by Hahn [21] who deduced therefrom the necessary condition
of Clebsch without appeal to the theory of the second variation. The method
in the text above is that of Bolza [22], who supplied a step missing in the
proof of Hahn, but the method is here further simplified by the use of the
auxiliary formulas of Section 21 which are generalizations of formulas em-
phasized by Goursat [23, p. 566].

For the Lagrange problem the necessary condition for a minimum analo-
gous to that of Jacobi for simpler problems is due to A. Mayer [24]. The
envelope theorem and the associated geometric proof of the Mayer condition
are the work of Kneser [R5]. The method of the preceding pages for the
development of Kneser’s theory is modeled after Bolza [26], but with sim-
plifications due again to the use of the auxiliary formulas of Section 21. The
analytic proof of the Mayer condition by means of the theory of the minimum
problem of the second variation was suggested by Bliss [27] and applied to
the Lagrange problem by D. M. Smith [28]. By this method the advantages
of the analytic proof are preserved without the necessity of using any com-
plicated theory of the transformation of the second variation.
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The theory of the second variation has been elaborately developed by many
writers. The most important of the early papers is that of Clebsch [29] in
which he transformed the second variation into its so-called reduced form and
derived therefrom his necessary condition analogous to that of Legendre for
simpler problems. The methods of Clebsch were modified by A. Mayer [30]
who proved the necessity of a condition analogous to that of Jacobi for
simpler problems, the so-called condition of Mayer described in the preceding
pages. In a series of papers von Escherich [31] discussed in great detail the
theory of the second variation and the various consequences which can be de-
duced from it. A condensed treatment of his theory is given by Bolza [32].
Hahn [33] showed the relationship between the theory of the second varia-
tion and certain aspects of the theories of Weierstrass as extended to the
problem of Lagrange. The theory of the second variation takes a relatively
simple form when it is viewed from the stand-point of the theory of the
minimum problem of the second variation, as has been shown by Bliss
[27, 34, 35].

The best reference for the sufficiency theorems in Chapter IV above is
Bolza [36] to whom the precise formulation of the theorems and many details
of the proofs are due. The properties of fields and their relation to the in-
variant integral analogous to that of Hilbert for simpler cases were first dis-
cussed by A. Mayer [37], and further material pertinent to the sufficiency
proofs was discussed by Bolza [38] and Carathéodory [39]. The reader may
refer to Kneser [11, 2d ed., pp. 290 ff.] for sufficiency proofs for the Mayer
problem, and to Bliss [35] for a proof of the integral formula of Weierstrass
and other properties of fields for the Lagrange problem.
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