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a b s t r a c t

We present a new formulation of a convergence result for Lyapunov function candidates satisfying
a differential inequality with integrable coefficients that often appears in adaptive control problems.
Usually, Barbalat’s Lemma is invoked, requiring boundedness of the time derivative of the Lyapunov
function candidate which can sometimes be hard to establish. By connecting results from the literature,
an alternative route avoiding Barbalat’s Lemma is suggested.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Consider the adaptive control problem of regulating the scalar
state x of the system

ẋ = ax + u (1)

to zero, where a is an unknown constant and u is the control input.
Following a standard identifier-based approach to design u, we
select the identifier

˙̂x = −γ0(x̂ − x) + âx + u + k0(x − x̂)x2 (2)

where γ0 and k0 are positive design gains. The error e = x − x̂
satisfies

ė = −γ0e + ãx − k0ex2 (3)

where the parameter estimation error ã = a− â has been defined.
Consider the Lyapunov function candidate V1, defined as

V1 =
1
2
e2 +

1
2γ1

ã2 (4)

for some design scalar γ1 > 0. Differentiating (4) with respect to
time and inserting the dynamics (3), we obtain

V̇1 = −γ0e2 − k0e2x2 (5)
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where we have chosen the adaptive law

˙̂a = γ1ex. (6)

From (5) it is clear that V1 is non-increasing, and therefore

e, ã ∈ L∞ (bounded). (7)

Since V1 is non-increasing and bounded from below, V1 has a limit
as t → ∞, and so (5) can be integrated from t = 0 to infinity to
obtain

e, ex ∈ L2 (square-integrable). (8)

Now, choosing the control law

u = −âx − γ2x̂ (9)

for a design gain γ2 > 0, and substituting into (2), we get

˙̂x = −γ2x̂ + γ0e + k0ex2. (10)

Consider the Lyapunov function candidate

V2 =
1
2
x̂2 +

1
2
e2. (11)

Differentiating (11) with respect to time and inserting the dynam-
ics (3) and (10), and using Young’s inequality, yield

V̇2 = −γ2x̂2 + x̂γ0e + k0x̂ex2 − γ0e2 + eãx − k0e2x2

≤ −γ2x̂2 +
ρ1γ0x̂2

2
+
γ0e2

2ρ1
+

k0ρ2x̂2e2x2

2
+

k0x̂2

ρ2

+
k0e2

ρ2
− γ0e2 +

ρ3e2

2
+

ã2x̂2

ρ3
+

ã2e2

ρ3
− k0e2x2 (12)
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for arbitrary positive constantsρ1, ρ2, ρ3. Choosingρ1 =
γ2
3γ0
, ρ2 =

6
γ2k0

, ρ3 =
6a20
γ2
, where a0 upper bounds |â|, and recalling that

e, ex ∈ L2, we obtain

V̇2 ≤ −cV2 + l1V2 + l2 (13)

where c = min{γ2, 2γ0} is a positive constant and

l1 =
6
γ2

e2x2 (14a)

l2 =

(
3
2
γ 2
0

γ2
+
γ2k20
6

+
3a20
γ2

+
γ2

6

)
e2 (14b)

are integrable functions (i.e. l1, l2 ∈ L1).
At this point it is customary to set the stage for applying Bar-

balat’s Lemma by invoking the following result:

Lemma 1 (Lemma B.6 from Krstić, Kanellakopoulos, & Kokotović,
1995). Let v(t), l1(t), l2(t), be real-valued functions defined for t ≥ 0.
Suppose,1

v(t), l1(t), l2(t) ≥ 0, ∀t ≥ 0 (15a)
l1, l2 ∈ L1 (15b)
v̇(t) ≤ −cv(t) + l1(t)v(t) + l2(t) (15c)

where c is a positive constant. Then

v ∈ L1 ∩ L∞. (16)

To apply Barbalat’s Lemma (Lemma 4 or Corollary 5 in the
Appendix) for concluding V2 → 0, one must in addition to (16),
establish that V̇2 ∈ L∞, which happens to be the case in this exam-
ple. Another option is to use Lemma 3.1 from Liu and Krstić (2001)
(Lemma 6 in the Appendix), which requires V̇2 to be bounded from
above and not necessarily from below.

It turns out, however, that the conditions of Lemma 1 are
sufficient to obtain convergence without requiring any form of
boundedness on V̇2, a fact that follows trivially from combining
Lemma 1 and the following Lemma.

Lemma2 (Lemma2.17 fromTao, 2003). Consider a signal g satisfying

ġ(t) = −ag(t) + bh(t) (17)

for a signal h ∈ L1 and some constants a > 0, b > 0. Then

g ∈ L∞ (18)

and

lim
t→∞

g(t) = 0. (19)

2. Extension of Lemma 1

We will here state the main point of this note, which is an
extension of Lemma 1.

Lemma 3. Let v(t), l1(t), l2(t), be real-valued functions defined for
t ≥ 0. Suppose

v(t), l1(t), l2(t) ≥ 0, ∀t ≥ 0 (20a)
l1, l2 ∈ L1 (20b)
v̇(t) ≤ −cv(t) + l1(t)v(t) + l2(t) (20c)

where c is a positive constant. Then

v ∈ L1 ∩ L∞ (21)

1 In Krstić et al. (1995) v(0) ≥ 0 is assumed rather than v(t) ≥ 0.

and

lim
t→∞

v(t) = 0. (22)

Proof. Property (21) follows from Lemma 1. Writing (20c) as

v̇(t) ≤ −cv(t) + f (t) (23)

where

f (t) = l1(t)v(t) + l2(t) (24)

satisfies f ∈ L1 and f (t) ≥ 0, ∀t ≥ 0 since l1, l2 ∈ L1, l1(t), l2(t) ≥

0, ∀t ≥ 0 and v ∈ L∞. Lemma 2 can be invoked for (23) with
equality. The result (22) then follows from the comparison lemma.

An alternative, direct proof of (22) goes as follows. For (22) to
hold, we must show that for every ϵ1 > 0, there exists T1 > 0 such
that

v(t) < ϵ1 (25)

for all t > T1. We will prove that such a T1 exists by constructing
it. Since f ∈ L1, there exists T0 > 0 such that∫

∞

T0

f (s)ds < ϵ0 (26)

for any ϵ0 > 0. Solving

ẇ(t) = −cw(t) + f (t), (27)

and applying the comparison principle, gives the following bound
for v(t)

v(t) ≤ v(0)e−ct
+

∫ t

0
e−c(t−τ )f (τ )dτ . (28)

Splitting the integral at τ = T0 gives

v(t) ≤ v(0)e−ct
+ e−c(t−T0)

∫ T0

0
e−c(T0−τ )f (τ )dτ

+

∫ t

T0

e−c(t−τ )f (τ )dτ

≤ Me−ct
+

∫ t

T0

f (τ )dτ (29)

for t > T0, where

M = v(0) + ecT0
∫ T0

0
f (τ )dτ

≤ v(0) + ecT0∥f ∥1 (30)

is a finite, positive constant. Using (26) with

ϵ0 =
1
2
ϵ1, (31)

we have

v(t) ≤ Me−ct
+

∫ t

T0

f (τ )dτ < Me−ct
+ ϵ0

< Me−ct
+

1
2
ϵ1. (32)

Now, choosing T1 as

T1 = max
{
T0,

1
c
log

(
2M
ϵ1

)}
(33)

we obtain

v(t) <
1
2
ϵ1 +

1
2
ϵ1 = ϵ1 (34)

for all t > T1, which proves (22).
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3. Application to a PDE with uncertain boundary condition

While boundedness of V̇1 is easily established for the example
in Section 1 rendering the advantage of Lemma 3 over the com-
bination of Lemma 1 and Barbalat’s Lemma marginal, this section
offers an example for which Lemma 3 is crucial. Consider the linear
hyperbolic partial differential equation (PDE)

vt (x, t) − vx(x, t) = 0, v(1, t) = θv(0, t) + U(t), (35)

for an uncertain constant θ , with initial data v(x, 0) = v0(x)

satisfying v0 ∈ L2([0, 1]), that is ∥v0∥ =

√∫ 1
0 |v(x, 0)|2dx < ∞.

This is a pure transport delay, which, for the uncontrolled case,
U ≡ 0, has an equilibrium at the origin which is unstable for
|θ | > 1, stable for |θ | = 1 and asymptotically stable for |θ | < 1.
We will use swapping to design a controller U(t) so that ∥v(t)∥ is
bounded, square integrable and converges asymptotically to zero
as t → ∞ using the measurement

y(t) = v(0, t) (36)

only.

3.1. Filter design

Consider the filters

ψt (x, t) − ψx(x, t) = 0, ψ(1, t) = U(t) (37a)

φt (x, t) − φx(x, t) = 0, φ(1, t) = v(0, t) (37b)

with initial conditions ψ(x, 0) = ψ0(x), φ(x, 0) = φ0(x) satisfying
ψ0, φ0 ∈ L2([0, 1]).

A non-adaptive state estimate v̄(x) can be generated from

v̄(x, t) = ψ(x, t) + θφ(x, t). (38)

The non-adaptive state estimation error

ϵ(x, t) = v(x, t) − v̄(x, t) (39)

satisfies the dynamics

ϵt (x, t) − ϵx(x, t) = 0, ϵ(1, t) = 0 (40)

with initial condition ϵ(x, 0) = ϵ0(x) satisfying ϵ0 ∈ L2([0, 1]).
Eq. (40) can explicitly be solved to yield

ϵ(x, t) =

{
ϵ0(x + t) for t < 1 − x
ϵ(1, t − 1 + x) for t ≥ 1 − x.

(41)

Since ϵ(1, t) = 0 for all t ≥ 0, it is evident that ϵ ≡ 0 for t ≥ 1. In
other words, we have

y(t) = v(0, t) = ψ(0, t) + θφ(0, t) + ϵ(0, t) (42)

with ϵ(0, t) ≡ 0 for t ≥ 1, which provides a linear parametric
model for designing parameter estimation schemes.

3.2. Adaptive law

Motivated by the parametrization (42),we propose the gradient
law with normalization

˙̂
θ (t) =

⎧⎨⎩γ
ϵ̂(0, t)φ(0, t)
1 + φ2(0, t)

for t > 1

0 otherwise
(43)

for any positive design gain γ , with

ϵ̂(0, t) = v(0, t) − v̂(0, t) (44)

where v̂(x, t) is the adaptive estimate of the state v(x, t), generated
from

v̂(x, t) = ψ(x, t) + θ̂ (t)φ(x, t). (45)

The adaptive law (43) has the properties

θ̃ ∈ L∞, σ ∈ L2 ∩ L∞([1,∞)) (46a)
˙̂
θ ∈ L2 ∩ L∞ (46b)

where θ̃ = θ − θ̂ and

σ (t) =
ϵ̂(0, t)√

1 + φ2(0, t)
(47)

have been defined. This can be shown using the Lyapunov function
candidate

V3(t) =
1
2γ
θ̃2(t). (48)

For details, see Appendix B.1.

3.3. Lyapunov analysis

The dynamics of (45) can be shown to satisfy

v̂t (x, t) − v̂x(x, t) =
˙̂
θ (t)φ(x, t), v̂(1, t) = 0 (49)

with initial condition v̂(x, 0) = v̂0(x) satisfying v̂0 ∈ L2([0, 1]),
where the controller has been selected as

U(t) = −θ̂ (t)y(t). (50)

Consider the Lyapunov function candidate V4, defined as

V4(t) =

∫ 1

0
(1 + x)(4v̂2(x, t) + φ2(x, t))dx. (51)

It can be shown (see Appendix B.2 for details) that its time deriva-
tive satisfies

V̇4 ≤ −cV4(t) + l1(t)V4(t) + l3(t) (52)

where c =
1
4 , and

l1(t) = 16 ˙̂
θ2, l3(t) = 4σ 2(t) + σ 2(t)φ2(0, t) (53)

are integrable functions. Lemma 1 gives V4 ∈ L1 ∩ L∞ and hence

∥v̂∥, ∥φ∥ ∈ L2 ∩ L∞ (54)

but neither Barbalat’s lemma, Corollary 5 nor Lemma 6 can be used
to prove convergence to zero, since boundedness of l3 cannot be
guaranteed. However, Lemma 3 gives V4 → 0 and thus

∥v̂∥, ∥φ∥ → 0. (55)

From (45) it then follows that ∥ψ∥ ∈ L2∩L∞ and ∥ψ∥ → 0, while
from (38) with ϵ ≡ 0 in finite time, we have

∥v∥ ∈ L2 ∩ L∞, ∥v∥ → 0. (56)
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Appendix A. Previous convergence results

Lemma 4 (Barbalat’s Lemma). Let f be a real-valued function defined
for t ≥ 0. Suppose

(1) f has a finite limit as t → ∞,
(2) ḟ is uniformly continuous.

Then

lim
t→∞

ḟ (t) = 0. (A.1)

Proof of Barbalat’s lemma can be found in many sources, e.g.
Lemma A.6 in Krstić et al. (1995).

An immediate result of Barbalat’s lemma is the following corol-
lary, which is on a form that facilitates for use on signals satisfy-
ing (5).

Corollary 5 (Corollary A.7 in Krstić et al., 1995). Let φ be a real-valued
function defined for t ≥ 0. Suppose

(1) φ ∈ Lp ∩ L∞ for some p ∈ [1,∞)
(2) φ̇ ∈ L∞.

Then

lim
t→∞

φ(t) = 0. (A.2)

An alternative to Barbalat’s lemma (not a corollary) particularly
suited for proving convergence to zero of Lyapunov functions, was
presented in Liu and Krstić (2001). The lemma goes as follows:

Lemma 6 (Lemma 3.1 from Liu & Krstić, 2001). Let g be a real valued
function defined for t ≥ 0. Suppose:

(1) g(t) ≥ 0 for all t ∈ [0,∞),
(2) g(t) is differentiable on [0,∞) and there exists a constant M

such that g ′(t) ≤ M, for all t ≥ 0,
(3) g ∈ L1.

Then

lim
t→∞

g(t) = 0. (A.3)

The requirements of Lemma 6 are less restrictive than those of
Corollary 5 in the sense that ġ is only required to be bounded from
above, as opposed to Corollary 5, where dual-sided boundedness is
assumed.

Appendix B. Some further details

B.1. Proof of (46)

The following steps are standard, see for instance (Ioannou &
Sun, 1995). Differentiating (48) and inserting the adaptive law (43),
we find

V̇3(t) =

⎧⎨⎩−θ̃ (t)
ϵ̂(0, t)φ(0, t)
1 + φ2(0, t)

for t ≥ 1

0 otherwise.
(B.1)

We note that

ϵ̂(0, t) = ϵ(0, t) + θ̃ (t)φ(0, t) (B.2)

with ϵ(0, t) = 0 for t ≥ 1, hence

V̇3(t) =

{
−σ 2(t) for t > 1
0 otherwise (B.3)

for σ defined in (47), which proves that V3(t) is nonincreasing,
bounded and hence has a limit as t → ∞. This gives θ̃ ∈ L∞.
Integrating (B.3) from zero to infinity gives σ ∈ L2([1,∞)), while

ϵ(x, 0) ∈ L2([0, 1]) ensures that σ (t) is square integrable on 0 ≤

t ≤ 1 as well. Thus, σ ∈ L2. Moreover, for t ≥ 1, we have

|σ (t)| =
|θ̃ (t)φ(0, t)|√
1 + φ2(0, t)

≤ |θ̃ (t)| (B.4)

and hence σ ∈ L∞([1,∞)). From the adaptive law, we have ˙̂
θ = 0

for t < 1, while for t ≥ 1

|
˙̂
θ (t)| ≤ γ |σ (t)|

|φ(0, t)|√
1 + φ2(0, t)

≤ γ |σ (t)| (B.5)

which proves ˙̂
θ ∈ L2 ∩ L∞.

B.2. Details of the Lyapunov analysis in Section 3.3

Consider (51), and notice that V4(t) ≤ 8∥v̂(0)∥2
+ 2∥v(0)∥2

+

2∥φ(0)∥2 for t ≤ 1 due to (37b), (43) and (49). To analyze the case
t ≥ 1, we differentiate (51) with respect to time, and insert the
dynamics (49) and (37b) to obtain

V̇4 = 8
∫ 1

0
(1 + x)v̂(x, t)

[
v̂x(x, t) +

˙̂
θ (t)φ(x, t)

]
dx

+ 2
∫ 1

0
(1 + x)φ(x, t)φx(x, t)dx. (B.6)

Integration by parts and using Young’s inequality on the cross term
yield

V̇4 = 8v̂2(1, t) − 4v̂2(0, t) − 4
∫ 1

0
v̂2(x, t)dx

+ 4
∫ 1

0
(1 + x)

[
ρ1v̂

2(x, t) +
1
ρ1

˙̂
θ
2
(t)φ2(x, t)

]
dx

+ 2φ2(1, t) − φ2(0, t) −

∫ 1

0
φ2(x, t)dx (B.7)

for some arbitrary positive constant ρ1. Inserting the boundary
conditions and choosing ρ1 =

1
4 yield

V̇4(t) ≤ −

∫ 1

0
(1 + x)

(
v̂2(x, t) +

1
2
φ2(x, t)

)
dx

+ 16 ˙̂
θ2(t)

∫ 1

0
(1 + x)φ2(x, t)dx

−
[
1 − 4σ 2(t)

]
φ2(0, t) + 4σ 2(t) (B.8)

where we have used φ(1, t) = v(0, t) = v̂(0, t) + ϵ̂(0, t), and the
relationship ϵ̂2(0, t) = σ 2(t)(1 + φ2(0, t)). Inequality (B.8) can be
written as

V̇4(t) ≤ −
1
4
V4(t) + l1(t)V4(t) + l2(t)

−
[
1 − 4σ 2(t)

]
φ2(0, t) (B.9)

where

l1(t) = 16 ˙̂
θ2, l2(t) = 4σ 2(t) (B.10)

are integrable functions.We already know from Lemma1 that V4 ∈

L∞ if the term in the brackets is nonnegative. IfV4 ̸∈ L∞ then σ 2(t)
must be positive on a set whose measure increases unboundedly
as t → ∞. Supposing this is the case, there must exist constants
T1 > 0, T0 > 0 andρ > 0 so that

∫ t+T0
t σ 2(τ )dτ ≥ ρ for t > T1. This

is the requirement for persistence of excitation in (B.3), meaning
that V3 converges to zero and can be made as small as desired.
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However, for t > 1, we have ϵ̂(0, t) = θ̃ (t)φ(0, t) and

σ 2(t) =
θ̃2(t)φ2(0, t)
1 + φ2(0, t)

≤ θ̃2(t) = 2γV3(t), (B.11)

and hence, σ 2(t) can also bemade as small as desired. In particular,
there must exist a time T2 > 0 after which σ 2(t) < 1

4 for all t > T2,
resulting in the expression in the brackets in (B.9) being positive
for all t > T2, contradicting the initial assumption. Hence V4 ∈ L∞,
and

∥v̂∥, ∥φ∥ ∈ L∞. (B.12)

Since ∥φ∥ is bounded, φ2(0) must be bounded for almost all t ≥ 0.
Andhenceσ 2φ2(0) ∈ L1 sinceσ 2

∈ L1. Thus,wemaywrite (B.9) as

V̇4(t) ≤ −cV4(t) + l1(t)V4(t) + l3(t) (B.13)

where

l3(t) = l2(t) + σ 2(t)φ2(0, t) (B.14)

is integrable, but not necessarily bounded, and c =
1
4 .
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