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Abstract Newton method is one of the most powerful methods for finding
solution of nonlinear equations. In its classical form it is applied for systems of
n equations with n variables. However it can be modified for underdetermined
equations (with m < n, m being the number of equations). Theorems on
solvability of such equations as well as conditions for convergence and rate of
convergence of Newton-like methods are addressed in the paper. The results
are applied to systems of quadratic equations, one-dimensional equations and
inequalities.
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1 Introduction

Consider nonlinear equation

g(x) = y, (1)

written via vector function g : Rn → Rm. There exists the huge bunch of
literature on solvability of such equations and numerical methods for their
solution, see e.g. the classical monographs [15,3]. One of the most powerful
methods is Newton method, going back to such giants as Newton, Cauchy,
Fourier. The general form of the method is due to Kantorovich [6,7]; on history
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and references see [8,23,19]. The basic version of Newton method for (1) is
applicable when g(x) is differentiable and g′(x) is invertible (this implies m =
n):

xk+1 = xk − g′(xk)−1(g(xk)− y) (2)

The method converges under some natural conditions, moreover it can be
used for obtaining existence theorems for the solution (see references cited
above). Unfortunately Newton method converges only locally: it requires good
initial approximation x0 (so called “hot start”). Convergence conditions can
be relaxed for damped Newton method

xk+1 = xk − αg′(xk)−1(g(xk)− y)

with 0 < α < 1.
However the case of underdetermined equations (m < n) attracted much

less attention. The pioneering result is due to Graves [5] in more general setting
of Banach spaces. Graves’ theorem for finite-dimensional case claims, that if
condition

||g(xa)− g(xb)−A(xa − xb)|| ≤ C||xa − xb||

holds in the ball B of radius ρ for a matrix A with minimal singular value
µ > C > 0, then solution of the equation (1) exists provided ||y|| is small
enough, namely ||y|| ≤ ρ(µ−C) and it can be found via a version of modified
Newton method, where next iteration requires solution of the linear equation
with matrix A, see [4,12] for details.

In explicit form Newton method for m 6= n has been written by Ben-Israel
[1]:

xk+1 = xk − g′(xk)†(g(xk)− y),

where A† stands for Moore-Penrose pseudoinverse of A. However the results
in [1] are mostly oriented on overdetermined systems, and the assumptions of
the theorems in [1] are hard to check.

In the paper [16] results on solvability of nonlinear equations in Banach
spaces and on application of Newton-like methods have been formulated in
different form. One of the results from [16] adopted to our notation and finite-
dimensional case claims that if g(0) = 0, g′(x) exists and is Lipschitz on B
and estimate ||g′(x)Th|| ≥ µ||h||, µ > 0, ∀h holds on B, then equation (1)
has a solution x∗ provided ||y|| < ρ

µ . Another result deals with convergence of
Newton method; however the method is not provided in explicit form.

The main contribution of the present paper is the analysis of the novel
version of Newton method for solving the underdetermined equation (1) with
m < n. It has the form

xk+1 = xk − αkzk, k = 0, 1, . . .
zk = arg minz{||z|| : g′(xk)z = y − g(xk)}. (3)
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If m = n and g′(xk)−1 exists, the method coincides with classical Newton
for αk = 1 and damped Newton for αk = α < 1. Starting at x0 = 0 the latter
method converges to x∗ under some additional constraints on ||y||, L, ρ, µ, α
(see Theorem 1 below on rigorous conditions). Notice that norms in Rn,Rm
can be chosen arbitrarily, and they imply different forms of Newton method
(3) and various conditions on solvability and convergence.

The first goal of the present paper is to give explicit expressions of the
method (3) for various norms and to provide simple, easily checkable conditions
for convergence of the method. This also provides existence theorems: what is
the feasible set Y such that y ∈ Y implies solvability of (1).

The second goal is to develop constructive algorithms for choosing stepsizes
αk to achieve fast and as global as possible convergence. We suggest different
strategies for constructing algorithms and study their properties.

We also examine some special cases of the nonlinear equations. One of
them is the quadratic case, when all components of g are quadratic functions:

gi(x) =
1

2
(Aix, x) + (bi, x), Ai = ATi , bi ∈ Rn. (4)

In this case we try to specify above results and design the algorithms to check
feasibility of a vector y ∈ Rm. The next important case is the scalar one, i.e.
m = 1. We specify general results for scalar equations and inequalities; the
arising algorithms have much in common with unconstrained minimization
methods. Finally we discuss nonlinear equations having some special structure.
Then convergence results can be strongly enhanced.

Few words on comparison with known results. The paper, which contains
the closest results to ours, is [14]. Nesterov addresses the same problem (1)
and his method (in our notation) has the form

xk+1 = xk − zk, k = 0, 1, . . .

zk = arg min
z
{||g(xk)− y + g′(xk)z||+M ||z||2},

where M is a scalar parameter to be adjusted at each iteration. Nesterov’s
assumptions are close to ours and his results on solvability of equations and on
convergence of the method are similar. The main difference is the method itself;
it is not clear how to solve the auxiliary optimization problem in Nesterov’s
method, while finding zk in our method can be implemented in explicit form.
Other papers on underdetermined equations mentioned above either do not
specify the technique for solving the linearized auxiliary equation, or restrict
analysis with Euclidean norm and pure Newton stepsize αk = 1, see e.g. [16,
20,21,9].

The rest of the paper is organized as follows. In next section we remind
few notions and results, and discuss explicit (or half-explicit) solutions for
optimization problem in (3). Next (Section 3) we prove simple solvability con-
ditions for (1). In Section 4 we propose few variants of general Newton algo-
rithm (3) and estimate their convergence rate. Some particular cases (scalar
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equations and inequalities, quadratic equations, problems with special struc-
ture) are treated in Section 5. Results of numerical simulation are exhibited
in Section 6. Conclusion part finalizes the paper (Section 7).

2 Preliminaries

First of all let us specify subproblem of finding vector zk in (3) for different
norms of x ∈ Rn.

1. For ||x|| = ||x||1 vector zk is a solution of LP problem

min{||z||1 : g′(xk)z = y − g(xk)},

its dual is LP problem with one scalar constrain

min{||g′(xk)Th||∞ : (y − g(xk), h) = 1}.

2. For ||x|| = ||x||∞ vector zk is a solution of LP problem

min{||z||∞ : g′(xk)z = y − g(xk)},

its dual is LP problem with one scalar constrain too

min{||g′(xk)Th||1 : (y − g(xk), h) = 1}.

3. For ||x|| = ||x||2 vector zk can be written explicitly

zk = g′(xk)†(g(xk)− y).

For m ≤ n Moore-Penrose pseudo-inverse of a matrix A is written as
A† = AT (AAT )−1, if A has full row rank.

Thus in these (most important) cases algorithm (3) can be implemented
effectively. Also solution of first two problems may be non-unique.

Note that linear constraint

Az = b, b ∈ Rm, z ∈ Rn (5)

in the primal optimization problems above describes either linear subspace,
either empty set. The classical result below (which goes back to Banach, see
[7,12,14]) guarantees solvability of the linear equation (5) and the estimates of
its solutions. We suppose that spaces Rn,Rm are equipped with some norms,
the dual norms are denoted ||·||∗ (for linear functional c, associated with vector
of same dimension ‖c‖∗ = supx:‖x‖=1(c, x)). Operator norms are subordinate
with the vector norms, e.g. for A : X → Y we have ‖Ax‖Y ≤ ‖A‖X,Y ‖x‖X .
In most cases we do not specify vector norms; dual and operator norms are
obvious from the context.
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Lemma 1 If A ∈ Rm×n satisfies condition

‖ATh‖∗ ≥ µ0‖h‖∗, µ0 > 0, (6)

for all h ∈ Rm, then equation (5) has a solution for all b ∈ Rm, and all
solutions of optimization problem

ẑ = arg min{‖z‖ : Az = b}

have bounded norms ‖ẑ‖ ≤ 1
µ0
‖b‖∗.

The Lemma is claiming that matrix A has full row rank equal tom provided
(6) holds. It is another way to say that the mapping A : Rn → Rm is onto
mapping, i.e. covering all image space. In case of Euclidean norms parameter
µ0 is the smallest singular value of the matrix µ0 = σm(A) (we denote singular
values of a matrix in Rm×n in decreasing order as σ1 ≥ σ2 ≥ . . . ≥ σm).

Finally we introduce sum of double exponential functions Hk : [0, 1) →
R+, Hk(δ) =

∑∞
`=k δ

(2`) (cf. [16]) and inverse function for the first of them
∆(·) : R+ → [0, 1), such that of ∆(H0(δ)) ≡ δ, δ ∈ [0, 1). All functions Hk(δ)
are monotonically increasing on δ. In results below we also use specific constant

c = H0

(1

2

)
≈ 0.8164, s.t. ∆(c) =

1

2
.

Following upper and lower approximations appear to be useful for simplifying
Theorems’ resulting expressions

Hk(δ) ≤ δ(2
k)

1− δ(2k)
=

1

δ−(2k) − 1
, ∆(H) ≥ H

1 +H
. (7)

3 Solvability of underdetermined equations

Below the problem of solvability of equation (1) is addressed. We apply algo-
rithm (3) with small α and prove that iterations converge while the limit point
is a solution. This techniques follows the idea from [16]. Remind that Rn,Rm
are equipped with some norms, the dual norms are denoted || · ||∗.

Assumptions.
A. g(0) = 0, g(x) is differentiable in the ball B = {x ∈ Rn : ‖x‖ ≤ ρ} and

g′(x) satisfies Lipschitz condition in B:

‖g′(xa)− g′(xb)‖ ≤ L‖xa − xb‖.
B. The following inequality holds for all x ∈ B and some µ > 0:

‖g′(x)Th‖∗ ≥ µ‖h‖∗, ∀h ∈ Rm.

C. ‖y‖ < µρ.

Theorem 1 If conditions A,B,C hold then there exists a solution x∗ of (1),

and ‖x∗‖ ≤ ‖y‖µ .
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Proof We apply algorithm (3) with α > 0 small enough and x0 = 0. The
algorithm is well defined — condition B and Lemma 1 imply existence of
solutions zk provided that xk ∈ B; this is true for k = 0 and will be validated
recurrently. Standard formula

g(x+ z) = g(x) +

∫ 1

0

g′(x+ tz)zdt

combined with condition A provides for x = xk, z = −αzk and uk = ‖g(xk)−
y‖ recurrent relation

uk+1 ≤ |1− α|uk +
Lα2

2
‖zk‖2.

Now condition B and Lemma 1 transform this estimate into

uk+1 ≤ |1− α|uk +
Lα2u2k

2µ2
.

Choose α = ε 2µ2

Lu0
(1 − u0

µρ ) with small ε < 1 satisfying 0 < α < 1; it
is possible due to condition C. From the above inequality we get uk+1 ≤
uk(1 − α + αεuku0

(1 − u0

µρ )). For k = 0 this implies u1 < u0 and recurrently

uk+1 < uk. We also get uk+1 ≤ quk, q = (1 − α + αε(1 − u0

µρ )) < 1. Thus

uk ≤ qku0 and uk → 0 for k →∞.

On the other hand we have ‖xk+1−xk‖ = α‖zk‖ ≤ ‖g(x
k)−y‖
µ = uk

µ ≤ q
k u0

µ .
Hence for any k, s and for k →∞

‖xk+s − xk‖ ≤
k+s−1∑
i=k

‖xi+1 − xi‖ ≤ qk u0
(1− q)µ

→ 0.

It means that xk is a Cauchy sequence and converges to some point x∗(ε).
We had g(xk) → y, thus continuity reasons imply g(x∗(ε)) = y. Now, for all

iterations we got ‖xk−x0‖ = ‖xk‖ ≤
∑k−1
j=0 ‖xj+1−xj‖ ≤ α u0

µ(1−q) < ρ. Hence

all iterations xk remain in the ball B and our reasoning was correct. Finally
taking ε → 0 we have ‖xk‖ ≤ u0

µ and its limit point x∗(ε) → x∗ which is a

solution as well and ‖x∗‖ ≤ u0

µ . ut

Corollary 1 If ρ = ∞ (that is conditions A,B hold on the entire space Rn)
then equation (1) has a solution for arbitrary right-hand side y.

It is worth noting that if we apply pure Newton method (i.e. take αk ≡ 1),

the conditions of its convergence are more restrictive: we need ‖y‖ ≤ 2µ2

L , that
is we guarantee only local convergence even for ρ =∞.

Corollary 2 If m = n and Condition B is replaced with ‖g′(x)−1‖ ≤ 1
µ , x ∈

B, then the statement of Theorem 1 holds true.
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In this case our method (3) reduces to classical Newton method (2).
For m < n equation (1) in general case has many solutions, we constructed

just one of them, and we can not guarantee that the solution is the closest to
the initial point x0 = 0.

Among assumptions of Theorem 1 the main difficulty admits Assump-
tion B. In many examples L can be estimated relatively easy; it is not the
case for µ. Much simpler is to check its analog in a single point x = 0. Let us
modify the solvability result in this way, with assumptions

B′. The following inequality holds for some µ0 > 0:

‖g′(0)Th‖∗ ≥ µ0‖h‖∗, ∀h ∈ Rm.

C′. ‖y‖ < µ2
0

4L ,
µ0

2L ≤ ρ.

Theorem 2 If conditions A,B′,C′ hold then there exists a solution x∗ of

(1), and ‖x∗‖ ≤ 2‖y‖
µ0

.

Proof For any linear operator A and its dual A∗ (coinciding with AT in real-
valued vector spaces) holds ‖A‖ = ‖A∗‖∗, where dual operator norm is induced
by dual norms [7]. Then from condition A follows same Lipschitz constant for
transposed derivative operator g′(·)T :

‖(g′(xa)− g′(xb))T ‖∗ = ‖g′(xa)− g′(xb)‖ ≤ L‖xa − xb‖, xa, xb ∈ B.

Denote r = µ0

2L , due to second part of Condition C ball Br = {x : ‖x‖ ≤
r} lays within B. In Br evidently holds condition A. Also in Br we have
‖g′(x)Th‖∗ ≥ ‖g′(0)Th‖∗ − ‖(g′(x) − g′(0))Th‖∗ ≥ (µ0 − L‖x‖)‖h‖∗ ≥ (µ0 −
Lr)‖h‖∗ ≥ µ0‖h‖∗

2 , thus condition B holds with µ = µ0

2 . Condition C is also

satisfied on this ball due to first part of Condition C′ as ‖y‖ < µ2
0

4L = rµ and
Theorem 1 holds (with r instead of ρ in its statement). ut

It is worth noting that the result of Theorem 2 is always local, even for
ρ =∞ (compare with Corollary 1). From the proof it also follows that second
condition µ0

2L ≤ ρ in Assumption C′ is non-restrictive.

Corollary 3 Assumption C′ can be replaced with ‖y‖ ≤ (µ0 − Lr∗) r∗, result-
ing in theorem’s statement ‖x∗‖ ≤ r∗, where r∗ = min{ρ, µ0

2L}.

4 Main algorithms

For our purposes it is more convenient to write the main equation not in the
form (1) (where we assumed g(0) = 0, x0 = 0) but as

P (x) = 0, P : Rn → Rm. (8)

Then via trivial change of variables the Newton method becomes

zk = arg min
P ′(xk)z=P (xk)

‖z‖,

xk+1 = xk − αkzk, k = 0, 1, . . .
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with x0 not necessarily equal to 0. Conditions on y ensuring solvability of (1)
are essentially transformed into conditions on P (x0) guaranteeing solution of
(8) and vice-versa.

In previous Section we proved solvability of equation by use of the al-
gorithm with constant αk ≡ α > 0; choosing α smaller we obtained larger
solvability domain. However in this Section our goal is different — to reach
the fastest convergence to a solution. For this purpose different strategies for
design of step-sizes are needed. The basic policy is as follows. First, we rewrite
assumptions in new notation.

A′′. P (x) is differentiable in the ball B = {x ∈ Rn : ‖x − x0‖ ≤ ρ} and
P ′(x) satisfies Lipschitz condition in B:

‖P ′(xa)− P ′(xb)‖ ≤ L‖xa − xb‖.

B′′. The following inequality holds for all x ∈ B and some µ > 0:

‖P ′(x)Th‖∗ ≥ µ‖h‖∗, ∀h ∈ Rm.

If A′′,B′′ hold true, we have same recurrent inequalities for uk = ‖P (xk)‖:

uk+1 ≤ |1− αk|uk +
Lα2

k‖zk‖2

2
, (9)

uk+1 ≤ |1− αk|uk +
Lα2

ku
2
k

2µ2
, (10)

the second one being just continuation of the first one based on estimate
‖zk‖2 ≤ uk

µ , compare calculations in the proof of Theorem 1. Now we can
minimize right-hand sides of these inequalities over αk; it is natural to expect
that such choice of step-size imply the fastest convergence of uk to zero and
thus the fastest convergence of iterations xk to a solution. If one applies such
policy based on inequality (10), optimal α depends on µ,L (Algorithm 1 be-
low). Its value is hard to estimate in most applications, thus the method would
be hard for implementation. Fortunately, we can modify the algorithm using
parameter adjustment (Algorithm 2). On the other hand the same policy based
on (9) requires just the value L, which is commonly available (Algorithm 3).

Thus we arrive to an algorithm which we call Newton method while in fact
it is blended pure Newton with damped Newton with special rule for damping.
In some relation it reminds Newton method for minimization of self-concordant
functions [13].

4.1 Newton method with known constants

If both constants L and µ are known, then αk = min{1, µ2

L‖P (xk)‖} is taken as

minimizer of right-hand part (10).
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Algorithm 1 (Basic Newton method)

zk = arg min
P ′(xk)z=P (xk)

‖z‖,

xk+1 = xk −min
{

1,
µ2

L‖P (xk)‖

}
zk, k ≥ 0. (11)

The algorithm is well-defined, as soon ‖P (xk)‖ = 0 means that a solution
is already found (formally zk = 0, αk = 1 thereafter). We remind that in
calculation of zk any vector norm in Rn can be used, also any vector norm in
Rm can used for ‖P (xk)‖, and constants L, µ must comply with these norms.

The update step in (11) can be written in less compact but more illustrative
form:

xk+1 = xk − µ2

L‖P (xk)‖z
k, if ‖P (xk)‖ ≥ µ2

L (Stage 1 step),

xk+1 = xk − zk, otherwise (Stage 2 step).

The latter case is a pure Newton step while the primal one is damped New-
ton step. Direction zk calculation is the same in both stages. The result on
convergence and rate of convergence is given below. We use upper (d·e) and
lower (b·c) rounding to integer; function ∆(·) and constant c ≈ 0.8614 were
introduced in the end of Section 2.

Theorem 3 Suppose that Assumptions A′′,B′′ hold and

‖P (x0)‖ ≤ µ2

L
×


2∆

(
Lρ

2µ

)
, if

Lρ

2µ
≤ c,

1 +
1

2

⌊Lρ
µ
− 2c

⌋
, if

Lρ

2µ
> c,

(12a)

(12b)

then the sequence {xk} generated by Algorithm 1 converges to a solution x∗ :
P (x∗) = 0.

Function ‖P (xk)‖ is monotonically decreasing, and there are not more than

kmax = max{0,
⌈

2L

µ2
‖P (x0)‖

⌉
− 2} (13)

iterations at Stage 1. At k-th step following estimates for the rate of conver-
gence hold:

‖P (xk)‖ ≤ ‖P (x0)‖ − µ2

2L
k, k < kmax, (14a)

‖xk − x∗‖ ≤ µ

L
(kmax − k + 2c), k < kmax, (14b)

‖P (xk)‖ ≤ 2µ2

L
2−(2

(k−kmax)), k ≥ kmax, (14c)

‖xk − x∗‖ ≤ 2µ

L
Hk−kmax

(1

2

)
, k ≥ kmax. (14d)
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Proof Assume that all xk ∈ B, k ≥ 0. Below we state condition enabling this

assumption. Using uk = ‖P (xk)‖ and denoting β = µ2

L , we rewrite (10) with
generic1 stepsize α as

uk+1 ≤ |1− α|uk +
1

2β
α2u2k.

Its optimum over α is at αk = β
uk

< 1, if β
uk

< 1 (i.e. uk > β); and αk = 1
otherwise.

During Stage 1 of damped Newton steps (αk < 1) target functional mono-
tonically decreases as

uk+1 ≤ uk −
β

2
. (15)

There are at most kmax = max{0,
⌈
2u0

β

⌉
− 2} iterations in the phase, say

k ones, resulting in uk ≤ β. As soon uk reaches threshold β, the algorithm
switches to Stage 2 (pure Newton steps). Then recurrent relation (15) becomes

uk+1 ≤
1

2β
u2k = 2β

(
uk
2β

)2

, k ≥ k.

so we can write

uk+` ≤ 2β

(
uk
2β

)(2`)

≤ 2β

(
1

2

)(2`)

, ` ≥ 0.

For the second phase ‖xi+1 − xi‖ = ‖zi‖ ≤ 1
µui due Lemma 1, and for `2 ≥

`1 ≥ 0 holds

‖xk+`2 − xk+`1‖ ≤
`2−1∑
i=`1

‖xi+1 − xi‖ ≤ 2β

µ

(
H`1

(uk
2β

)
−H`2

(uk
2β

))
. (16)

The {xk} sequence is a Cauchy sequence because Hj(
uk
2β ) ≤ Hj(

1
2 ) →j→∞ 0.

It converges to a point x∗ : ‖P (x∗)‖ = limk→∞ uk = 0 due to continuity of P ,
with

‖xk+` − x∗‖ ≤ 2β

µ
H`

(
uk
2β

)
≤ 2β

µ
H`

(1

2

)
, ` ≥ 0. (17)

Next we are to estimate distance from points xk in Stage 1 to the limit
solution point x∗. One-step distance is bounded by constant ‖xk+1 − xk‖ ≤
αk
µ uk = β

µ , k < k, and

‖xk − x∗‖ ≤ ‖xk − x∗‖+

k−1∑
i=k

‖xi+1 − xi‖ ≤ β

µ
(k − k + 2c), k < k. (18)

Note that the formula also coincides with upper bound (17) at k = k. Exact
number k of steps in first phase is not known, but we can replace it with upper

1 The relation is very alike to Newton method analysis of [16], with γ = |1− α|, λ = α
µ

.
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bound kmax in all estimates (15)–(18). Substituting β = µ2

L back we arrive to
Theorem 3 bounds (14).

Finally we are to ensure our primal assumption of algorithm-generated
points xk being within B. This is guaranteed by one of two conditions, de-
pending on whether the Algorithm starts from Stage 1 or Stage 2 steps.

In the first case ‖P (x0)‖ ≥ µ2

L , and ‖x0 − xk‖ can be bounded similarly
to (16)

‖x0 − xk‖ ≤
k−1∑
i=0

‖xi+1 − xi‖ ≤
k−1∑
i=0

‖xi+1 − xi‖+

∞∑
i=k

‖xi+1 − xi‖ ≤

≤µ
L

(k + 2c) ≤ µ

L
(kmax + 2c) =

µ

L

(⌈2L

µ2
‖P (x0)‖

⌉
− 2 + 2c

)
.

It is sufficient to satisfy ‖P (x0)‖ ≤ µ2

L (1 + 1
2

⌊
Lρ
µ − 2c

⌋
) for guaranteeing ‖x0−

xk‖ ≤ ρ. As we assumed ‖P (x0)‖ ≥ µ2

L in this case, we conclude that this

condition may hold only if Lρ
µ ≥ 2c. This results in (12b).

In the second case we have ‖P (x0)‖ < µ2

L , and the algorithm makes pure

Newton steps with αk ≡ 1 from the beginning. Then k = 0, and from (16)
follows

‖xk−x0‖ ≤ 2µ

L
(H0

(‖P (x0)‖
2β

)
−Hk

(‖P (x0)‖
2β

)
) ≤ 2µ

L
H0

(L‖P (x0)‖
2µ2

)
, k ≥ 0.

The inequality ‖x0 − xk‖ ≤ ρ, k ≥ 0 is satisfied if

‖P (x0)‖ ≤ 2µ2

L
∆

(
Lρ

2µ

)
.

In order to have ‖P (x0)‖ < µ2

L , argument value Lρ
2µ must be less than c. This

results in condition (12a). Altogether (12) ensures xk ∈ B, k ≥ 0 and bounds
(14). ut

Result on the rate of convergence means, roughly speaking, that after no
more than kmax iterations one has very fast (quadratic) convergence. For good
initial approximations kmax = 0, and pure Newton method steps are performed
from the very start.

If we use approximation bounds (7), then condition (12a) can be replaced
with the simpler one:

‖P (x0)‖ ≤ 2µ2

L

(
1 +

2µ

Lρ

)−1
, if

Lρ

2µ
≤ c. (19)

also (14d) can be roughly estimated as

‖xk − x∗‖ ≤ 2µ

L

1

2(2k−kmax ) − 1
, k ≥ kmax,

or even simpler bound ‖xk − x∗‖ ≤ 2.32 · 2−2(k−kmax−1) µ
L .
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Corollary 4 If ρ = ∞ (that is conditions A′′,B′′ hold on the entire space
Rn) then Algorithm 1 converges to a solution of (8) for any x0 ∈ Rn.

4.2 Adaptive Newton method

Presented Algorithm 1 explicitly uses two constants µ and L but both enter

into the algorithm as one parameter β = µ2

L . There is a simple modification
allowing adaptively change an estimate of the parameter.

Input of the algorithm is an initial point x0, approximation β0 and param-
eter 0 < q < 1.

Algorithm 2 (Adaptive Newton method)

1. Calculate

zk = arg min
P ′(xk)z=P (xk)

‖z‖,

αk = min{1, βk
‖P (xk)‖},

uk+1 = P (xk − αkzk).

2. If either

αk < 1 and uk+1 < (1− αk
2

)uk,

or

αk = 1 and uk+1 <
1

2
uk,

holds, then go to Step 4. Otherwise
3. apply update rule βk ← qβk and return to Step 1 with-

out increasing counter.
4. Take

xk+1 = xk − αkzk,

set βk+1 = βk, increase counter k ← k + 1, and go to
Step 1.

Properties of Algorithm 2 are similar to Algorithm 1. We omit the formal
proof of convergence; it follows the lines of the proof of Theorem 3 with respect
to properties:

– Algorithm 2 does real steps at Step 4 and some number of fictitious steps
resulting in update rule Step 3;

– βk is non-increasing sequence;
– if βk < β, then Step 3 won’t appear and βk won’t decrease anymore.

It means that there is maximum k̂ = max{0, dlog1/q(
β0

β )e} check steps.

Minimal possible value of βk is βmin = qk̂β then, and number of Stage 1

steps is limited by k̂max = max{0,
⌈
2‖P (x0)‖

βmin

⌉
− 2} as well;
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– if Step 4 is made with βk > β due to validity of a condition in Step 2, then
‖P (xk+1)‖ decrease more than at a corresponding step with “optimal”
step-size αk = min{1, β

‖P (xk)‖}.

Let us mention two other versions of adaptive Newton method. First one
uses increasing update (e.g. βk+1 = q2βk with q2 > 1) in the end of Step 4,
thus adapting the constant to current xk. Also other decrease policies can be
applied to βk in Step 3.

Second option is to use line-search or Armijo-like rules for choosing step-size
αk to minimize objective function ‖P (xk−αzk)‖ directly. Rigorous validation
of the algorithms can be provided.

4.3 Method for L known

As we mentioned in the beginning of the section, we can use better approxi-
mation (9) instead of (10). It results to an algorithm using Lipschitz constant
only, and it differs in update step-size.

Algorithm 3 (L-Newton method)

zk = arg min
P ′(xk)z=P (xk)

‖z‖,

xk+1 = xk −min
{

1,
‖P (xk)‖
L‖zk)‖2

}
zk, k ≥ 0.

The algorithm is well-defined, as due to Assumption B′′ condition ‖zk‖ = 0
holds only if P (xk) = 0, i.e. the solution was found on previous step. Then
zk = 0, αk = 0 and xk+1 = xk thereafter.

Theorem 3 is valid for the Algorithm 3 with two exceptions. First, condition
(12b) should be replaced with condition

‖P (x0)‖ ≤ µ2

2L

⌊
−1 +

√
25 + 16(Lρµ − 2c)

2

⌋
, if

Lρ

2µ
> c. (20)

Second, upper bound (14b) should be replaced with

‖xk − x∗‖ ≤ µ

L

(
(kmax − k)(kmax − k + 5)

4
+ 2c

)
, k < kmax. (21)

Corollary 1 on everywhere convergence for Algorithm 3 is valid as well.
Proof is following same lines as of Theorem 3, and is omitted for brevity. The
only notable difference of the Algorithms 3 is (possible) interlacing Stage 1
and Stage 2 steps, which may lead to larger step-size ‖xk+1 − xk‖ ≤ uk

µ for

k ≤ kmax, (cf. to a formulae prior to (18)). These large steps result to bound on
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distance (21), and eventually lead to more conservative condition (20). Surpris-
ingly enough, in practice the algorithm (and its adaptive variant) sometimes
converges faster than Algorithm 1, because direction-wise (along zk) Lipschitz
constant is less or equal than uniform Lipschitz constant of Assumption A′′,
and convergence rate can be better.

The idea of adaptive algorithm with estimates Lk works as well for Algo-
rithm 3; including its modifications with increasing Lk and/or line-search over
α.

4.4 Pure Newton method

For comparison specify convergence property of pure Newton method (αk = 1).

Theorem 4 Let conditions A′′,B′′ hold. If δ = L
2µ2 ‖P (x0)‖ < 1 and 2µ

L H0(δ) ≤
ρ, then pure Newton method converges to a solution x∗ of (8), and

‖P (xk)‖ ≤ 2µ2

L
δ(2

k), ‖xk − x∗‖ ≤ 2µ

L
Hk(δ).

It coincides with Corollary 1 of [16], proven in Banach space setup (a misprint
in [16] is corrected here). In m = n case the result is minor extension of
Mysovskikh’s theorem [7].

4.5 µ in a single point known

Most of the theorems above require quite strict Assumption B′′ or similar ones.
In fact, usually we can estimate µ in one point, say, x0, but not for entire ball
B. Initially Kantorovich-type results on Newton method were proved for such
“single-point condition” setup, and we proceed to such results as corollary of
more general case.

Let µ0 satisfy condition (6) with A = P ′(x0). Following same reasoning as
in Theorem 2 proof, we can estimate constants µ on balls Br with variable
radius

µ(r) ≥ µ0 − rL.
We added dependence on r to indicate that for arbitrary r ∈ [0, µ0

L ) there is a
corresponding constant µ > 0.

If assumption of type A or A′′ hold on Bρ, then Theorem 3 and their exten-
sions can be rewritten in terms of µ(r) and r instead of ρ. It is done similarly
to Corollary 3. Optimization over interval r ∈ [0, µ0

L ) ∩ [0, ρ] gives maximal
allowed range of ‖P (x0)||. The simplest choice is r = µ0

2L , then we can take
µ = µ0

2 . We omit obvious versions of the Algorithms and convergence results
for this case. Two examples of such theorems are given in Subsection 5.4,
for the case where A′′,B′′ hold everywhere. We encountered that both Algo-
rithm 1 and Algorithm 3 in such case are subject to the same upper bound,
and, in fact, shall start with Stage 2 of pure Newton method.
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5 Special Cases

In the section we outline few important cases in more detail, namely solv-
ing equations with special structure, solving scalar equations or inequalities,
solvability of quadratic equations.

5.1 Structured problems

The problem is to solve P (x) = y where P (x)i = ϕ(cTi x), ci ∈ Rn, i = 1, . . .m.
Here ϕ(t) is twice differentiable scalar function,

|ϕ′(t)| ≥ µϕ > 0, |ϕ′′(t)| ≤M, ∀t

It is not hard to see that Assumptions A′′,B′′ hold on the entire space Rn
and Algorithm 1 converges, with Theorem 3 and Corollary 1 providing rate of
convergence. The rate of convergence depends on estimates for L, µ which can
be written as functions of µϕ,M and singular values of matrix C with rows
ci. However the special structure of the problem allows to get much sharper
results.

Indeed P ′(x) = D(x)C, D(x) = diag (ϕ′(cTi x)) and the main inequality
(16) can be proved to be

uk+1 ≤ (1− α)uk + γ
α2u2k

2
, γ =

M

µ2
ϕ

.

Hence uk+1 ≤ uk − 1
2γ at Stage 1, thus this inequality does not depend on C!

As the result we get estimates for the rate of convergence which are the same
for ill-conditioned and well-conditioned matrices C.

This example is just an illustrating one (explicit solution of the problem can
be found easily), but it emphasizes the role of special structure in equations
to solve.

5.2 One-dimensional case

Suppose we solve one equation with n variables:

f(x) = 0, f : Rn → R.

Here 0 is not a minimal value of f , thus it is not a minimization problem!
Nevertheless our algorithms will remind some minimization methods. This case
has some specific features compared with arbitrary m. For instance calculation
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of zk may be done explicitly. Norm in image space is absolute value | · |, and
`p norms in pre-image space Rn, p ∈ {1, 2,∞} can be considered. Then

zk =
f(xk)

‖∇f(xk)‖∞
ei, i = arg max

i
|∇f(xk)i|, in case of `1-norm,

zk =
f(xk)

‖∇f(xk)‖22
∇f(xk), in case of Euclidean norm,

zk =
f(xk)

‖∇f(xk)‖1
sign (∇f(xk)), in case of `∞-norm,

where ej = (0, . . . , 0, 1, 0, . . . , 0)T is j-th orth vector, and sign (·) function is
coordinate-wise sign function, sign : Rn → {−1, 1}n.

Constant µ (and µ0) are also calculated explicitly via conjugate (dual)
vector norm µ = minx∈B ‖∇f(x)‖∗, µ0 = ‖∇f(x0)‖∗. For any norms ‖zk‖ =
|f(xk)|/‖∇f(xk)‖∗, and damped Newton step is performed iff ‖∇f(xk)‖2∗ <
L|f(xk)|, otherwise pure Newton step is made.

If we choose `1 norm, the method becomes coordinate-wise one. Thus, if
we start with x0 = 0 and perform few steps (e.g. we are in the domain of
attraction of pure Newton algorithm) we arrive to a sparse solution of the
equation.

In Euclidean case a Stage 1 step (damped Newton) of Algorithm 1 is

xk+1 = xk − 1

L
sign (f(xk))∇f(xk),

which is exactly gradient minimization step for function |f(xk)|. Stage 2 (pure
Newton) step is

xk+1 = xk − f(xk)

‖∇f(xk)‖22
∇f(xk).

This reminds well-known subgradient method for minimization of convex func-
tions. However in our case we do not assume any convexity properties, and the
direction may be either gradient or anti-gradient in contrast with minimization
methods!

5.3 Solving an inequality

One-dimensional inequality

f(x) ≤ 0, f : Rn → R.

can be efficiently solved as well. Denote the set of points where the inequality
is violated as S = {x : f(x) > 0}. Suppose that µ = minx∈S ‖∇f(x)‖∗ > 0
and L is Lipshitz constant for ∇f(x) on S. Then Algorithm 1 can be applied
for xk ∈ Rn \ S with the only change — if f(xk) ≤ 0, then we have obtained
the solution and algorithm stops. Thus we arrive to the method (for `2 norm):

1. If f(xk) ≤ 0, then stop, a solution is found;
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2. If ‖∇f(x)‖22 < Lf(xk), then xk+1 = xk − 1
Lf(xk)∇f(xk).

3. Otherwise xk+1 = xk − f(xk)
‖∇f(xk)‖22

∇f(xk), increase k and return to Step 1.

Again Stage 2 is similar to well-known method for solving convex inequal-
ities, the main difference is the necessity of Stage 1 and the lack of convexity
assumption. The method globally converges under above formulated assump-
tions.

Note that solving inequality f(x)−f∗−ε ≤ 0 is equivalent to minimization
of function f with known minima f∗ and desired accuracy ε, again without
convexity assumption. We remind that convergence rate is quadratic for the
algorithms.

5.4 Quadratic equations

Proceed to a specific nonlinear equation, namely the quadratic one. Then the
function g(x) may be written componentwise as (4), with gradients

∇gi(x) = Aix+ bi ∈ Rn, i = 1, . . . ,m.

Obviously g(0) = 0, the question is solvability of g(x) = y. There are some
results on on construction of the entire set of feasible points Y = {y : g(x) =
y} = g(Rn), including its convexity, see e.g. [17]. We focus on local solvability,
trying to derive the largest ball inscribed in Y .

The derivative matrix g′(x) is formed row-wise as

g′(x) =

 ∇g1(x)T

...
∇gm(x)T

 =

 xTA1 + bT1
...

xTAm + bTm

 ∈ Rm×n.

One has g′(0) = H, H being m × n matrix with rows bi. We suppose H
has rank m (recall that m ≤ n), then its smallest singular value σm(H) > 0
serves as µ0.

The derivative g′(x) is linear on x, meaning it has uniform Lipschitz con-
stant L on Rn, thus assumption A holds everywhere. There are several esti-
mates for the Lipschitz constants, for example (for `2 norm)

L ≤ L1 =

√√√√λmax

(
m∑
i=1

ATi Ai

)

from [18], where λmax is the maximal eigenvalue of a matrix. Other esti-
mates can be obtained via elaborate convex semidefinite optimization problem
(SDP), cf. [22] for details. We obtain the following consequence of Theorem 2
for Euclidean norms.
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Theorem 5 Suppose that matrix H has rank m, and µ0 > 0 is its smallest
singular value. For quadratic function g equation g(x) = y has a solution x∗(y)
for all

‖y‖ < µ2
0

4L
, (22)

with ‖x∗(y)‖ ≤ µ0

2L .

Quadratic equations play significant role in power system analysis, because
power flow equations are quadratic, see [10,11]. It is of interest to compare our
estimate (22) with some known results on solvability of power flow equations
[2,24].

As for Algorithms 1–3, we can evaluate bounds explicitly likewise Theo-
rem 2 and Corollary 3.

Theorem 6 Suppose that matrix H has rank m, and µ0 > 0 is its smallest
singular value. Then Algorithms 1, 3 converge to a solution of (1) if

‖y‖ ≤ s1
µ2
0

L
, s1 ≈ 0.1877178,

with ‖x∗(y)‖ ≤ t1
µ0

L , t1 ≈ 0.40100511, where the constants s1 and r1 are
maxima and maximizer of function S(t) = 2(1− t)2∆( t

2(1−t) ), t ∈ [0, 12 ].

Proof As ρ =∞, the Theorem 3 is valid for any r ≤ L
µ0

with µ(r) = µ0 − Lr.
We are to estimate a value of r with maximal allowed bound (12) on ‖P (x0)‖.

First assume that r ≤ µ0

L
2c

2c+1 ≈ 0.62µ0

L . Then function S(t) is a repre-

sentation of upper bound (12a) normalized to multiplier µ2

L and written via

variable t = L
µ r. The function is unimodal with maximum s1 = S(t1). Direct

check of second case r ∈ ( 2c
2c+1

L
µ0
, Lµ0

] and corresponding bounds (12b), (20)

with respect to substitution µ ← µ(r), ρ ← r reveal lesser than s1
µ2
0

L bound
on ‖P (x0)‖.

Optimization over approximation (19) instead of (12a) results in smaller con-
stant s2 = 5

√
5− 11 ≈ 0.18034.

We compared all constants and noticed that numerically value s1 is slightly
greater than 3

4 of maximal range (22) of Theorem 5. As result we propose
estimate solvability of (1) in case of quadratic functions by inequality

‖y‖ ≤ 3

16

µ2
0

L
.

5.5 Solving systems of inequalities

We have discussed above how Newton-like methods can be applied for solving
one inequality. Below we address some tricks to convert systems of inequalities
into systems of equations.
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First, if one seeks a solution of a system of inequalities

gi(x) ≤ 0, i = 1, . . . ,m, x ∈ R`,

with m ≤ 2n then by introducing slack variables the problem is reduced to
solution of underdetermined system of equations

gi(x) + x2`+i = 0, i = 1, . . . ,m, x ∈ Rn, n = `+m.

Similarly finding a feasible point for linear inequalities x ≥ 0, Ax = b, x ∈
Rn, b ∈ Rm can be transformed to underdetermined system

n∑
j=1

Ai,jz
2
i = bi, i = 1, . . . ,m, z ∈ Rn.

The efficiency of such reductions is unclear a priori and should be checked
by intensive numerical study.

6 Numerical tests

At present we have numerous results on numerical simulation for various test
problems. We plan to present them in a separate publication. Here we restrict
ourselves with the single example to demonstrate how the methods work for
medium-size problems (n = 60,m = 21). The equations have special structure
as in Section 5.1:

Pi(x) = φ((ci, x)− bi)− yi, x ∈ Rn, y ∈ Rm

where

φ(t) =
t

1 + e−|t|
, φ′(t) =

1 + (1 + |t|)e−|t|

(1 + e−|t|)2
.

Matrix C with rows ci, vectors b, y were generated randomly. For function
φ(t) we have µφ = maxt φ

′(t) ≥ 0.5, M = maxt |φ′′(t)| ≤ 2 for all t. Thus if
we do not pay attention to the special structure of the problem we have µ ≥
0.5σmin(C), L ≤ 2σmax(C) and the convergence can be slow, because matrix C
can be ill-conditioned. On the other hand if we take into account the structure
and replace µ2

L (= 0.0031 in example) in Algorithm 3 (see Subsection 4.3) with
µ2
φ

M = 0.125 much faster convergence is achieved. Simulation results on Figure 1
confirm this conclusion. Most iterations are generally spent in first phase of
the Algorithm, and the number is close to theoretic bound N ≈ kmax(β), (13).
We also tested adaptive Algorithm 2 on same initial point, and it performed
better for bigger initial β0 = 5, as shown on Figure 2.



20 Boris Polyak, Andrey Tremba

Fig. 1 ‖P (xk)‖ of Algorithm 1 using constants µ,L (left) and constants µϕ,M (right).

Fig. 2 ‖P (xk)‖ of Algorithm 2 using initial approximation β0 = 5.

7 Conclusions and future research

New solvability conditions for underdetermined equations (with wider solv-
ability set) are proposed. The algorithms for finding a solution are easy to
implement, they combine weaker assumptions on initial approximations and
fast convergence rate. No convexity assumptions are required. The algorithms
have large flexibility in using prior information, various norms and problem
structure. It is worth mentioning that we do not try to convert the prob-
lem into optimization one. Combination of damped/pure Newton method is a
contribution for solving classic n = m problems as well.

There are numerous directions for future research.

1. We suppose that the auxiliary optimization problem for finding direction
zk is solved exactly. Of course an approximate solution of the sub-problem
suffices.

2. The algorithms provide a solution of the initial problem which is not spec-
ified apriory. Sometimes we are interested in the solution closest to x0, i.e.
minP (x)=0 ‖x− x0‖. An algorithm for this purpose is of interest.

3. More general theory of structured problems (Section 5.1) is needed.
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4. It is not obvious how to introduce regularization techniques into the algo-
rithms.

Acknowledgements Authors thank Yuri Nesterov for helpful discussions and references.
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