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a b s t r a c t

Characterization of classes of switching signals that ensure stability of switched systems occupies a
significant portion of the switched systems literature. This article collects a multitude of stabilizing
switching signals under an umbrella framework. We achieve this in two steps: Firstly, given a family
of systems, possibly containing unstable dynamics, we propose a new and general class of stabilizing
switching signals. Secondly, we demonstrate that prior results based on both point-wise and asymptotic
characterizations follow our result. This is the first attempt in the switched systems literaturewhere these
switching signals are unified under one banner.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

1.1. The problem

A switched system comprises of two components — a family
of systems and a switching signal. The switching signal selects an
active subsystem at every instant of time, i.e., the system from
the family that is currently being followed [1, §1.1.2]. Stability of
switched systems is broadly classified into two categories — stabil-
ity under arbitrary switching [1, Chapter 2] and stability under con-
strained switching [1, Chapter 3]. In case of the former, conditions
on the family of systems are determined such that the switched
system generated under any admissible switching signal is stable;
in case of the latter, given a family of systems, conditions on the
switching signals are identified such that the resulting switched
systems are stable. In this article we are interested in identifying
classes of stabilizing switching signals that ensure exponential
convergence of switched systems in a sense to be made precise
below.

We consider a family of continuous-time systems

ẋ(t) = fi(x(t)), x(0) = x0, i ∈ P, t ⩾ 0, (1.1)

where x(t) ∈ Rd is the vector of states at time t , andP = {1, . . . ,N}

is an index set. We assume that for each i ∈ P , fi : Rd
−→ Rd is
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(D. Chatterjee).

Lipschitz and fi(0) = 0. Let σ : [0,+∞[ −→ P be a measurable
function that specifies, at each time t , the index of the active
system. The switched system [1, Chapter 1] generated by the family
of systems (1.1) and a fixed switching signal σ is given by

ẋ(t) = fσ (t)(x(t)), x(0) = x0, t ⩾ 0. (1.2)

Under the aforementioned assumptions onσ , there exists [2, Chap-
ter 1] a Carathéodory solution of (1.2). Let 0 =: τ0 < τ1 < τ2 <

· · · denote the points of discontinuity of σ , henceforth called the
switching instants. Let N(s, t) denote the number of switches on
an interval ]s, t] ⊂ [0,∞[. A switching signal is admissible if it
is piecewise constant as a function from [0,+∞[ into P , and by
convention, is assumed to be continuous from the right and having
limits from the left everywhere; we denote the set of admissible
switching signals by S.

Given a family of systems (1.1), we are interested in character-
izing classes of switching signals S ′

⊂ S such that for every σ ∈ S ′

the corresponding switched system (1.2) is globally asymptotically
stable (GAS). Recall that:

Definition 1. The switched system (1.2) is globally asymptotically
stable (GAS) for a given switching signal σ if (1.2) is

◦ Lyapunov stable, and
◦ globally asymptotically convergent, i.e., irrespective of the

initial condition x0, we have x(t) → 0 as t → +∞.
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In otherwords, (1.2) is GAS for a given switching signalσ if there
exists a class-KL function βσ such that ∥x(t)∥ ⩽ βσ (∥x0∥ , t) for all
x0 ∈ Rd and t ⩾ 0.1

1.2. The basic assumptions

LetPS andPU denote the sets of indices of asymptotically stable
and unstable systems in the family (1.1), respectively,P = PS⊔PU .
Let E(P) ⊂ P × P be the set of all ordered pairs (i, j) such that the
switching signal can jump from system i to system j; in this case
we say that the transition (i, j) is admissible.

Remark 1. No distinction was made between admissible and
inadmissible transitions, as we have defined above, in most of the
classical works on switched systems. However, this distinction is
becoming important in recent times; in particular, it plays a role in
expressing situations where switches between certain subsystems
may be prohibited. Such situations arise, for example, if it is known
that switches from system a to system b are possible but not vice-
versa, etc. In this article we employ a distinction between ad-
missible and inadmissible transitions as described above, thereby
allowing more descriptive specifications of switching signals —
clearly, ‘‘unrestricted’’ switching is a special case of restricted
switching. In other words, if we construct a directed graph
G(P, E(P)) in which the set of vertices P is the set of indices of the
subsystems, and the set of directed edges E(P) defines the set of
admissible transitions, the case of all transitions being admissible
corresponds to the directed graph G(P, E(P)) being complete.

Assumption 1. There exist α, α ∈ K∞, continuously differentiable
functions Vi : Rd

−→ [0,+∞[, i ∈ P , and constants λi ∈ R, i ∈ P ,
such that

α(∥ξ∥) ⩽ Vi(ξ ) ⩽ α(∥ξ∥) for all ξ ∈ Rd, (1.3)

and, with λi > 0 if i ∈ PS and λi < 0 if i ∈ PU , we have for all
γi(0) ∈ Rd and t ∈ [0,+∞[,

Vi(γi(t)) ⩽ Vi(γi(0)) exp(−λit), (1.4)

where γi(·) solves the ith system dynamics in family (1.1).

The functions Vi’s satisfying (1.3) and (1.4) are called Lyapunov-
like functions, and they are standard in the literature, see e.g., [3,
Theorem 2]. The scalar λi gives a quantitative measure of
(in)stability of system i ∈ P .

Assumption 2. For all (i, j) ∈ E(P), the respective Lyapunov-like
functions are related as follows: there exists µij ⩾ 1 such that

Vj(ξ ) ⩽ µijVi(ξ ) for all ξ ∈ Rd. (1.5)

The assumption of linearly comparable Lyapunov-like func-
tions, i.e., there exists µ ⩾ 1 such that

Vj(ξ ) ⩽ µVi(ξ ) for all ξ ∈ Rd and all i, j ∈ P, (1.6)

is standard in the theory of stability under average dwell time
switching [1, Theorem3.2]; (1.5) givesmore precise estimates than
(1.6).

1.3. A roughly chronological account of preceding works

Given a family of systems (1.1), identification of classes of
stabilizing switching signals primarily utilized the concept of ‘‘slow

1 Recall that K := {φ : [0,+∞[→ [0,+∞[
⏐⏐ φ is continuous, strictly

increasing, φ(0) = 0}, KL := {φ : [0,+∞[
2

→ [0,+∞[
⏐⏐ φ(·, s) ∈

K for each s and φ(r, ·) ↘ 0 as s ↗ +∞ for each r}, K∞ := {φ ∈

K
⏐⏐ φ(r) → +∞ as r → +∞}.

switching’’ vis-a-vis (average) dwell time switching [4,5]. Intuition
suggests that a switched system whose constituent subsystems
are all stable would itself be stable provided that the switching is
‘‘slow’’. Indeed, the basic idea of stability under slow switching is
that if all the subsystems are stable and the switching is sufficiently
slow, then the ‘‘energy injected due to switching’’ gets sufficient
time for dissipation due to the stability of the individual subsys-
tems. This idea is captured to some extent by the concepts of dwell
time and average dwell time [1, Chapter 3], [6–9].

1.3.1. (Average) Dwell time
In the case of dwell time switching, aminimumduration of time

is maintained between any two consecutive switching instants
[1, §3.2.1]. Let us denote the ith holding time of a switching signal
σ by

Si := τi+1 − τi, i = 0, 1, . . . , (1.7)

where τi and τi+1 are two consecutive switching instants. A switch-
ing signal σ is said to satisfy a dwell time τd > 0 if the inequality
Si ⩾ τd is satisfied for all i = 0, 1, . . ..

Stabilizing dwell time switching was first proposed for
switched linear systems in [6, Lemma 2], and was later extended
to the case of nonlinear systems in [8]; these signals are mostly of
historical importance in the switched/hybrid systems community
today.

A more general class of switching signals, namely, those with
an average dwell time [1, §3.2.2], allows the number of switches
on any time interval to grow at most as an affine function of the
length of the interval. The underlying idea is that stability of the
switched system is preserved under fast switching, provided that
the switches do not accumulate too quickly.

A switching signal σ is said to satisfy an average dwell time τa
if there exist N0, τa > 0 such that N(s, t) ⩽ N0 +

t−s
τa

for all
]s, t] ⊂ [0,+∞[. The constant N0 is called a chatter bound.

Clearly, σ admits no switch if N0 is set to 0, and if N0 = 1,
a switching signal satisfying an average dwell time τa satisfies a
dwell time τd = τa.

Theorem 1 ([7, Theorem 4]). Consider the family of systems (1.1)
with PU = ∅. Suppose that Assumption 1 holds with

⏐⏐λj⏐⏐ = λs for all
j ∈ PS , and that Assumption 2 holds withµij = µ for all (i, j) ∈ E(P).
Then the switched system (1.2) is GAS under every switching signal
σ ∈ S with an average dwell time

τa >
lnµ
λs
. (1.8)

Theorem 1 has been widely employed in a diverse array of
contexts within the switched systems literature [3,9,10] and be-
yond [11,12]. At a first glance it may appear that the chatter bound
N0 provides an inexhaustible reserve of N0 switches over every
interval of time; indeed, the bound N(s, t) ⩽ N0 +

t−s
τa

has to hold
over every interval ]s, t] ⊂ [0,+∞[. However, a closer inspection
reveals that there is a reserve of only N0 switches over the entire
time axis [0,+∞[ beyond the ones permissible for dwell time
switchingwith τd = τa.2 The available number of reserve switches
decreases every time that there is more than one switch on an
interval of length τa. After these N0 reserve switches are exhausted
by fast switching, the average dwell time condition admits only
one switch every τa units of time – i.e., it reduces to dwell time
switching – thereafter. Of course, there is no upper bound towhen
the reserve N0 switches have to be exhausted.

2 If by some time t ′ > 0 we have N(0, t ′) = N0 +
t ′
τa
, then for any k ∈ {0, 1, . . .}

and all s ∈ [kτa, (k + 1)τa[ we have N(0, t ′ + s) ⩽ N0 +
(t ′+s)
τa

= N0 +
t ′
τa

+ k.
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1.3.2. Mode-dependent average dwell time
The class of stabilizing switching signals was further enlarged

by the introduction of the concept of average dwell time specific to
the subsystems in [13]. This variant of average dwell time is known
as mode-dependent average dwell time.

Let Nj(s, t) be the number of times a subsystem j is activated on
an interval ]s, t] ⊂ [0,+∞[, and Tj(s, t) denote the total duration
of activation of the subsystem j on ]s, t]. In other words,

Tj(s, t) =

⏐⏐⏐⏐⏐⏐⏐]s, t] ∩

( +∞⋃
i=0

σ (τi)=j

]τi, τi+1]

)⏐⏐⏐⏐⏐⏐⏐ , (1.9)

where |I| denotes the Lebesgue measure of a measurable set I ⊂

[0,+∞[. A switching signal σ is said to satisfy a set of mode-
dependent average dwell times {τ

j
a}j∈P if there exist Nj

0, τ
j
a > 0 such

that Nj(s, t) ⩽ Nj
0 +

Tj(s,t)

τ
j
a

for all ]s, t] ⊂ [0,+∞[, j ∈ P . The

constants {Nj
0}j∈P are called mode-dependent chatter bounds.

Theorem2 ([13, Lemma 3]). Consider the family of systems (1.1)with
PU = ∅. Suppose that Assumption 1 holds, and Assumption 2 holds
with µij = µj for all (i, j) ∈ E(P). Then the switched system (1.2)
is GAS for every switching signal σ ∈ S satisfying mode-dependent
average dwell times

τ ja >
lnµj

λj
, j ∈ P. (1.10)

Theorem 1 follows as a special case of Theorem 2, and we shall
see in Section 4 how this implication holds.

1.3.3. Average dwell time with unstable subsystems
So far we presented classes of stabilizing switching signals

that cater to the family (1.1) containing all asymptotically stable
systems. In the presence of unstable systems in the family, the
preceding results do not carry over in a straightforward fashion. In-
deed, slow switching alone cannot guarantee stability of switched
systems when not all subsystems are asymptotically stable —
additional conditions are essential to ensure that the switched
system does not spend too much time activating the unstable
components [5]. In [3] input/output-to-state stability (IOSS) of
continuous-time switched systems such that not all subsystems
are IOSS, was studied.3 It was shown that the switched system is
IOSS under a class of switching signals satisfying a certain average
dwell time and constrained point-wise activation of unstable sub-
systems.

Let TS(s, t) and TU(s, t) denote the total durations of activation
of the stable and the unstable subsystems on an interval ]s, t] ⊂

[0,+∞[, respectively. Clearly,

TS(s, t) =

∑
j∈PS

Tj(s, t),

TU(s, t) =

∑
k∈PU

Tk(s, t), and

t − s = TS(s, t) + TU(s, t).

Theorem 3 ([3, Theorem 2]). Consider the family of systems (1.1).
Suppose that Assumption 1 holds with

⏐⏐λj⏐⏐ = λs for all j ∈ PS and
|λk| = λu for all k ∈ PU , and Assumption 2 holds with µij = µ for all
(i, j) ∈ E(P). Let there exist constants T0 ⩾ 0 and ρ ∈ [0, λs

λs+λu
[ such

that the following holds:

TU(s, t) ⩽ T0 + ρ(t − s) for every ]s, t] ⊂ [0,+∞[. (1.11)

3 Recall that if both the input and the output map are set to 0 for all time, then
the IOSS property reduces to the GAS property.

Then the switched system (1.2) is GAS under every switching signal
σ ∈ S satisfying an average dwell time

τa >
lnµ

λs(1 − ρ) − λuρ
. (1.12)

For every interval ]s, t] ⊂ [0,+∞[ of time, the condition (1.11)
constrains the point-wise activation of unstable subsystems, while
the average dwell time condition restricts the number of switches.
It is evident that ρ < 1. The stabilizing class of switching signals is
identified in terms of a (strict) lower bound on the average dwell
time expressed in (1.12). Theorem 1 follows as a special case of
Theorem 3 when PU = ∅.

Remark 2. Theorems 1–3 employ multiple Lyapunov-like func-
tions, and cater to the case of exponential convergence of the
mapping t ↦→ Vσ (t)(x(t)). In fact, they employ identical proof-
techniques, with the later results refining some estimates that
were employed in the preceding ones.

1.3.4. Asymptotic conditions
While the preceding efforts at characterizing stabilizing switch-

ing signals are related to point-wise properties of such signals, a
sharp transition away from the prevailing trend appeared in the
recent article [14]. This work dealt with switched systems with
unstable subsystems, and provided a characterization of a class
of stabilizing switching signals entirely in terms of certain asymp-
totic properties, namely, the asymptotic frequency of switching,
the asymptotic fraction of activity of the constituent subsystems,
and the asymptotic ‘‘density’’ of the admissible transitions among
them.

We now define the succinct notations necessary for the above
mentioned ‘‘asymptotic’’ condition. Fix t > 0.4 Let

ν(t) :=
N(0, t)

t
(1.13)

be the frequency of switching at t . We denote by Nij(0, t) the
number of times a switch from subsystem i to subsystem j has
occurred before (and including) time t . It follows that N(0, t) =∑

(i,j)∈E(P)Nij(0, t). Let

ρij(t) :=
Nij(0, t)
N(0, t)

(1.14)

be the transition frequency from subsystem i to subsystem j on ]0, t],
(i, j) ∈ E(P). We let

ηj(t) :=
Tj(0, t)

t
(1.15)

denote the fraction of activation of subsystem j on the interval ]0, t].

Theorem 4 ([14, Theorem 5]). Consider the switched system (1.2).
Let Assumptions 1 and 2 hold. Then the switched system (1.2) is GAS
under every switching signal σ ∈ S satisfying

limt→+∞ν(t)
∑

(k,ℓ)∈E(P)

(lnµkℓ)limt→+∞ρkℓ(t)

<
∑
j∈PS

⏐⏐λj⏐⏐ limt→+∞
ηj(t) −

∑
k∈PU

|λk| limt→+∞ηk(t).
(1.16)

Observe some of the key differences between Theorems 1 and
2 and Theorem 4: the first two relied on point-wise conditions
on the number of switches on every interval of time, but the last
utilizes only certain asymptotic properties of the switching signal.

4 The premise of [14] is a bit more general, and the properties of a switching
signal there are measured with respect to a class K∞ function h : [0,+∞[→

[0,+∞[. In this article we keep h(t) = t for simplicity.
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The term on the left-hand side of (1.16) is a product of the upper
asymptotic density of the switching frequency ν and the factor∑

(k,ℓ)∈E(P)(lnµkℓ)limt→+∞ρkℓ, which contains the asymptotic up-
per density of ρkℓ, the frequency of admissible transitions among
the systems in the given family (1.1). The two terms on the right-
hand side of (1.16) involve the switching destinations. The first
(resp. second) term comprises of the lower (resp. upper) asymptotic
density of the total fraction of activation of the asymptotically sta-
ble (resp. unstable) systems in (1.1),weighted by the corresponding
quantitative measures of (in)stability.

The condition (1.16) allows N(0, t) to grow faster than an affine
function of t; indeed, σ ’s with N(0, t) satisfying k0t − k′

0

√
t ⩽

N(0, t) ⩽ k1 + k′

1t + k′′

1

√
t for positive constants k0, k′

0, k1, k
′

1, k
′′

1 ,
are admissible. However, Theorem 4 does not guarantee uniform
stability in the sense of [1, §2]. This inherent deficiency is, of course,
only natural since (1.16) does neither consider nor constrain the
transient behaviour of the switching signals.

Remark 3. Observe that in [14, Theorem 5] there is an additional
condition limt→+ infν(t) > 0. However, this condition turns out
to be superfluous, see Appendix for a detailed discussion on this
matter.

Remark 4. A glance at the proof of Theorem 4 given in [14]
reveals that this result also caters to the case of exponential con-
vergence of the function t ↦→ Vσ (t)(x(t)), much like the pre-
ceding Theorems 1–3. However, it is interesting to note that the
assertion of Theorem 3 does not follow from Theorem 4 when
Theorem 4 is specialized to the case of switching signals satisfying
the conditions of Theorem 3. For instance, consider a switched
linear system ẋ(t) = Aσ (t)x(t), x(0) = x0, t ⩾ 0. Let P =

{1, 2, 3} with A1 =

(
−0.3 1
−0.9 −1.2

)
, A2 =

(
0.2 0.1
0.3 0

)
and A3 =(

0.1 0.2
0.3 0.1

)
. Clearly, we have PS = {1} and PU = {2, 3}. Let

E(P) = {(1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2)}. We compute λj,
j ∈ P and µkℓ, (k, ℓ) ∈ E(P) from the estimates provided in [15]
and obtain: λ1 = 0.9389, λ2 = −0.7301, λ3 = −0.7206,
µ12 = µ13 = 2.0611, µ21 = µ31 = 1.0651, µ23 = µ32 =

1. We choose λs = λ1 = 0.9389, λu = max{λ2, λ3} =

0.7301 and µ = max(i,j)∈E(P)µkℓ = 2.0611. Now, consider a
switching signal σ that satisfies Theorem 3 with N0 = 2, T0 =

0.3, ρ = 0.55, τa = 6.93. Let T2(0, t) = 0.25t , T3(0, t) =

0.3t , and Nkℓ(0, t) =
1
6N(0, t) for all (k, ℓ) ∈ E(P). Clearly,

for the above σ , limt→+∞ν(t)
∑

(k,ℓ)∈E(P)(lnµkℓ)limt→+∞ρkℓ(t) −∑
j∈PS

⏐⏐λj⏐⏐ limt→+∞
ηj(t) +

∑
k∈PU

|λk| limt→+∞
ηk(t) = 0.0843.

Hence, (1.16) is not satisfied. In view of the above example, the
quest for a unifying framework capturing Theorems 1–4 is, there-
fore, only natural, and we establish such a framework in Section 2.

1.4. Our contributions

We have so far collected, in a roughly chronological order of
appearance, various classes of stabilizing switching signals for
continuous-time switched systems. The corresponding stability
conditions are derived with the aid of multiple Lyapunov-like
functions [1, Chapter 3], and provide only ‘‘sufficient’’ conditions.
In fact, the proof techniques of all the above results are essentially
similar modulo minor differences. The switching signals in Theo-
rems 1–3 are characterized based on their point-wise properties,
while the characterization in Theorem 4 relies solely on their
asymptotic behaviour. Theorems 3–4 cater to families inwhich not
all systems are asymptotically stable, while Theorems 1–2 apply
to families in which all systems are asymptotically stable. On the
one hand, given a family of systems, numerically constructing a
switching signal that satisfies certain conditions on every interval

of time is a difficult task. On the other hand, stabilizing switching
signals characterized on the basis of asymptotic behaviour of the
switching signals afford a relatively simpler algorithmic synthesis,
but fail to guarantee ‘‘uniformity’’ properties unlike the ones that
satisfy point-wise conditions.5

In the next sectionwe propose a general framework that unifies
all the preceding classes of stabilizing switching signals under one
banner. We achieve this in two steps: Given a family of systems,
in the first step, we identify a general class of stabilizing switch-
ing signals in Theorem 5. Multiple Lyapunov-like functions are
employed in our analysis, and the proposed class is characterized
solely in terms of certain asymptotic quantities. In the second step
(Theorem 6), we show that all the classes of stabilizing switching
signals that we have described above are unified by the one that
we described in Theorem 5. At this point it is important to clarify
what we mean by ‘‘unify’’: we show that if a switching signal σ
satisfies the conditions in Theorem 1 (resp. Theorems 2–4), then
the conditions in Theorem 5 follow, and hence, by the assertion
of Theorem 5, the switched system (1.2) is GAS. Thus, we unify
a large class of stabilizing switching signals under one umbrella
framework.

2. A unifying framework

The first result of this article, Theorem 5 below, characterizes a
broad class of stabilizing switching signals:

Theorem 5. Consider the family of systems (1.1). Let Assumptions 1
and 2 hold. Then the switched system (1.2) is GAS for every switching
signal σ ∈ S that satisfies

limt→+∞

(
ν(t)

∑
(k,ℓ)∈E(P)

(lnµkℓ)ρkℓ(t) −

∑
j∈PS

⏐⏐λj⏐⏐ ηj(t)
+

∑
k∈PU

|λk| ηk(t)

)
< 0, (2.1)

where λj, j ∈ PS , λk, k ∈ PU and µkℓ, (k, ℓ) ∈ E(P) obey (1.4)
and (1.5), respectively, and ν(t), ρkℓ(t), (k, ℓ) ∈ E(P) and ηj(t),
j ∈ PS , ηk(t), k ∈ PU are as defined in (1.13) and (1.14) and (1.15),
respectively.

The condition (2.1) determines the asymptotic nature of the
function

t ↦→ ν(t)
∑

(k,ℓ)∈E(P)

(lnµkℓ)ρkℓ(t)

−

∑
j∈PS

⏐⏐λj⏐⏐ ηj(t) +

∑
k∈PU

|λk| ηk(t).

The first term in the expression of the preceding function includes
the switching frequency and the transition frequency between
subsystems, while the last two terms involve the fractions of ac-
tivation of the subsystems. As in the case of Theorem 4, Theorem 5
also does not guarantee uniform stability in the sense of [1, §2].

Remark 5. The motivation behind the new result Theorem 5 is
the purpose of identifying an umbrella framework for all classes
of switching signals described in Section 1.3. Although both The-
orems 4 and 5 deal solely with the asymptotic behaviour of the
switching signals, the switching signals in Theorem 4 afford a

5 By ‘‘uniformity’’, here we mean uniformity over a class of switching signals
satisfying certain conditions. Towit, suppose that there are two switching signalsσ1
and σ2 that satisfy the conditions in Theorem 4.We have that under both σ1 and σ2 ,
the switched system (1.2) is GAS with the corresponding class KL functions being
βσ1 and βσ2 , respectively. However, Theorem 4 does not guarantee that βσ1 = βσ2 .
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crisper characterization in terms of the properties of the switching
signals in comparison to Theorem 5. Indeed, in Theorem 4 we
have explicitly the asymptotic behaviour of various properties of
the switching signals, viz., the switching frequency, frequency of
admissible transitions, and the switching destinations. Clearly, by
the properties of lim and lim [16, §0.2], the left-hand side of (2.1)
is bounded above by

lim
t→+∞

ν(t)
∑

(k,ℓ)∈E(P)

(lnµkℓ) lim
t→+∞

ρkℓ(t)

−

∑
j∈PS

⏐⏐λj⏐⏐ lim
t→+∞

ηj(t) +

∑
k∈PU

|λk| lim
t→+∞

ηk(t).

However, Theorem 5 is more general in the sense that it unifies
all the existing characterizations of stabilizing switching signals
that deal with both point-wise and asymptotic properties of the
signals. This is the content of our next result. Interestingly enough,
Theorem 4 does not supply the unifying umbrella in this context
precisely due to the ‘‘crisper’’ characterization described above; see
our proof of Theorem 6 for a technical discussion.

Theorem 6. Consider the family of systems (1.1). Suppose that
Assumptions 1 and 2 hold. Then Theorem 5 unifies Theorems 1– 4.

Recall that Theorems 1, 2, and 3 provide point-wise characteris-
tics of stabilizing switching signals, while Theorem 4 characterizes
stabilizing switching signals on the basis of their asymptotic prop-
erties. In the light of Theorem 6, it is clear that Theorem 5 unites
all the above Theorems in terms of the asymptotic properties of the
corresponding classes of switching signals.

We provide detailed proofs of Theorems 5 and 6 in Section 4.

3. Conclusion

In this article we studied classes of stabilizing switching signals
for continuous-time switched systems. Given a family of systems
such that not all systems in the family are asymptotically stable,we
proposed a newand general class of switching signals that recovers
all existing results derived in the setting of multiple Lyapunov-
like functions. Under standard assumptions, Theorem 5 extends to
the discrete-time setting with minor modifications in the weights
associated to the fraction of activation of subsystems j ∈ P until
time t > 0 expressed by ηj(t). Consequently, this extension re-
covers the discrete-time versions of the point-wise and asymptotic
stability conditions presented in this article.We conjecture that the
asymptotic stability condition for discrete-time switched systems
presented in [17] also follows from a discrete-time counterpart of
Theorem 5.

4. Proofs

Proof of Theorem 5. Fix t > 0. Recall that 0 =: τ0 < τ1 <

· · · < τN(0,t) are the switching instants before (and including) t .
By a straightforward iteration involving (1.4) and (1.5), we obtain

Vσ (t)(x(t)) ⩽ exp(ψ(t))Vσ (0)(x0) (4.1)

with

ψ(t) := ln

(N(0,t)−1∏
i=0

µσ (τi)σ (τi+1)

)
−

N(0,t)∑
i=0

τN(0,t)+1 :=t

λσ (τi)Si. (4.2)

We have

ln

(N(0,t)−1∏
i=0

µσ (τi)σ (τi+1)

)
=

N(0,t)−1∑
i=0

lnµσ (τi)σ (τi+1)

=

∑
k∈P

N(0,t)−1∑
i=0

∑
k→ℓ:
ℓ∈P,
k̸=ℓ,

σ (τi)=k,
σ (τi+1)=ℓ

lnµkℓ

=

∑
(k,ℓ)∈E(P)

(lnµkℓ)Nkℓ(0, t)

= N(0, t)
∑

(k,ℓ)∈E(P)

(lnµkℓ)ρkℓ(t), (4.3)

where ρkℓ(t) is as defined in (1.14).

Also, −

N(0,t)∑
i=0

τN(0,t)+1 :=t

λσ (τi)Si = −

N(0,t)∑
i=0

τN(0,t)+1 :=t

∑
j∈P1{j}(σ (τi))λjSi.

Separating out the asymptotically stable and unstable subsystems
in the family (1.1), we have that the right-hand side of the above
equality is −

∑
j∈PS

λjTj(0, t) −
∑

k∈PU
λkTk(0, t). By the properties

of λj, the above expression can be rewritten as

−

∑
j∈PS

⏐⏐λj⏐⏐ Tj(0, t) +

∑
k∈PU

|λk| Tk(0, t). (4.4)

Replacing (4.3) and (4.4) in (4.2), we obtain

ψ(t) = N(0, t)
∑

(k,ℓ)∈E(P)

(lnµkℓ)ρkℓ(t) −

∑
j∈PS

⏐⏐λj⏐⏐ Tj(0, t)
+

∑
k∈PU

|λk| Tk(0, t).

For t > 0, the above expression can be written as

ψ(t) = t

(
N(0, t)

t

∑
(k,ℓ)∈E(P)

(lnµkℓ)ρkℓ(t) −

∑
j∈PS

⏐⏐λj⏐⏐ Tj(0, t)t

+

∑
k∈PU

|λk|
Tk(0, t)

t

)

= t

(
ν(t)

∑
(k,ℓ)∈E(P)

(lnµkℓ)ρkℓ(t) −

∑
j∈PS

⏐⏐λj⏐⏐ ηj(t)
+

∑
k∈PU

|λk| ηk(t)

)
, (4.5)

where ν(t) andηj(t) are as defined in (1.13) and (1.15), respectively.
Now, by (1.3) and (4.1), we obtain

α (∥x(t)∥) ⩽ exp(ψ(t))α (∥x0∥) . (4.6)

We verify GAS of the switched system (1.2) in two steps:

(i) we find conditions such that

lim
t→+∞

exp(ψ(t)) = 0, (4.7)

(ii) convergence is uniform for initial conditions x̃0 satisfying
∥x̃0∥ ⩽ ∥x0∥.

(2) we verify Lyapunov stability of (1.2) under any switching
signal σ that satisfies 1 (i)–(ii), i.e., it ensures uniform global
asymptotic convergence of (1.2).
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We begin with (1)(i). Clearly, a sufficient condition for (4.7) is
that

limt→+∞

(
N(0, t)

t

∑
(k,ℓ)∈E(P)

(lnµkℓ)ρkℓ(t) −

∑
j∈PS

⏐⏐λj⏐⏐ ηj(t)
+

∑
k∈PU

|λk| ηk(t)

)
< 0.

(4.8)

We now move on to verify (1)(ii). In view of (4.6), we have

∥x(t)∥ ⩽ α−1
(
α(∥x0∥) exp(ψ(t))

)
for all t ⩾ 0. (4.9)

Since the initial condition x0 is decoupled from ψ on the right-
hand side of (4.9) and ψ depends on σ , then for a fixed σ , if
∥x(t)∥ < ε for all t > T (∥x0∥, ε) for some pre-assigned ε >
0, then the solution (x̃(t))t⩾0 to (1.2) corresponding to an initial
condition x̃0 such that ∥x̃0∥ ⩽ ∥x0∥ satisfies ∥x̃(t)∥ < ε for all t >
T (∥x0∥, ε). Consequently, uniform global asymptotic convergence
follows. Note that the uniformity here is over the initial condition
x0, and not the set of switching signals σ .

It remains to verify (2). To this end, we need to show that for all
ε > 0 there exists δε > 0 such that ∥x0∥ < δε implies ∥x(t)∥ < ε
for all t ⩾ 0. Fix ε > 0 and σ ∈ S such that σ ensures uniform
global asymptotic convergence of (1.2). In otherwords, there exists
T (1, ε) > 0 such that ∥x(t)∥ < ε for all t > T (1, ε) whenever
∥x0∥ < 1.

Let the family (1.1) be globally Lipschitz, and L be the uni-
form Lipschitz constant over P . It follows that with σ ∈ S ,
∥x(t)∥ ⩽ exp(Lt)∥x0∥ for all t ⩾ 0. Let δ′

= ε exp(−LT (1, ε)).
From the above inequality, it is evident that ∥x(t)∥ < ε for
all t ∈ [0, T (1, ε)] whenever ∥x0∥ < δ′ with σ ∈ S. To
specialize to a σ that ensures uniform global asymptotic conver-
gence of (1.2), we select δ = min{1, δ′

}, and Lyapunov stability
of (1.2) follows at once. Now, if the family (1.1) is locally Lips-
chitz, we employ the following set of arguments to verify (2). Let
ϕ : [0, T (1, ε)] −→ R be a function connecting (τ0, Vσ (0)(x0)),
(τi,max{yi, ỹi}), (T (1, ε), Vσ (T (1,ε))(x(T (1, ε)))), i = 1, 2, . . . ,N ,
where N = number of switches before T (1, ε), yi = Vσ (τi−1)(x(τi)),
and ỹi = Vσ (τi)(x(τi)), with straight line segments. By construction,
ϕ is an upper envelope of t ↦−→ Vσ (t)(x(t)) on [0, T (1, ε)], and is
continuous. By continuity of ϕ, we have ϕ̂ := maxt∈[0,T (1,ε)]ϕ(t) <
+∞. Also, due to (1.3), ϕ̂ → 0 as ∥x0∥ → 0. It follows that there
exists δ = δ(ε) > 0 such that whenever ∥x0∥ < δ(ε), we have
ϕ̂ < ε.

Our proof is now complete. □

Remark 6. Observe that going one step beyond (4.8) and applying
the properties lim(ϕ1 + ϕ2) ⩽ limϕ1 + limϕ2, lim(ϕ1 + ϕ2) ⩾
limϕ1 + limϕ2, one obtains (1.16).

Proof of Theorem 6. Theorem 1 follows as a special case of
Theorem 2 with λs = minj∈PS

⏐⏐λj⏐⏐, µ = maxj∈Pµj, N0 =
∑

j∈PN0j ,
1
τa

=
∑

j∈P
1
τ
j
a
. Moreover, Theorem 1 follows as a special case of

Theorem 3 when PU = ∅.
Therefore, in order to show that Theorem 5 unifies

Theorems 1–4 under an umbrella framework, it suffices to show
the following: if a switching signal σ satisfies the conditions
in Theorem 2 (resp. Theorems 3 and 4), then the conditions in
Theorem 5 follow, and by the assertion of Theorem 5, the switched
system (1.2) is GAS.

(I)We first show that if aσ satisfies the conditions in Theorem2,
then the conditions in Theorem 5 follow.

Assume that a switching signalσ ∈ S satisfiesmode-dependent
average dwell time τ ja such that (1.10) holds. It suffices to show that
the above σ satisfies (2.1).

We have for any t > 0,

ν(t)
∑

(i,j)∈E(P)

(lnµij)ρij(t) −

∑
j∈PS

⏐⏐λj⏐⏐ ηj(t)
=

∑
j∈P

(lnµj)
Nj(0, t)

t
−

∑
j∈P

λjηj(t).

By definition of mode-dependent average dwell time, the right-
hand side of the above quantity is bounded above by∑
j∈P

(lnµj)
Nj

0

t
+

∑
j∈P

(lnµj)

τ
j
a

Tj(0, t)
t

−

∑
j∈P

λj
Tj(0, t)

t
.

In view of (1.10), the above expression is at most equal to∑
j∈P

(lnµj)
Nj

0

t
+

∑
j∈P

(lnµj)
Tj(0, t)

t

(
λj

lnµj
− εj

)

−

∑
j∈P

λj
Tj(0, t)

t
with εj > 0 for all j ∈ P

=

∑
j∈P

(lnµj)
Nj

0

t
−

∑
j∈P

εj(lnµj)
Tj(0, t)

t
.

Therefore,

lim
t→+∞

(
ν(t)

∑
(i,j)∈E(P)

(lnµij)ρij(t) −

∑
j∈PS

⏐⏐λj⏐⏐ ηj(t))

⩽ lim
t→+∞

(∑
j∈P

(lnµj)
Nj

0

t
−

∑
j∈P

εj(lnµj)
Tj(0, t)

t

)

⩽ lim
t→+∞

(∑
j∈P

(lnµj)
Nj

0

t

)
− lim

t→+∞

(
εj(lnµj)

Tj(0, t)
t

)

⩽ −

∑
j∈P

εj(lnµj) lim
t→+∞

Tj(0, t)
t

< 0 since µj > 1 for all j ∈ P.

Consequently, (2.1) holds, and by the assertion of Theorem 5, the
switched system (1.2) is GAS.

(II) We now show that if a σ satisfies the conditions in Theo-
rem 3, then the conditions in Theorem 5 follow.

Assume that a switching signal σ ∈ S satisfies average dwell
time τa such that (1.11) and (1.12) hold.

It suffices to show that the σ under consideration satisfies (2.1).
We have

lim
t→+∞

(
ν(t)

∑
(k,ℓ)∈E(P)

(lnµkℓ)ρkℓ(t) −

∑
j∈PS

⏐⏐λj⏐⏐ ηj(t)
+

∑
k∈PU

|λk| ηk(t)

)

⩽ lim
t→+∞

ν(t) lim
t→+∞

( ∑
(k,ℓ)∈E(P)

(lnµkℓ)ρkℓ(t)

)

+ lim
t→+∞

(
−

∑
j∈PS

⏐⏐λj⏐⏐ ηj(t) +

∑
k∈PU

|λk| ηk(t)

)
. (4.10)

Firstly, since σ satisfies average dwell time τa, we have that

lim
t→+∞

ν(t) ⩽ lim
t→+∞

(
N0

t
+

1
τa

)
⩽

1
τa
, (4.11)
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and in view of N(0, t) =
∑

(k,ℓ)∈E(P)Nkℓ(0, t), we have

lim
t→+∞

( ∑
(k,ℓ)∈E(P)

(lnµkℓ)ρkℓ(t)

)
= lnµ. (4.12)

Secondly, applying TS(0, t) =
∑

j∈PS
Tj(0, t), TU(0, t) =∑

k∈PU
Tk(0, t), and t = TS(0, t) + TU(0, t), we get

lim
t→+∞

(
−

∑
j∈PS

⏐⏐λj⏐⏐ ηj(t) +

∑
k∈PU

|λk| ηk(t)

)

= lim
t→+∞

(
−λs

(t − TU(0, t))
t

+ λu
TU(0, t)

t

)

⩽ −λs + (λs + λu) lim
t→+∞

TU(0, t)
t

.

In view of (1.11), the above expression is at most equal to

− λs + (λs + λu) lim
t→+∞

(
T0
t

+ ρ

)
⩽ −λs + (λs + λu)ρ. (4.13)

Replacing (4.11)–(4.13) in (4.10), we obtain

lim
t→+∞

(
ν(t)

∑
(k,ℓ)∈E(P)

(lnµkℓ)ρkℓ(t) −

∑
j∈PS

⏐⏐λj⏐⏐ ηj(t)
+

∑
k∈PU

|λk| ηk(t)

)

⩽
1
τa

(lnµ) − λs(1 − ρ) + λuρ.

In view of (1.12), the above quantity is bounded above by −ε(lnµ)
for some ε > 0. Since µ > 1, −ε(lnµ) is strictly smaller than 0.
Consequently, (2.1) holds, and by the assertion of Theorem 5, we
conclude that the switched system (1.2) is GAS.

Observe that the set of arguments in (I) and (II) do not follow
from (1.16) because of the following properties of lim and lim
[16, §0.2]:

lim(ϕ1 + ϕ2) ⩽ limϕ1 + limϕ2
lim(ϕ1 + ϕ2) ⩾ limϕ1 + limϕ2
that hold whenever the right-hand sides are not of the form
∓∞ ± ∞. Consequently, Theorem 4 does not offer an umbrella
framework for Theorems 1–3; for that we need Theorem 5.

(III) We finally show that if a σ satisfies the conditions in
Theorem 4, then the conditions in Theorem 5 follow.

Assume that a switching signal σ satisfies (1.16). We demon-
strate that (1.16) implies (2.1).

lim
t→+∞

(
ν(t)

∑
(k,ℓ)∈E(P)

(lnµkℓ)ρkℓ(t) −

∑
j∈PS

⏐⏐λj⏐⏐ ηj(t)
+

∑
k∈PU

|λk| ηk(t)

)

⩽ lim
t→+∞

ν(t) lim
t→+∞

( ∑
(k,ℓ)∈E(P)

(lnµkℓ)ρkℓ(t)

)

− lim
t→+∞

(∑
j∈PS

⏐⏐λj⏐⏐ ηj(t))+ lim
t→+∞

(∑
k∈PU

|λk| ηk(t)

)
⩽ lim

t→+∞
ν(t)

∑
(k,ℓ)∈E(P)

(lnµkℓ) lim
t→+∞

ρkℓ(t)

−

∑
j∈PS

⏐⏐λj⏐⏐ lim
t→+∞

ηj(t) +

∑
k∈PU

|λk| lim
t→+∞

ηk(t). (4.14)

In viewof (1.16), the right-hand side of is strictly less than 0. Hence,
(2.1) follows and by the assertion of Theorem 5, the switched
system (1.2) is GAS under the switching signal σ in discussion. To
wit, Theorem 3 follows from Theorem 5.

This completes our proof of Theorem 6. □

Remark 7. Notice that all the prior results that are unified in
the framework of Theorem 5 relate to exponential convergence (a
quantitative property) of the function t ↦→ Vσ (t)(x(t)) in terms of
the notation established above. Indeed, the left-hand side of (2.1)
is at most equal to −c for some scalar c > 0, which in conjunction
with (1.3) and (4.6) ensures asymptotically exponential conver-
gence rate of the Lyapunov-like functions along system trajecto-
ries. In contrast, the recent work [18], geared towards input-to-
state stability (ISS) of switched systems,6 characterizes stability
in terms of certain class FK∞ functions, and the only essen-
tial property imposed there is monotonicity (a purely qualitative
property).7 Consequently, the conditions for stabilizing switching
signals that canbe obtained via [18]will not fall out as a special case
of Theorem 5 that guarantees exponential convergence. However,
qualitative results can be specialized to give quantitative ones,
e.g., in [18] the authors showed that prior results based on ISS
under average dwell time switching follow as non-trivial special
cases of the results in [18].
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Appendix

Fix t > 0. In [14] the quantity ηj(t) was defined on the interval
]0, τN(0,t)] and (1.16) was derived under the condition that

lim
t→+∞

t − τN(0,t)

t
= 0. (A.1)

In other words, as t → +∞ the duration of activation of any
system in (1.1) is not comparable to t . To arrive at (A.1), the
hypothesis

lim
t→+∞

ν(t) > 0 (A.2)

was employed. However, the claim that (A.2) implies (A.1) was
incorrect. Indeed, consider a switching signal σ of the following
nature (by the phrase ‘‘immediately after’’ that appears below, we
refer to a small interval of length ε > 0):

◦ immediately after t = 0, there is 1 switch and no further
switches till t = 1

◦ immediately after every t = 2n, there is/are 2n switch(es)
and no further switches till t = 2n+1, n ∈ N0.

Now, fix any n > 0 and 2n
+ε < t ⩽ 2n+1, t large enough.We have

that 1 +
∑n

k=02
k

= 2n+1. Consequently, limt→+∞
ν(t) ⩾ 1 but as

t → +∞, t − τN(0,t) is not negligible compared to t .
A careful observation, however, reveals that the condition (A.1)

may be weakened to

lim
t→+∞

max
σ (τN(0,t))∈PU

t − τN(0,t)

t
= 0; (A.3)

6 Recall that if the input is set to zero for all time, then the ISS property reduces
to the GAS property.
7 FK∞ := {ϱ : [0,+∞[

2
→ [0,+∞[

2
| ϱ is continuous, and for every fixed first

argument, ϱ ∈ K∞ in the second argument}.
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(A.3) requires that as t → +∞, a switching signal does not dwell on
the unstable subsystems for timedurations comparable to t . In fact,
it also provides a quantitative estimate that t−τN(0,t)

t = o(t) as t →

+∞ and σ (τN(0,t)) ∈ PU . Indeed, dwelling on an asymptotically
stable subsystem for longer time durations (comparable to t as
t → +∞) does not act against our objective to stabilize (1.2).

A further careful observation leads us to the fact that with the
quantity ηj(t) defined on ]0, t] in place of ]0, τN(0,t)], only condition
(1.16) is sufficient to guarantee GAS of (1.2), see Remark 6. Indeed,
as t → +∞ long durations of activation for asymptotically
stable subsystems and short durations of activation for unstable
subsystems are perfectly admissible so long as (1.16) is satisfied.
The condition (1.16) includes limt→+∞ν(t) and limt→+∞

ν(t) ⩽

limt→+∞ν(t). However, no lower bound on limt→+∞
ν(t) is re-

quired for condition (1.16) to hold.

References

[1] D. Liberzon, Switching in systems and control, in: Systems & Control: Founda-
tions & Applications, Birkhäuser Boston Inc., Boston, MA, 2003.

[2] A.F. Filippov, Differential equations with discontinuous righthand sides,
in: Mathematics and its Applications (Soviet Series), vol. 18, Kluwer Academic
Publishers Group, Dordrecht, 1988, p. x+304. Translated from the Russian.

[3] M.A. Müller, D. Liberzon, Input/output-to-state stability and state-norm esti-
mators for switched nonlinear systems, Automatica J. IFAC 48 (9) (2012) 2029–
2039.

[4] D. Liberzon, A.S. Morse, Basic problems in stability and design of switched
systems, IEEE Control Syst. Mag. 19 (5) (1999) 59–70.

[5] H. Lin, P.J. Antsaklis, Stability and stabilizability of switched linear systems: a
survey of recent results, IEEE Trans. Automat. Control 54 (2) (2009) 308–322.

[6] A.S. Morse, Supervisory control of families of linear set-point controllers. I.
Exact matching, IEEE Trans. Automat. Control 41 (10) (1996) 1413–1431.

[7] J.P. Hespanha, A.S. Morse, Stability of switched systems with average dwell-
time, in: Proc. of the 38th Conf. on Decision and Contr., 1999, pp. 2655–2660.

[8] W. Xie, C. Wen, Z. Li, Input-to-state stabilization of switched nonlinear sys-
tems, IEEE Trans. Automat. Control 46 (7) (2001) 1111–1116.

[9] L. Vu, D. Chatterjee, D. Liberzon, Input-to-state stability of switched systems
and switching adaptive control, Automatica 43 (2007) 639–646.

[10] D. Liberzon, Finite data-rate feedback stabilization of switched and hybrid
linear systems, Automatica 50 (2) (2014) 409–420.

[11] D. Vengertsev, H. Kim, H. Shim, J.H. Seo, Consensus of output-coupled linear
multi-agent systems under frequently connected network, in: Proceedings of
the 49th IEEE Conference on Decision and Control, 2010, pp. 4559–4564.

[12] C. De Persis, P. Tesi, Input-to-state stabilizing control under denial-of-service,
IEEE Trans. Automat. Control 60 (11) (2015) 2930–2944.

[13] X. Zhao, L. Zhang, P. Shi, M. Liu, Stability and stabilization of switched linear
systems with mode-dependent average dwell time, IEEE Trans. Automat.
Control 57 (7) (2012) 1809–1815.

[14] A. Kundu, D. Chatterjee, Stabilizing switching signals for switched systems,
IEEE Trans. Automat. Control 60 (3) (2015) 882–888.

[15] A. Kundu, D. Chatterjee, Stabilizing switching signals for switched linear sys-
tems. Available at http://www.arxiv.org/abs/1303,1292.

[16] S. Łojasiewicz, An Introduction to the Theory of Real Functions, third ed.,
in: AWiley-Interscience Publication, JohnWiley & Sons Ltd., Chichester, 1988,
p. x+230. With contributions by M. Kosiek, W. Mlak and Z. Opial, Translated
from the Polish by G.H. Lawden, Translation edited by A.V. Ferreira.

[17] A. Kundu, D. Chatterjee, Stabilizing discrete-time switched linear systems, in:
Proceedings of the 17th ACM International Conference on Hybrid Systems:
Computation & Control, 2014, Berlin, Germany, pp. 11–20.

[18] A. Kundu, D. Chatterjee, D. Liberzon, Generalized switching signals for input-
to-state stability of switched systems, Automatica 64 (2016) 270–277.

http://refhub.elsevier.com/S0167-6911(17)30104-4/sb1
http://refhub.elsevier.com/S0167-6911(17)30104-4/sb1
http://refhub.elsevier.com/S0167-6911(17)30104-4/sb1
http://refhub.elsevier.com/S0167-6911(17)30104-4/sb2
http://refhub.elsevier.com/S0167-6911(17)30104-4/sb2
http://refhub.elsevier.com/S0167-6911(17)30104-4/sb2
http://refhub.elsevier.com/S0167-6911(17)30104-4/sb2
http://refhub.elsevier.com/S0167-6911(17)30104-4/sb2
http://refhub.elsevier.com/S0167-6911(17)30104-4/sb3
http://refhub.elsevier.com/S0167-6911(17)30104-4/sb3
http://refhub.elsevier.com/S0167-6911(17)30104-4/sb3
http://refhub.elsevier.com/S0167-6911(17)30104-4/sb3
http://refhub.elsevier.com/S0167-6911(17)30104-4/sb3
http://refhub.elsevier.com/S0167-6911(17)30104-4/sb4
http://refhub.elsevier.com/S0167-6911(17)30104-4/sb4
http://refhub.elsevier.com/S0167-6911(17)30104-4/sb4
http://refhub.elsevier.com/S0167-6911(17)30104-4/sb5
http://refhub.elsevier.com/S0167-6911(17)30104-4/sb5
http://refhub.elsevier.com/S0167-6911(17)30104-4/sb5
http://refhub.elsevier.com/S0167-6911(17)30104-4/sb6
http://refhub.elsevier.com/S0167-6911(17)30104-4/sb6
http://refhub.elsevier.com/S0167-6911(17)30104-4/sb6
http://refhub.elsevier.com/S0167-6911(17)30104-4/sb8
http://refhub.elsevier.com/S0167-6911(17)30104-4/sb8
http://refhub.elsevier.com/S0167-6911(17)30104-4/sb8
http://refhub.elsevier.com/S0167-6911(17)30104-4/sb9
http://refhub.elsevier.com/S0167-6911(17)30104-4/sb9
http://refhub.elsevier.com/S0167-6911(17)30104-4/sb9
http://refhub.elsevier.com/S0167-6911(17)30104-4/sb10
http://refhub.elsevier.com/S0167-6911(17)30104-4/sb10
http://refhub.elsevier.com/S0167-6911(17)30104-4/sb10
http://refhub.elsevier.com/S0167-6911(17)30104-4/sb12
http://refhub.elsevier.com/S0167-6911(17)30104-4/sb12
http://refhub.elsevier.com/S0167-6911(17)30104-4/sb12
http://refhub.elsevier.com/S0167-6911(17)30104-4/sb13
http://refhub.elsevier.com/S0167-6911(17)30104-4/sb13
http://refhub.elsevier.com/S0167-6911(17)30104-4/sb13
http://refhub.elsevier.com/S0167-6911(17)30104-4/sb13
http://refhub.elsevier.com/S0167-6911(17)30104-4/sb13
http://refhub.elsevier.com/S0167-6911(17)30104-4/sb14
http://refhub.elsevier.com/S0167-6911(17)30104-4/sb14
http://refhub.elsevier.com/S0167-6911(17)30104-4/sb14
http://www.arxiv.org/abs/1303%2C1292
http://refhub.elsevier.com/S0167-6911(17)30104-4/sb16
http://refhub.elsevier.com/S0167-6911(17)30104-4/sb16
http://refhub.elsevier.com/S0167-6911(17)30104-4/sb16
http://refhub.elsevier.com/S0167-6911(17)30104-4/sb16
http://refhub.elsevier.com/S0167-6911(17)30104-4/sb16
http://refhub.elsevier.com/S0167-6911(17)30104-4/sb16
http://refhub.elsevier.com/S0167-6911(17)30104-4/sb16
http://refhub.elsevier.com/S0167-6911(17)30104-4/sb18
http://refhub.elsevier.com/S0167-6911(17)30104-4/sb18
http://refhub.elsevier.com/S0167-6911(17)30104-4/sb18

	Stabilizing switching signals: A transition from point-wise to asymptotic conditions
	Introduction
	The problem
	The basic assumptions
	A roughly chronological account of preceding works
	(Average) Dwell time
	Mode-dependent average dwell time
	Average dwell time with unstable subsystems
	Asymptotic conditions

	Our contributions

	A unifying framework
	Conclusion
	Proofs
	Acknowledgements
	Appendix
	References


