
Formal Methods for Adaptive Control of Dynamical Systems

Sadra Sadraddini and Calin Belta

Abstract— We develop a method to control discrete-time
systems with constant but initially unknown parameters from
linear temporal logic (LTL) specifications. We introduce the
notions of (non-deterministic) parametric and adaptive transi-
tion systems and show how to use tools from formal methods
to compute adaptive control strategies for finite systems. For
infinite systems, we first compute abstractions in the form of
parametric finite quotient transition systems and then apply
the techniques for finite systems. Unlike traditional adaptive
control methods, our approach is correct by design, does not
require a reference model, and can deal with a much wider
range of systems and specifications. Illustrative case studies are
included.

I. INTRODUCTION

Adaptive control, or self-learning control, is a set of
techniques to automatically adjust controllers for uncertain
systems. In the traditional problem of adaptive control, a
parameterized system is considered where the parameters
are assumed to be constant, but their values are initially
unknown to the controller. The goal is to achieve some
desired performance while the parameters are (possibly indi-
rectly) estimated online. The solution to this problem can be
extended to scenarios where parameters infrequently change
or vary slowly. Numerous adaptive control methods have
been developed since 1950s [1]–[4]. The main theoretical
guarantee sought in all conventional adaptive control tech-
niques is stability - whether it is specified in terms of tracking
a set-point, trajectory, or a reference model.

One particular limitation of current adaptive control meth-
ods is handling systems that involve discontinuities. Most
adaptive control techniques rely on the continuity of the
model and its parameterization. In many realistic models,
state, control or parameters take values from both continuous
and discrete domains. Within methods that do not entirely
depend on the continuity of the model, a promising direc-
tion is using multiple models/controllers [5]–[8], where the
objective is to achieve stability via designing a switching law
(supervisory control) to coordinate the controllers. Model
reference adaptive control (MRAC) of specific forms of
scalar input piecewise affine systems were studied in [9],
[10]. However, it is still not clear how to deal with general
discrete or hybrid systems.

Another remaining open problem in adaptive control is
dealing with specifications richer than stability. In many en-
gineering applications, we are interested in complex require-
ments composed of safety (something bad never happens),

The authors are with the Department of Mechanical Engineering, Boston
University, Boston, MA 02215 {sadra,cbelta}@bu.edu. This work was
partially supported by the NSF under grants CPS- 1446151 and CMMI-
1400167.

liveness (something good eventually happens), sequentiality
of tasks, and reactiveness. Temporal logics [11] provide a
natural framework for specifying such requirements. The
main challenge in designing adaptive control techniques from
formal specifications is handling hard constraints on the
evolution of the system. Even for the simpler problem of
constraints defined as a safe set in the state-space, designing
adaptive control strategies is challenging. Existing works on
this problem [12]–[16] apply robust control techniques to
ensure infinite-time constraint satisfaction for all admissible
parameters. This approach may be severely conservative
since if a robust control strategy does not exist for all
admissible parameters, it does not necessarily indicate that
constraints can not be satisfied after some measurements
are taken from the system and a more accurate model is
available. Even though [13], [14], [17] update the model
and synthesize controls in a receding horizon manner, they
decouple constraint satisfaction and learning. However, there
exists a deep coupling: when synthesizing controls, not only
constraints must be taken into account, but also the evolution
of the system should also lead to subsequent measurements
that are more informative about the uncertainties in the
model. In other words, control decisions have a indirect
influence on the way the model is updated.

We use tools from formal methods [11], [18] to develop
a framework for correct-by-design adaptive control that
can deal with complex systems and specifications. Formal
methods have been increasingly used in control theory in
recent years [19], [20]. We consider discrete-time systems
with constant but initially unknown parameters. We describe
system specifications using linear temporal logic (LTL) [11].
As in any other adaptive control technique, we require an
online parameter estimator. Our parameter estimator maps
the history of the evolution of the system to the set of “all
possible” parameters, which contains the actual parameters.
We embed the parameterized system in a (non-deterministic)
parametric transition system (PTS), from which we construct
a (non-deterministic) adaptive transition system (ATS) that
contains all the possible combinations of transitions with the
unfoldings of the parameter estimator. The main results and
contributions of this paper are as follows:

• For finite systems, the LTL adaptive control problem
reduces to a Rabin game [21] on the product of the
finite ATS and the Rabin automaton corresponding to
the LTL specification. The method is correct by design
and it is complete, i.e. it finds a solution if one exists;

• For infinite systems, we construct finite quotient ATSs
by partitioning the state and the parameter space and

ar
X

iv
:1

70
3.

07
70

4v
1

 [
cs

.S
Y

]
 2

2
M

ar
 2

01
7

quantizing the control space. Once an adaptive control
strategy is found for the quotient, it is guaranteed that
it will also ensure the satisfaction of the LTL formula
for the original infinite system. The method may be
conservative.

This paper is related to recent works that seek a formal
approach to combining learning and control. The authors in
[22], [23] provided statistical certificates for MRAC subject
to safety constraints. The idea was based on implementing
MRAC from a set of different initial conditions and param-
eters and observing if the trajectories were safe. However,
the design of MRAC itself did not take into account the
constraints. Moreover, given a temporal logic specification
and a system model with parametric uncertainty, it is not
clear how a reference model should be chosen for imple-
menting MRAC. If a reference model is able to satisfy the
specification, the matching condition may not hold, i.e. there
may not exist a controller for the original system to behave
as the reference model. Therefore, classic MRAC may not be
suitable for the purpose of this paper as it requires a careful
search of reference models subject to matching conditions.

Reinforcement learning (RL) methods are conceptually
similar to adaptive control, but are used in a probabilistic
framework and require a reward mechanism to generate
control policies. The authors in [24] studied RL from LTL
specifications, where large rewards were dedicated to the
pairs in the Rabin automaton to incentivize the system to
visit them regularly or avoid them. In [25], Q-learning was
applied to control MDPs from signal temporal logic (STL)
specifications, where the reward was the STL robustness
score - a measure of distance to satisfaction. Other closely
related works include [26], [27], where the problem of
LTL control was modeled as a game between a player
(controller) and an adversary (environment). The controller
inferred the “grammar” of actions taken by the environment.
However, this approach also decoupled adaptation (learning)
and control. If the LTL formula was violated during the
grammar learning, the control software stopped. While these
methods (including RL) have the advantage that they require
less prior knowledge about the system, they are not suitable
for performance-critical systems with constraints that should
never be violated, even during the learning process.

This paper is organized as follows. First, we provide the
necessary background on LTL, transition systems and LTL
control in Sec. II. The adaptive control problem is formulated
in Sec. III. We define PTSs in Sec. IV. Technical details for
the solutions for finite and infinite systems are explained in
Sec. V and VI, respectively. Finally, two case studies are
presented in Sec. VII.

II. BACKGROUND

A. Notation

The set of real and Boolean values are denoted by R and
B respectively. The empty set is denoted by ∅. Given a set S,
we use |S|, 2S , 2S−∅ to denote its cardinality, power set, and
power set excluding the empty set, respectively. An alphabet

A is a finite set of symbols A = {a1, a2, · · · , aA}. A finite
(infinite) word is a finite-length (infinite-length) string of
symbols in A. For example, w1 = a1a2a1 is a finite word,
and w2 = a1a2a1 and w3 = a1a2a1 are infinite words over
A = {a1, a2}, where over-line stands for infinitely many
repetitions. We use A∗ and Aω to denote the set of all finite
and infinite words that can be generated from A, respectively.

B. Linear Temporal Logic

The formal definition of LTL syntax and semantics is
not provided here as it can be found in the literature
[11]. Here we provide an informal introduction and the
necessary notation. LTL consists of a finite set of atomic
propositions Π, temporal operators G (globally/always), F
(future/eventually), U (Until), and Boolean connectives ∧
(conjucntion), ∨ (disjunction), and ¬ (negation). LTL seman-
tics are interpreted over infinite words over 2Π. The set of
all infinite words that satisfy an LTL formula ϕ is denoted
by L(ϕ), L(ϕ) ⊂ (2Π)ω , and is referred to as the language
of ϕ.

Definition 1: A Deterministic Rabin Automaton (DRA) is
defined as the tuple R = (S, s0,A, α,Ω), where:
• S is a set of states;
• s0 is the initial state;
• A is a finite set of inputs (alphabet);
• α is a transition function α : S ×A → S;
• Ω = {(F1, I1), · · · , (Fr, Ir)} is a finite set of pairs of

sets of states, where Fi, Ii ⊂ S, i = 1, · · · , r.
An infinite word w ∈ Aω determines a sequence of inputs

for R that results in the run ζ(w) = s0s1 · · · , where sk+1 =
α(sk, ak), s0 = s0, and ak is the k’th input appearing in w.
We define Inf(ζ) = {s|s appears infinitely often in ζ}. A
run ζ is accepted by R if there exists i ∈ {1, · · · ,m} such
that Inf(ζ) ∩ Fi = ∅ and Inf(ζ) ∩ Ii 6= ∅. In other words,
Fi is visited finitely many times and Ii is visited infinitely
often for some i. The language of R, denoted by L(R),
L(R) ⊂ Aω , is defined as the set of all elements in Aω that
produce accepting runs.

It is known that given an LTL formula ϕ over Π, one
can construct a DRA Rϕ with input set A = 2Π such
that L(Rϕ) = L(ϕ) [21]. Therefore, verifying whether an
infinite word satisfies an LTL formula becomes equivalent to
checking the Rabin acceptance condition. There exists well-
established algorithms and software for this procedure [28].

Example 1: Consider ϕ = GFπ1∧Fπ2, which is an LTL
formula over Π = {π1, π2}, stating that “π1 holds infinitely
often, and π2 eventually holds”. The DRARϕ corresponding
to this formula is illustrated in Figure 1. For example, we
have {π2}{π1, π2} |= ϕ (ϕ is satisfied), but {π1} 6|= ϕ (ϕ
is violated since π2 never appears), and {π1}∅{π2} 6|= ϕ
(because π1 does not hold infinitely often).

C. Transition Systems

Definition 2: A transition system is defined as the tuple
T = (X,U, β,Π, O), where:
• X is a (possibly infinite) set of states;
• U is a (possibly infinite) set of control inputs;

s0start

s2s1

{π2}

{{π1}, ∅}

{{π1, π2}}{{π1}, {π1, π2}}

{{π2}, ∅} {{π1}, {π1, π2}}

{∅, {π2}}

Fig. 1. Example 1: DRA corresponding to ϕ = GFπ1 ∧ Fπ2, where
F1 = {s0} (red), I1 = {s2} (green). Runs that visit the green state
infinitely many times and visit the red state finitely many times satisfy ϕ.

• β is a transition function β : X × U → 2X ;
• Π = {π1, π2, · · · , πm} is a finite set of atomic propo-

sitions;
• O : X → 2Π is an observation map.

We assume that T is non-blocking in the sense that
|β(x, u)| 6= 0 for all x ∈ X,u ∈ U . 1 A transition system
T is deterministic if |δ(x, u)| = 1,∀x ∈ X,∀u ∈ U , and is
finite if X and U are finite sets. A trajectory of T is an infi-
nite sequence of visited states x0x1x2 · · · . The infinite word
produced by such a trajectory is O(x0)O(x1)O(x2) · · · . Note
that the alphabet here is 2Π. The set of all infinite words that
can be generated by T is a subset of (2Π)

ω .
Definition 3: A control strategy Λ is a function Λ :

X∗ × U∗ → U that maps the history of visited states
and applied controls to an admissible control input, where
uk = Λ(x0 · · · , xk, u0 · · · , uk−1),∀k ∈ N.

Definition 4: Given a transition system T =
(X,U, β,Π, O), a control strategy Λ and a set of initial
states X0 ∈ X , we define:

L(T ,Λ, X0) :=
{

O(x0)O(x1) · · · ∈ (2Π)
ω
∣∣∣

x0 ∈ X0, xk+1 ∈ β(xk, uk), k ∈ N
}
,

where uk = Λ(x0 · · · , xk, u0 · · · , uk−1).

D. Quotient Transition System

Consider a transition system T = (X,U, β,Π, O). A
(finite) set Q ⊂ 2X is a (finite) partition for X if 1) ∅ 6∈ Q,
2)
⋃
q∈Q q = X , and 3) q ∩ q′ = ∅,∀q, q′ ∈ Q, q 6= q′. A

partition Q is observation preserving if for all q ∈ Q, we
have O(x) = O(x′),∀x, x′ ∈ q.

Definition 5: Given a transition system T =
(X,U, β,Π, O) and an observation preserving partition
Q for X , the quotient transition system is defined as the
tuple TQ = (Q,U, βQ,Π, OQ) such that:
• for all q ∈ Q, we have q′ ∈ βQ(q, u) if and only if
∃x ∈ q, ∃x′ ∈ q′ such that x′ ∈ β(x, u);

1 If T is blocking, we can make it non-blocking by adding an additional
state xsink such that for all x ∈ X,u ∈ U, |β(x, u)| = 0, we have
xsink = β(x, u). Also, we add transitions xsink = β(xsink, u), ∀u ∈ U .
In order to prevent blocking, we find a control strategy such that xsink is
not reachable.

• for all q ∈ Q, we have OQ(q) = O(x) for any x ∈ q.
Given a control strategy for the quotient ΛQ : Q∗×U∗ → U ,
and a set of initial conditions Q0, we construct Λ(Q) :
X∗ → U such that Λ(Q)(x0 · · ·xk) = ΛQ(q0 · · · qk), xi ∈ qi,
0 ≤ i ≤ k, k ∈ N, and X

(Q)
0 = {x0|x0 ∈ q0, q0 ∈ Q0}. It

is easy to show that L(T ,Λ(Q), X
(Q)
0) ⊆ L(TQ,ΛQ, Q0),

which stems from the fact that TQ simulates T . We refer
to L(TQ,ΛQ, Q0) \L(T ,Λ(Q), X

(Q)
0) as the set of spurious

infinite words (SIW). In order to have L(T ,Λ(Q), X
(Q)
0) =

L(TQ,ΛQ, Q0) (empty SIW), a sufficient condition is that
TQ and T are bisimilar [20]. For infinite X , there is no
general guarantee that a finite Q exists such that TQ is
bisimilar to T . In order to “shrink” SIW, Q is refined.
At the most extreme case, SIW remains nonempty unless
Q = X . Further details on simulation and bisimulation
relations are not required for this paper and the interested
reader is referred to the related works in the literature, such
as [19], [20], [29].

E. LTL Control

Given a finite transition system T = (X,U, β,Π, O) and
an LTL formula ϕ over Π, we are interested in finding a
control strategy Λ and the largest set of initial conditions
Xmax

0 such that L(T ,Λ, Xmax
0) ⊆ L(ϕ). In other words, we

require ϕ to be satisfied for all trajectories that are allowed
by the non-determinism in T .

Definition 6: Given a transition system T =
(X,U, β,Π, O) and a DRA Rϕ = (S, s0,A, α,Ω)
corresponding to LTL formula ϕ, the product
automaton T Pϕ = T ⊗ Rϕ is defined as the tuple(
XP , XP,0, U, βP ,ΩP

)
, where:

• XP = X × S is the set of product states;
• XP,0 = {(x, s0)|x ∈ X} is the set of initial product

states;
• U is the set of control inputs;
• βP : XP ×U → 2X

P

is the product transition function,
where xP

′ ∈ δ(xP , u), xP = (x, s), xP
′

= (x′, s′), if
and only if x′ ∈ β(x, u) and s′ = α(s,O(x)).

• ΩP =
{

(FP1 , I
P
1), · · · , (FPr , IPr)

}
is a finite set of pairs

of sets of states, where FPi = {(x, s)|x ∈ X, s ∈
Fi}, IPi = {(x, s)|x ∈ X, s ∈ Ii}, i = 1, · · · , r.

The product automaton T Pϕ is a (non-deterministic) au-
tomaton (with control inputs) capturing both the transitions
in T and the acceptance condition of ϕ. The solution to
the problem of finding a control strategy to satisfy ϕ is
accomplished by solving the Rabin game on the product
automaton. The details are not presented here but can be
found in [30]. It can be shown that the control strategy
is memoryless on the product automaton in the form Λ :
X × S → U . In other words, the history of the system
is incorporated into the state of the Rabin automaton. The
largest set of admissible initial conditions Xmax

0 corresponds
to the winning region of the Rabin game.

If the transition system T is infinite, a finite quotient is
constructed. If U is infinite, it can be quantized to obtain

a finite set 2. It is straightforward to show that if a control
strategy satisfying ϕ exists for the finite quotient, it also
satisfies ϕ if implemented on the original system. However,
unless the quotient and the original transition system are
bisimilar, the non-existence of a control strategy for the
quotient does not indicate that one does not exist for the
original system. Hence the approach of using finite quotients
may be conservative [19], [20].

III. PROBLEM FORMULATION AND APPROACH

We are interested in discrete-time systems of the following
form:

x+ = F (x, u, θ, d),
yi = µi(x), i = 1, · · · ,m, (1)

where x ∈ X is the state, u ∈ U is the control input, θ ∈
Θ represents the parameters of the system, d ∈ D is the
disturbance (adversarial input), F : X × U × Θ ×D → X
is the system evolution function, and yi, i = 1, · · · ,m, are
Boolean system outputs, where µi : X → B. We define
the set of atomic propositions Π = {π1, · · · , πm} such that
x |= πi ⇔ µi(x) = True, i = 1, · · · ,m. The sets X,U,Θ, D
are the admissible sets for states, controls, parameters and
disturbances respectively. All sets may be finite or infinite.
System (1) is finite if X,U,Θ, D are all finite.

Example 2: A prominent class of systems encountered
in adaptive control are parameterized linear systems, where
F (x, u, θ, d) = A(θ)x + B(θ)u + d. We have X ⊂ Rnx ,
U ⊂ Rnu , Θ ⊂ Rnθ , D ⊂ Rnd . A,B are matrices with
appropriate dimensions that depend on θ. It is also common
to assume that the outputs are Boolean evaluations of linear
predicates µi = (rTi x ≤ ρi), where ri ∈ Rn, and ρi ∈ R.
Thus, each proposition πi defines a closed half space in Rnx .

As mentioned in the introduction, we distinguish between
the uncertainty in parameters and disturbances. Disturbances
usually have unknown (fast) variations in time. In this paper,
we assume that θ is a constant but its value θ∗ is initially
unknown. If we treat the uncertainties in parameters and
disturbances in the same way, we are required to design
control strategies that are robust versus all values in both Θ
and D. This approach is severely conservative and often fails
to find a solution. The key idea of adaptive control is to take
advantage of the fact that θ∗ can be (approximately) inferred
from the history of the evolution of the system. Therefore,
adaptive control is often significantly more powerful than
pure robust control and it is also more difficult to design and
analyze. In engineering applications, parameters are related
to the physical attributes of the plant whereas disturbances
are related to effects of stochastic nature such as imperfect
actuators/sensors and perturbations in the environment.

Problem 1: Given system (1) and an LTL formula ϕ over
Π, find a control strategy Λ : X∗ × U∗ → U and a set of
initial states X0 ⊆ X such that all the trajectories of the
closed loop system starting from X0 satisfy ϕ.

2An alternative (better) approach was proposed in [31] for piecewise
affine systems, where the authors computed a finite set of sets of control
inputs that enabled transitions with minimal non-determinism in the quotient
system.

Our aim is to convert Problem 1 to an LTL control problem
described in Sec.II-E and use the standard tools for Rabin
games. To this end, we need to incorporate adaptation into
control synthesis. The central tool to any adaptive control
technique is parameter estimation. Note that an adaptive
control strategy has the form Λ : X∗ × U∗ → U , since
parameters are estimated using the history of the evolution
of the system. We take the following approach to convert
Problem 1 into an LTL control problem. We embed system
(1) in a parametric transition system (PTS), which is defined
in Sec. IV. We construct a finite adaptive transition system
(ATS) from a finite PTS. An ATS is an ordinary transition
system as in Sec. II-C, but parameters are also incorporated
into its states and transitions in appropriate way, which
is explained in Sec. V. We deal with an infinite PTS by
constructing a finite quotient PTS in Sec. VI.

IV. PARAMETRIC TRANSITION SYSTEM

Definition 7: A parametric transition system (PTS) is de-
fined as the tuple T Θ = (X,U,Θ, γ,Π, O), where:
• X is a (possibly infinite) set of states;
• U is a (possibly infinite) set of control inputs;
• Θ is a (possibly infinite) set of parameters;
• γ is a transition function γ : X × U ×Θ→ 2X .
• Π = {π1, π2, · · · , πm} is a finite set of atomic propo-

sitions;
• O : X → 2Π is an observation map.

The only difference between a PTS and a transition system is
that its transitions depend on parameters. Note that if |Θ| =
1, a PTS becomes a transition system.

Now we explain how to represent (1) in the form of a
PTS. The sets X,U,Θ are inherited from (1) (which is why
we have used the same notation). The transition function γ
is constructed such that

γ(x, u, θ) =
{
F (x, u, θ, d)

∣∣∣d ∈ D} . (2)

The observation map O : X → 2Π is given by:

O(x) =
{
πi

∣∣∣µi(x) = True, i = 1 · · · ,m
}
. (3)

Therefore, T Θ = (X,U,Θ, γ,Π, O) captures everything in
system (1). We refer to T Θ as the embedding of (1). One can
interpret a PTS as a (possibly infinite) family of transition
systems. The actual transitions are governed by a single
parameter θ∗, which is initially unknown to the controller.
Therefore, the controller has to find out which transition
system is the ground truth.

V. CONTROL SYNTHESIS FOR FINITE SYSTEMS

In this section, we assume the PTS embedding system (1)
is finite.

A. Parameter Estimation

Definition 8: A parameter estimator Γ is a function

Γ : X∗ × U∗ → 2Θ
−∅ (4)

that maps the history of visited states and applied
controls to a subset of parameters. We have ϑk =
Γ(x0 · · ·xk;u0 · · ·uk−1), where:

ϑk =
{
θ ∈ Θ

∣∣∣xi+1 ∈ γ(xi, ui, θ), 0 ≤ i ≤ k − 1
}
. (5)

One can see that the parameter estimator (5) is “sound” in
the sense that θ∗ ∈ ϑk,∀k ∈ N. We have ϑ0 = Γ(x0) = Θ,
by definition. Note that our definition of parameter estimator
is different from the traditional ones, which are often in the
form X∗×U∗ → Θ, as they return only an estimate θ̂ rather
than the set of all possible parameters. For our formal setup,
it is vitally important that the controller take into account
all possible ground truth parameters at all times. Otherwise,
guaranteeing the specification is impossible. The following
proposition enables us to make (5) recursive.

Proposition 1: The following recursive relation holds:

ϑk+1 =
{
θ ∈ ϑk

∣∣∣xk+1 ∈ γ(xk, uk, θ)
}
. (6)

Proof: Substitute ϑk from (5):{
θ ∈ ϑk

∣∣∣xk+1 ∈ γ(xk, uk, θ)
}

=
{
θ ∈ Θ

∣∣∣θ ∈ ϑk, xk+1 ∈ γ(xk, uk, θ)
}

=
{
θ ∈ Θ

∣∣∣xi+1 ∈ γ(xi, ui, θ), 0 ≤ i ≤ k
}

= ϑk+1.

Corollary 1: The set of estimated parameters never grows:
ϑk+1 ⊆ ϑk,∀k ∈ N.
Therefore, we obtain a recursive parameter estimator Γrec :
2Θ
−∅×X×U×X → 2Θ

−∅ as ϑk+1 = Γrec(ϑk, xk, uk, xk+1).
Note that Γrec is deterministic.

B. Adaptive Transition System

As mentioned in the introduction, a primary challenge
of provably correct adaptive control is coupling parameter
estimation and control synthesis. In order to combine these
two, we provide the following definition.

Definition 9: Given a PTS T Θ = (X,U,Θ, γ,Π, O), we
define the adaptive transition system (ATS) as the tuple
T adp =

(
Xadp, U, γadp,Π, Oadp

)
, where U,Π are inherited

from T Θ with the same meaning and
• Xadp ⊆ X × 2Θ

−∅ is the set of states;
• γadp : Xadp × U → 2X

adp

is the transition function,
where we have (x′, ϑ′) ∈ γadp((x, ϑ), u) if and only if
x′ ∈ γ(x, u) and ϑ′ = Γrec(ϑ, x, u, x

′);
• Oadp : Xadp → 2Π is the observation function where
Oadp(x, ϑ) = O(x),∀x ∈ X,ϑ ∈ 2Θ

−∅.
Example 3: Consider a PTS with X = {x1, x2, x3}, U =

{u1, u2}, and Θ = {θ1, θ2}. The transition systems corre-
sponding to θ1 and θ2 are illustrated in Fig. 2 [top]. The ATS
corresponding is shown in Fig. 2 [Bottom].
The number of states in the ATS is upper-bounded by
|X|(2|Θ|−1), which shows an exponential explosion with the
number of parameters. Fortunately, not all states in X×2Θ

−∅
are reachable from the set {(x, θ)|x ∈ X, θ ∈ Θ}, which
is the set of possible initial states in the ATS. Algorithm 1
constructs the ATS consisting of only these reachable states.

Algorithm 1 Procedure for Constructing ATS from a PTS
Require: T Θ = (X,U,Θ, γ,Π, O)
Xadp,new = {(x,Θ)|x ∈ X}
Xadp = Xadp,new

while Xadp,new 6= ∅ do
Xadp,new ← ∅
for (x, ϑ) ∈ Xadp do

for u ∈ U do
γadp((x, ϑ), u) = ∅
ϑ′ = ∅
for θ ∈ ϑ do

for x′ ∈ γ(x, u, ϑ) do
for θ′ ∈ ϑ do

if x′ ∈ γ(x, u, θ′) then
ϑ′ ← ϑ′ ∪ θ′

γadp((x, ϑ), u) ← γadp((x, ϑ), u) ∪
(x′, ϑ′)

if (x′, ϑ′) 6∈ Xadp then
Xadp,new ← Xadp,new ∪ (x′, ϑ′)
Xadp ← Xadp ∪ (x′, ϑ′)
Oadp(x′, ϑ′) = O(x′)

return T adp =
(
Xadp, U, γadp,Π, Oadp

)

C. Control Synthesis

Finally, given an ATS T adp and an LTL formula ϕ, we
construct the product automaton T adp ⊗ Rϕ as explained
in Sec. II-E, and find the memoryless control strategy on
T adp ⊗ Rϕ by solving the Rabin game. We also find the
largest set of admissible initial conditions Xadp,max

0 as the
winning region of the Rabin game. In order to find Xmax

0 ,
we perform the following projection:

Xmax
0 =

{
x0

∣∣∣(x0,Θ) ∈ Xadp,max
0

}
. (7)

The adaptive control strategy takes the memoryless form Λ :
X×2Θ

−∅×S → U , which maps the current state in the PTS,
the set of current possible ground truth parameters and the
state in the Rabin automaton to an admissible control action.

Theorem 1: Given a finite system (1), an initial condition
x0 ∈ X , an LTL formula over Π, there exists a control
strategy Λ∗ : X∗×U∗ → U such that O(x0)O(x1) · · · |= ϕ,
∀θ ∈ Θ,∀dk ∈ D, xk+1 = F (xk, uk, θ, dk),∀k ∈ N, if and
only if x0 ∈ Xmax

0 . .
Proof: (sketch) The completeness property follows

from two facts. First, the solutions to Rabin games on finite
automata are complete. Second, every possible behavior of
a finite PTS embedding (1) and parameter estimator (5) is
captured in the ATS. If x0 6∈ Xmax

0 , then it can be shown
that there exists a θ ∈ Θ and a disturbance sequence d0d1 · · ·
such that there does not exist any control strategy to satisfy
the LTL specification.

VI. CONTROL SYNTHESIS FOR INFINITE SYSTEMS

In this section, we assume that PTS embedding (1) is not
finite, which means that at least one of the sets X,U,Θ is
infinite. We provide the general solution for the case when

x1

x2x3

u1

u2 u1, u2u1

u2
x1

x2x3

u1u2

u1
u2u1, u2

T θ1 T θ2

x1, {θ1, θ2} x2, {θ1, θ2}x3, {θ1, θ2}

x1, {θ1}

x2, {θ1}x3, {θ1}

x1, {θ2}

x2, {θ2}x3, {θ2}

u1

u2
u2

u1

u1

u1

u2
u 2

u1

u2

u1, u2u1

u2

u1

u2

u1 u2u1, u2

T adp

Fig. 2. Example 3: [Top] A PTS with two possible parameters θ1, θ2, and the corresponding transition systems [Bottom] The corresponding ATS

all sets are infinite. We note that the approach in this section
is still preliminary and we leave further investigation to our
future work.

We consider a finite observation preserving (see Sec. II-D)
partition QX = {q1

X , · · · , q
pX
X } for X and a finite partition

QΘ = {q1
Θ, · · · , q

pΘ

Θ } for Θ. We also quantize U to obtain
a finite Uqtz = {u1

qtz, · · · , u
pu
qtz}. In this paper, we do not

consider any particular guideline for how to partition and
leave this problem to our future work. In general, the finer
the partitions, the less conservative the method is with a price
of higher computational effort. “Smart” partition refinement
procedures were studied in [32], [33].

Once partitions and quantizations are available, we com-
pute the transitions. We denote the successor (post) of set
qX , under parameter set qΘ and control u by

Post(qX , qΘ, u) :=
{
x ∈ X

∣∣∃x ∈ qX , ∃θ ∈ qΘ, x ∈ γ(x, θ, u)
}
.

(8)
A computational bottleneck is performing the post com-
putation in (8). For additive parameters, the post compu-
tation is exact for piecewise affine systems using poly-
hedral operations [31]. For multiplicative parameters, an
over-approximations of post can be computed [34], which
introduces further conservativeness but retains correctness.
Finally, we construct the quotient PTS from the infinite PTS.
The procedure is outlined in Algorithm 2.

Algorithm 2 Procedure for Constructing quotient PTS from
infinite PTS
Require: T Θ = (X,U,Θ, γ,Π, O)
Require: QX , QΘ, Uquantized

for qX ∈ QX do
OQ(qX) = O(x) for some x ∈ qX
for qΘ ∈ QΘ do

for uqtz ∈ Uqtz do
Xpost = Post(qX , qΘ, u)
γQ(qX , uqtz, qΘ) = ∅
for q′Θ ∈ QΘ do

if Xpost ∩ q′Θ 6= ∅ then
γQ(qX , uqtz, qΘ) ←

γQ(qX , uqtz, qΘ) ∪ q′Θ
return T Q,Θ =

(
Q,Uquantized, QΘ, γ

Q,Π, OQ
)

VII. CASE STUDIES

We present two case studies. The first one is a simple finite
deterministic system. The second case study involves a linear
parameterized system that is infinite and non-deterministic
due to the presence of additive disturbances.

A. Persistent Surveillance

We consider a robot motion planning problem. The en-
vironment is modeled as a finite number of cells illustrated

Fig. 3. Case Study 1: (Left): The Robot (shown in black) and its environment. (Middle): Snapshots of the executed Motion at time k = 33, and (Right)
k = 62. The robot satisfies the specification.

in Fig. 3. Each cell corresponds to a state in X . We have
|X| = 150. The set of control inputs is given by U = { left,
right, up, down}, where the transition enabled by each input
corresponds to its unambiguous meaning. There exists an
constant drift in the horizontal direction in the purple region,
but its direction to left or right and its intensity are unknown.
The set of possible drifts is Θ = {+2,+1, 0,−1,−2},
where positive sign corresponds to the left direction. At each
time, if the robot is in a purple cell, the drift is added to
its subsequent position. For example, if the robot applies
u =right, and θ∗ = 2, the robot actually ends up in a cell to
the left. Similarly, if u =up and θ∗ = −2, the robot moves a
cell up and two cells to the right. The red cells are “unsafe”
regions that must be avoided, and the green cells A,B are
“interesting” regions, which have to be persistently visited.
The LTL formula describing this specification is:

ϕ = GFA ∧ GFB ∧ G(¬unsafe).

We implemented the procedure outlined in Sec. V. It is
worth to note that there does not exist a pure robust control
solution to this problem. In other words, if the robot ignores
estimating the drift, it can not find a control strategy. For
example, if the robot enters the purple region around the
middle and persistently applies up, a maximum drift in either
direction can drive the robot into the unsafe cells before it
exits the purple region. Therefore, the only way the robot can
fulfill the specification is to learn the drift. The robot first
enters the drifty region to find out its value and then moves
back and re-plans its motion. Notice that this procedure is
fully automated using the solution of the Rabin game on the
product T adp ⊗Rϕ. Two snapshots of the executed motion
for the case θ∗ = +2 are shown in Fig. 3.

B. Safety Control
Consider a one-dimensional linear system of the following

form:
x+ = (1 + θ1)x+ θ2u+ θ3 + d, (9)

where θ1 ∈ [−0.5, 0.5], θ2 ∈ [1, 2], and θ3 ∈ [−0.2, 0.2]
are fixed parameters, and d ∈ D, is the additive disturbance,
D = [−0.1, 0.1]. The set of admissible control inputs is U =
[−1, 1]. We desire to restrict x to the [−1, 1] interval for all
times, which is described by the following LTL formula:

ϕ = G(x ≤ 1) ∧G(x ≥ −1).

Fig. 4. Case Study 2: trajectory of the system versus time, which is always
between −1 and 1.

We have Θ = [−0.5, 0.5]×[1, 2]×[−0.2, 0.2]. We partitioned
the intervals of θ1, θ2, θ3, and X into 2,2,4, and 10 evenly
spaced intervals, respectively. Thus, we have partitioned Θ
into 16 cubes (|QΘ| = 16) and X into 10 intervals (|QX | =
10). U is quantized to obtain Uqtz = {−1,−0.8, · · · , 0.8, 1}.
We implemented Algorithm 2 to obtain the quotient PTS and
Algorithm 1 to find the corresponding ATS. The computation
times were 0.1 (Algorithm 2) and 152 (Algorithm 1) seconds
on a 3.0 GHz MacBook Pro. Even though |X × 2QΘ

−∅ | =
655350, the number of reachable states obtained from Algo-
rithm 1 was 14146.

We solved the safety game on the ATS, which took
less than a second and found a winning region containing
14008 states. The winning region in the state-space is X0 =
[−0.6, 0.6]. Since the solution is conservative, Xmax

0 may
be larger if a finer partitioning is used. We also found that
the winning region is empty if we had sought a pure robust
control strategy. We simulated the system for 100 time steps
starting from x0 = 0. The values of disturbances at each
time are chosen randomly with a uniform distribution over
D. We observe that the specification is satisfied, and the
sets given by the parameter estimator shrink over time and
always contain the ground truth parameter, which in this case
is θ∗1 = 0.45, θ∗2 = 1.11, θ∗3 = −0.18. The results are shown
in Fig. 5.

VIII. CONCLUSION AND FUTURE WORK

We developed a framework to combine the recent advances
in applications of formal methods in control theory with clas-
sical adaptive control. We used the concepts from transition
systems, finite quotients, and product automata to introduce
adaptive transition systems and correct-by-design adaptive

Fig. 5. Case Study 2: Snapshots of ϑk at various times, which are illustrated
by the shaded regions. They always contain the ground truth parameter
θ∗1 = 0.45, θ∗2 = 1.11, θ∗3 = −0.18.

control. Like most of other formal methods applications,
our results suffer from high computational complexity. As
discussed in the paper, the number of states in the ATS can
be very large. Also, constructing finite quotients for infinite
systems is computationally difficult.

We believe that this paper opens up several research
directions. Besides improving the ideas for the way we
combine adaptive control and formal methods, we plan
to develop efficient methods to construct finite adaptive
transition systems for special classes of hybrid systems such
as mixed-monotone systems and piecewise affine systems.
We also plan to include optimal control.

REFERENCES

[1] K. J. Åström and B. Wittenmark, Adaptive control. Courier Corpo-
ration, 2013.

[2] M. Krstic, I. Kanellakopoulos, and P. Kokotovic, Nonlinear and
adaptive control design. John Willey, New York, 1995.

[3] J.-J. E. Slotine, W. Li, et al., Applied nonlinear control. prentice-Hall
Englewood Cliffs, NJ, 1991, vol. 199, no. 1.

[4] P. A. Ioannou and J. Sun, Robust adaptive control. Courier Corpo-
ration, 2012.

[5] A. S. Morse, “Supervisory control of families of linear set-point
controllers-part i. exact matching,” IEEE Transactions on Automatic
Control, vol. 41, no. 10, pp. 1413–1431, 1996.

[6] K. S. Narendra and C. Xiang, “Adaptive control of discrete-time
systems using multiple models,” IEEE Transactions on Automatic
Control, vol. 45, no. 9, pp. 1669–1686, 2000.

[7] B. Anderson, T. Brinsmead, D. Liberzon, and A. Stephen Morse,
“Multiple model adaptive control with safe switching,” International
journal of adaptive control and signal processing, vol. 15, no. 5, pp.
445–470, 2001.

[8] J. P. Hespanha, D. Liberzon, and A. S. Morse, “Overcoming the
limitations of adaptive control by means of logic-based switching,”
Systems & control letters, vol. 49, no. 1, pp. 49–65, 2003.

[9] M. di Bernardo, U. Montanaro, and S. Santini, “Hybrid model refer-
ence adaptive control of piecewise affine systems,” IEEE Transactions
on Automatic Control, vol. 58, no. 2, pp. 304–316, 2013.

[10] M. di Bernardo, U. Montanaro, R. Ortega, and S. Santini, “Extended
hybrid model reference adaptive control of piecewise affine systems,”
Nonlinear Analysis: Hybrid Systems, vol. 21, pp. 11–21, 2016.

[11] C. Baier, J.-P. Katoen, and K. G. Larsen, Principles of model checking.
MIT press, 2008.

[12] M. Guay and M. Bürger, “Adaptive control of state constrained
nonlinear systems in strict feedback form,” in American Control
Conference (ACC), 2012. IEEE, 2012, pp. 1143–1148.

[13] A. Aswani, H. Gonzalez, S. S. Sastry, and C. Tomlin, “Provably
safe and robust learning-based model predictive control,” Automatica,
vol. 49, no. 5, pp. 1216–1226, 2013.

[14] M. Tanaskovic, L. Fagiano, R. Smith, and M. Morari, “Adaptive
receding horizon control for constrained mimo systems,” Automatica,
vol. 50, no. 12, pp. 3019–3029, 2014.

[15] S. Di Cairano, “Indirect adaptive model predictive control for linear
systems with polytopic uncertainty,” in American Control Conference
(ACC), 2016. IEEE, 2016, pp. 3570–3575.

[16] W. He, Y. Chen, and Z. Yin, “Adaptive neural network control of
an uncertain robot with full-state constraints,” IEEE Transactions on
Cybernetics, vol. 46, no. 3, pp. 620–629, 2016.

[17] S. Di Cairano, “Indirect-adaptive model predictive control for linear
systems with polytopic uncertainty,” arXiv preprint arXiv:1509.07170,
2015.

[18] E. M. Clarke, O. Grumberg, and D. Peled, Model checking. MIT
press, 1999.

[19] P. Tabuada, Verification and Control of Hybrid Systems . Springer
Science & Business Media, 2008.

[20] C. Belta, B. Yordanov, and E. Aydin Gol, Formal Methods for
Discrete-Time Dynamical Systems. Springer, 2017.

[21] W. Thomas, T. Wilke, et al., Automata, logics, and infinite games: a
guide to current research. Springer Science & Business Media, 2002,
vol. 2500.

[22] J. F. Quindlen, U. Topcu, G. Chowdhary, and J. P. How, “Region-
of-convergence estimation for learning-based adaptive controllers,” in
American Control Conference (ACC), 2016. IEEE, 2016, pp. 2500–
2505.

[23] A. Kozarev, J. Quindlen, J. How, and U. Topcu, “Case studies in
data-driven verification of dynamical systems,” in Proceedings of the
19th International Conference on Hybrid Systems: Computation and
Control. ACM, 2016, pp. 81–86.

[24] D. Sadigh, E. S. Kim, S. Coogan, S. S. Sastry, and S. A. Seshia,
“A learning based approach to control synthesis of markov decision
processes for linear temporal logic specifications,” in 53rd IEEE
Conference on Decision and Control. IEEE, 2014, pp. 1091–1096.

[25] D. Aksaray, A. Jones, Z. Kong, M. Schwager, and C. Belta, “Q-
learning for robust satisfaction of signal temporal logic specifications,”
in Decision and Control (CDC), 2016 IEEE 55th Conference on.
IEEE, 2016, pp. 6565–6570.

[26] J. Fu, H. G. Tanner, J. Heinz, and J. Chandlee, “Adaptive symbolic
control for finite-state transition systems with grammatical inference,”
IEEE Transactions on Automatic Control, vol. 59, no. 2, pp. 505–511,
2014.

[27] K. J. Leahy, P. Kannappan, A. Jardine, H. Tanner, J. Heinz, and
C. Belta, “Integration of deterministic inference with formal synthesis
for control under uncertainty,” in 2016 American Control Conference
(ACC), July 2016, pp. 4829–4834.

[28] J. Klein and C. Baier, “Experiments with deterministic ω-automata
for formulas of linear temporal logic,” Theoretical Computer Science,
vol. 363, no. 2, pp. 182–195, 2006.

[29] J.-C. Fernandez and L. Mounier, ““on the fly” verification of be-
havioural equivalences and preorders,” in International Conference on
Computer Aided Verification. Springer, 1991, pp. 181–191.

[30] K. Chatterjee and T. A. Henzinger, “A survey of stochastic ω-regular
games,” Journal of Computer and System Sciences, vol. 78, no. 2, pp.
394–413, 2012.

[31] B. Yordanov, J. Tumova, I. Cerna, J. Barnat, and C. Belta, “Temporal
Logic Control of Discrete-Time Piecewise Affine Systems,” IEEE
Transactions on Automatic Control, vol. 57, no. 6, pp. 1491–1504,
2012.

[32] B. Yordanov, J. Tümová, I. Černá, J. Barnat, and C. Belta,
“Formal analysis of piecewise affine systems through formula-guided
refinement,” Automatica, vol. 49, no. 1, pp. 261–266, 2013.

[33] P. Nilsson and N. Ozay, “Incremental synthesis of switching protocols
via abstraction refinement,” in 53rd IEEE Conference on Decision
and Control. IEEE, 2014, pp. 6246–6253.

[34] B. Yordanov and C. Belta, “Formal analysis of piecewise affine
systems under parameter uncertainty with application to gene
networks,” in 2008 American Control Conference. IEEE, 2008, pp.
2767–2772.

	I Introduction
	II Background
	II-A Notation
	II-B Linear Temporal Logic
	II-C Transition Systems
	II-D Quotient Transition System
	II-E LTL Control

	III Problem Formulation and approach
	IV Parametric Transition System
	V Control Synthesis for Finite Systems
	V-A Parameter Estimation
	V-B Adaptive Transition System
	V-C Control Synthesis

	VI Control Synthesis for Infinite Systems
	VII Case Studies
	VII-A Persistent Surveillance
	VII-B Safety Control

	VIII Conclusion and Future Work
	References

