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a b s t r a c t

Transient response of linear systems with non-zero initial conditions was at the center of attention for
engineers and researchers at early stages of classical control theory. However this fieldwas not intensively
investigated later. For instance, the breakthrough result on unavoidable peaking effect for systems with
strong damping factor was obtained by Izmailov in 1987, but it did not attract much attention. We try
to continue this line of research and provide explicit worst-case lower bound. Then we exhibit large
deviation effects for other pole locations and estimate lower bounds for them. The upper bounds for
deviations of trajectories are much better studied; to obtain the smallest deviations by static linear
feedback the techniques of linear matrix inequalities can be exploited. We demonstrate that for such
closed-loop systems the upper and lower bounds have the same asymptotic behavior.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Transient response of linear systems with non-zero initial con-
ditionswas at the center of attention for engineers and researchers
at early stages of classical control theory. However this field was
not intensively investigated later. We try to continue this line of
research.

Consider a single-input continuous time linear control system

ẋ = Ax + bu, u ∈ R, b ∈ Rn. (1)

If the vectors b, Ab, . . . , An−1b are linearly independent, then the
system is controllable and, by the pole assignment theorem, there
exists a linear feedback defined by a vector K such that the
equilibrium position x = 0 of the closed-loop system

ẋ = Ax + bK T x = Fx (2)

is asymptotically stable. Moreover, one can generate a linear
system with any given setΛ ∈ C of eigenvalues {λ1, . . . , λn}. (We
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assume that if λ ∈ Λ and Imλ ≠ 0, then Reλ − iImλ ∈ Λ.)
Therefore, by choosing an appropriate linear feedback it is possible
to obtain a closed-loop system with an arbitrary given damping
speed. However, the trajectories of the closed-loop system with
fast damping significantly deviate from the equilibrium position
during the initial phase of the stabilization for some non-zero
initial conditions. This phenomenon is called the peak effect and
the large deviation is referred to as an overshoot. Although this
phenomenon always attracted attention of scientific community
(see, e.g., Feldbaum, 1948), the estimate for the peak effect in
general situation was proved in Izmailov (1987). More precisely,
Izmailov showed that there exists a constant γ = γ (A, b) > 0,
such that, if {λ1, . . . , λn}, are the eigenvalues of F = A+ bK T , then
the condition Reλj ≤ −σ < 0, j = 1, n, implies

sup
0≤t≤ 1

σ

sup
|x(0)|=1

|x(t)| ≥ γ σ n−1 (3)

for solutions of the closed-loop system (2). Here |x| is an arbitrary
norm of vector x (below we shall specify it). The proof given by
Izmailov was significantly simplified in Bushenkov and Smirnov
(1997). In Sussman and Kokotovic (1991) Izmailov’s result was
generalized to obtain estimates for peaking effect for outputs. From
(3) we also conclude that even for moderate decay rate (σ = 2 ∼

5) the peak effect grows exponentially as a function of the system
dimension n.

In what follows we always treat lower bounds in the sense of
(3), i.e. as worst-case transient response with respect to initial
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Fig. 1. Boeing 767 stabilization, n = 55.

conditions. Of course it does not imply large deviations for all
initial conditions; for any stable system ẋ = Fx there exist initial
conditions such that |x(t)| ≤ |x(0)| for all t > 0.

The effect of possible large deviations of trajectories is generally
recognized beyond control community, for instance, in numerical
analysis. The solution of the closed-loop system (2) is x(t) =

exp(Ft)x(0), F = A + bK T thus max|x(0)|=1 |x(t)| = ∥ exp(Ft)∥,
where ∥ · ∥ is matrix norm associated with vector norm | · |.
Hence deviations of trajectory are closely related to behavior
of matrix exponent. In the famous paper Moler and Van Loan
(1978) (and its continuation Moler & Van Loan, 2003) there are
numerous examples of matrix exponents, having big humps. Fig. 1,
borrowed from Moler and Van Loan (2003), exhibits transition
process related to stabilization of Boeing 767 example (∥eFt∥ as
function of t). Notice that the values of the humps are of order 105.

The problem of large deviations is highly significant, because
non-zero initial conditions naturally arise in many applications.
Typical example—observers, where true coordinates of the ob-
served trajectory are never known. It is interesting tomention that
Izmailov’s result (as well as previous publications on peak effect
Polotskij, 1981) are formulated for observers. Similar situation is
met in switching systems (Liberzon, 2003), where the trajectory
is always in non-zero position after switching. The large devia-
tions of control systems trajectories from the equilibrium position
during the transition process represent a serious obstacle to the
design of cascade control systems (Sussman & Kokotovic, 1991)
and to guidance stabilization Bushenkov and Smirnov (1997).
Therefore, it is an important problem to estimate possible char-
acteristics of the transition process and to describe the set of
eigenvalues {λ1, . . . , λn} causing large deviations. Surprisingly
this effect is not specific for large eigenvalues only. In Smirnov,
Bushenkov, andMiranda (2009) it was shown that the large devia-
tion of the solutions from the equilibriumposition at the beginning
of stabilization occurs for the set of eigenvalues {λ1, . . . , λn} with
|λk| ≪ 1 and |λk| ≫ 1, k = 1, n.

It is necessary to note that the effect of significant growth
of solution at transient times, similar to the peak effect, is also
observed for two- and three-dimensional Poiseuille and Couette
flows, even when all the eigenmodes decay exponentially (Reddy
& Henningson, 1993). This phenomenon caused by the near-linear
dependence of the eigenfunctions is of importance in the study
of hydrodynamic stability and transition to turbulence and is
discussed in the control theory framework in Bewley and Liu
(1998). Transient effects play significant role in distributed control,
where system dimension is large, see e.g. recent research on
vehicular platoons (Martinec, Z, & Sebek, 2015).

In this workwe analyze the situationwith transient response in
linear systems with non-zero initial conditions more deeply. First
we treat the systems in companion form and provide examples
with all eigenvalues equal real −σ < 0 where deviations of the
trajectory for specific initial conditions can be estimated explicitly
(Section 2). We show that the large deviation effect is present
both for σ large or small. In Section 3 we focus on main results—
lower bounds for worst deviations for systems in canonical form.
First we calculate constant γ in (3). Next, the cases of other
locations of eigenvalues are examined, for instance if some of
the eigenvalues have very big or very small moduli. Extension of
the results for systems in general (not canonical) form is given
in Section 4. In Section 5 we address upper bounds for the peak
effect. These problems are much better investigated, see Balandin
and Kogan (2009), Bulgakov (1980), Hinrichsen, Plischke, and
Wurth (2002), Whidborne and Amar (2011) and Whidborne and
McKernan (2007). We provide a version of upper bounds, based
on construction of invariant ellipsoids for the closed-loop system
using semidefinite programming (SDP) approach (Boyd, El Ghaoui,
Ferron, & Balakrishnan, 1994), and compare numerically various
bounds for systems in companion form with desired damping.
Theoretical comparison of the bounds for arbitrary linear systems
is also discussed. Finally, we consider some open problems and
directions for future research.

The conference version of the paper has been submitted at 19th
IFAC World Congress (Polyak & Smirnov, 2014). Recently the au-
thors with several additional coauthors have published the pa-
per Polyak, Tremba, Khlebnikov, Shcherbakov, and Smirnov (2015)
also related to large deviations problem. However there are seri-
ous differences if comparedwith the presentwork. (a) The detailed
proofs of main results (Theorems 1 and 2) are obtained here for
the first time, while in Polyak et al. (2015) related propositions are
given with no proofs. (b) The same is true for constants in lower
bounds, which are estimated below explicitly. (c) Some important
results onmixed eigenvalue locations (Theorems 3 and 4) have not
been addressed in Polyak et al. (2015). (d) Same is true for basic
statement on asymptotic comparison of the bounds (Theorem 7).
On the other hand, the paper Polyak et al. (2015) is focused on con-
nections of the problem with Feldbaum’s result (Feldbaum, 1948)
and on large deviations in the case of zero initial conditions and
non-zero inputs.
Notations. By default |x| for vector x ∈ Rn with components
xk, k = 1, n stands for |x|∞ = maxk |xk| norm. When needed,
the Euclidean norm is denoted by |x|2. The same notation |λ| for a
complex number λ is used for its modulus. The entries of a matrix
M are denoted mi,k and its transpose is MT . The kth column of the
identitymatrix I is ek. The spectrum of a closed-loopmatrix F is the
set Λ ∈ C of eigenvalues {λ1, . . . , λn}, and we use the following
characteristics of eigenvalues:

σ = −max
j

Reλj; ω = max
j

|λj|; ρ = min
j

|λj|.

That is σ is stability degree of F , ω is its spectral radius and ρ is
inverse of spectral radius of F−1.

2. Motivating examples

First we provide some examples on the lower bounds for devi-
ations for linear systems in input–output form. The characteristic
polynomial has all roots equal −σ < 0. We observe that for some
specific initial conditions large deviations arise both for σ small
and σ large.

Example 1. Linear differential equation

(s + σ)n y(t) = 0, s =
d
dt

(4)

where σ > 0 and n ≥ 2, with the initial conditions y(0) = 1,
y(k)(0) = 0, k = 1, n − 1.

The respective solution is given by the formula

y(t) =


n−1
j=0

(σ t)j/j!


e−σ t . (5)
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Since y′(t) = −
−σ ntn−1

(n−1)! e−σ t , we get y(n−1)(t) = −
dn−2

dtn−2
σ ntn−1

(n−1)! e
−σ t

= −
σ nte−σ t

n−1 L(1)n−2(σ t), where L(α)k (θ) =
θ−αeθ

k!
dk

dθk

θn+αe−θ


is a

generalized Laguerre polynomial. The function
θe−θL(1)n−2(θ)

, θ ≥

0, achieves its maximum at a point θn. Thus for γn =

θne−θn L(1)n−2(θn)


n−1
we havey(n−1)


θn

σ

 = γnσ
n−1. (6)

From this we see that for large values of σ the absolute value of
(n − 1)th derivative of the solution y(·) at t = θn/σ is O


σ n−1


.

The numerical values of γn, θn for small n can be found in Polyak
et al. (2015).

Example 2. Eq. (4) with the initial conditions y(k)(0) = 1, k =

0, n − 1.

The solution is given by

y(t) =


n−1
j=0

((1 + σ)t)j

j!


e−σ t . (7)

Taking the last term in the sum we get

y

n − 1
σ


≥


n − 1
σ e

n−1 1
(n − 1)!

≥
σ−(n−1)

e
√
n − 1

. (8)

Thus for small values of σ > 0 we have |y((n − 1)/σ )| =

O

σ−(n−1)


. Here large overshoot occurs for t large.

Denoting x(t) = (y(t), y′(t), . . . , y(n−1)(t))T , we con-
clude that maxt>0 max|x(0)|=1 |x(t)| is greater than or equal to
γn max{σ n−1, σ−(n−1)

}, thus for equal roots of the characteristic
polynomial large deviations are unavoidable both for σ large and σ
small. However the situation is different: for σ largewe have peak-
ing effect for the last derivative in the initial period of time, while
for σ small the trajectory itself has large values and it happens for t
large enough. To combine these effects we use the expression large
deviations instead of the peak.

3. Lower bounds for systems in companion form

In this section we consider system (1) in companion form,
i.e. with

A =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

 , b = en =


0
0
...
1

 . (9)

The closed-loop system with the feedback u(x) = (K , x) has the
system matrix F = A + bK T

=


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

−an −an−1 −an−2 · · · −a1

 , an−i+1 = −Ki (10)

and its characteristic polynomial is

∆(s) = sn + a1sn−1
+ · · · + an. (11)

We can arbitrarily choose the coefficients ai; our goal is to link the
location of thematrix F spectrumΛ = {λ1, . . . , λn} (roots of∆(s))
with the transient behavior of solutions x(t). Of course only stable
systems are of interest, Reλi ≤ −σ < 0.
3.1. Large eigenvalues

One of the first papers on dependence of transient response on
spectrum location is due to Feldbaum (1948). He investigated the
behavior of the first component of the solution x1(t); it decreases
monotonically and exhibits no peaking. However it is not hard to
see that the last component xn(t) behaves differently and peaking
effect is strong for eigenvalues with large negative real parts
(Polyak et al., 2015). The results in Feldbaum (1948) are true for all
real eigenvalues (with one possible complex pair); below we get
rid of this assumption. The proof of the theorem (as well as of all
other results) can be found in the Appendix; its statement without
the proof has been published in Polyak et al. (2015).

Theorem 1. If {λ1, . . . , λn}, with Reλj < 0, j = 1, n, are the
eigenvalues of F , ρ = min{|λj| : j = 1, n}, ω = max{|λj| : j =

1, n}, and x(0) = e1, thenx log 2
nω

 ≥
2 log 2 − 1

n
ρn−1 >

0.3862
n

ρn−1. (12)

We conclude that for large eigenvalues and large n unavoidable
deviations can exceed any practically acceptable values. For
instance, σ = 4, n = 10 imply deviations of order 105.
It is interesting to note that Theorem 1 covers wider class of
spectrum locations if compared with Izmailov’s theorem. It deals
with minj |λj|, not with minj |Reλj|. Moreover, it always gives a
better estimate than that of Theorem 2 in Polyak et al. (2015),
based on Feldbaum’s result. Theorem 1 (as well Theorems 2–4)
provides also particular initial conditions and time instances when
peak effect is met; but it is just a lower bound and possibly larger
deviations may be achieved.

3.2. Small eigenvalues

Now we address the case with ω = max{|λj| : j = 1, n} small,
where {λ1, . . . , λn}, are the eigenvalues of F .

Theorem 2. If Reλj < 0, j = 1, n and x(0) = en thenxθnω
 ≥ γn

1
ωn−1

, (13)

where θn =
n−1
n log 2 and γn =

(log 2)n−1

en! .

We conclude that small eigenvalues (with ω < 0.2/n, for
example) cause large deviations for t large.

3.3. Mixed eigenvalues

We consider the case when both small and large eigenvalues
are present. Theorem 3 exhibits that dominating (see (15)) large
eigenvalues cause peak effect in spite of existence of small
eigenvalues, while Theorem4 demonstrates large deviationswhen
small eigenvalues dominate (18). Notice that the corresponding
initial conditions are different.

Assume that the eigenvalues λ1, . . . , λn satisfy the inequalities

ω > |λ1| ≥ · · · |λν | ≥ η > ξ > |λν+1| ≥ · · · ≥ |λn| (14)

and Reλj < 0, j = 1, . . . , n.
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Theorem 3. Let ν ≥ 2 and

η >


10(1 + ξ)n

ωn

 1
ν

. (15)

Then for x(0) = en−ν+1 the following inequality holds:x log 2
ωn

 ≥ γnη
ν−1, γn =

1 − 1.1 log 2
n

log 2. (16)

Assume now that the eigenvalues λ1, . . . , λn satisfy more
restrictive inequalities

|Reλ1| ≥ · · · |Reλν | ≥ η > ξ > |λν+1| ≥ · · · ≥ |λn|, (17)

ω > |λj| and Reλj < 0, j = 1, . . . , n.

Theorem 4. Suppose that

ν ≤ min{n − 3, (n − 2)/2}, η ≥ 3,
ξ ≤ min{c/ω, 1},

(18)

where c =


3

4e2
(n−ν−1)!
1−e/(n−ν)

1/(ν−1)
, and x(0) = en. Then the following

inequality is satisfiedx1
ξ

 ≥
γn

ξ n−2ν−1
. (19)

Here γn can be estimated explicitly (see the proof). From this
theorem we see that if small eigenvalues dominate (that is their
number is large enough and their values are small (18)), then
condition (17) implies the effect of large deviations for large t .

4. Lower bounds for systems in general form

Let l ∈ Rn satisfy (l, An−1b) = 1 and (l, Aj−1b) = 0, j =

1, n − 1 (such l exists due to the controllability assumption). In
the coordinates zj = (l, Aj−1x), j = 1, n system (1) is converted
into companion form and for closed-loop system ż = Gz the
eigenvalues of matrices G and F coincide. We have z = Mx, where
matrix M has the rows lTAj−1, j = 1, n. Since |x|2 ≥ |z|2/∥M∥ ≥

|z|∞/κ , where κ is spectral norm ofM , that is themaximal singular
value of the matrix M , all the estimates, previously obtained
for systems in canonical form, can be reformulated in terms of
Euclidean norm in the original space after division by κ . Notice that
matrix M depends only on the pair (A, b) and does not depend on
the choice of the eigenvalues (i.e. on the feedback K ), seeWonham
(1979). For example, combining Theorem 1with this result, we get

Theorem 5. For any solution of (2) the constraint Reλj ≤ −σ < 0,
j = 1, n for eigenvalues of the closed-loop system implies the estimate

sup
0≤t≤ 1

σ

sup
|x(0)|2=1

|x(t)|2 ≥ γ σ n−1 (20)

with γ = (2 log 2 − 1)/(nκ).

This is Izmailov’s theoremwith specified constant in lower bound.
Of course this estimate can be more conservative than ones given
by Theorem 1 for systems in companion form. It is of interest
to obtain less conservative lower bounds for some particular
classes of matrices, for instance, for matrices in Jordan form or for
tridiagonal matrices.
Illustrative examples

To illustrate the previous theorems we address a series of
examples of control systems in companion form.We choose initial
conditions provided by the theorems, they are not necessarily ‘‘the
Fig. 2. Large eigenvalues, n = 2,Λ = {−10,−10}.

Fig. 3. n = 6,Λ = {−2,−2,−2,−2,−2,−2}.

worst-case’’ conditions. The results are presented as infinity-norm
of x(t), thus non-smooth plots are due to relative domination of
different states at different time periods.

First consider a two dimensional system. The eigenvalues of
the closed loop system matrix are λ1 = λ2 = −10. The norm
|x(t)| of the solution starting at (1, 0) is shown in Fig. 2. The true
deviation is comparedwith lower bounds provided by (6) and (12).
We see that lower bound (6), shown by horizontal line, is tight (it is
specially oriented for equal eigenvalues, as in this example), while
estimate provided by Theorem 1 (shown here and in the other
examples with an asterisk in a circle) is conservative. However, it
approximately predicts the time instant with peaking effect and its
value.

When n increases, the peak effect is strongly exhibited for
moderate stability degree. In Fig. 3, one can see that for n = 6 large
deviations are met for σ = 2.

To illustrate Theorem 2 consider the closed loop system with
Λ = {−0.1,−0.1}; norm of the solution starting at (0, 1) is shown
in Fig. 4.

The case ofmixed eigenvalues is presented in Fig. 5. Here n = 5,
Λ = {−1,−1000,−1000,−1000,−1000} and Theorem 3 can be
applied with ν = 4, η = 1000, ξ = 1, n− ν + 1 = 2. The norm of
trajectory with x(0) = e2 demonstrates peak effect for t extremely
small.

5. Upper bounds

In contrast with lower bounds, upper bounds for transient
process in linear systemswith non-zero initial conditions aremuch
better studied, see Balandin and Kogan (2009), Bulgakov (1980),
Hinrichsen et al. (2002), Nechepurenko (2002), Van Dorsselaer,
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Fig. 4. Small eigenvalues, n = 2,Λ = {−0.1,−0.1}.

Fig. 5. Mixed eigenvalues, n = 5,Λ = {−1,−1000,−1000,−1000,−1000}.

Kraaijevanger, and Spijker (1993), Whidborne and Amar (2011)
andWhidborne andMcKernan (2007). Ourmain goal is to compare
lower and upper bounds (Theorem 7).

If we have stable closed-loop linear system ẋ = Fx, then we can
try to find the quadratic Lyapunov function V (x) = (P−1x, x) such
that the invariant ellipsoid E = {x : V (x) ≤ 1} contains the unit
ball {x : |x|2 ≤ 1} and has minimal ratio of the semi-major and the
semi-minor axes (that is condition number of P is minimal). This is
equivalent to solving Semi-Definite Programming (SDP Boyd et al.,
1994) problem

∥P∥ → min, PF T
+ FP ≼ 0, I ≼ P. (21)

Here P = PT
∈ Rn×n is matrix variable, M ≼ 0 denotes

semidefinitematrixM , and ∥P∥ stands for spectral norm of P . Then
we can guarantee the estimate

max
t≥0

max
|x(0)|2≤1

|x(t)|2 ≤ ∥P̂∥, (22)

where P̂ is the solution of the above SDP. This is a well known
approach to get upper bounds for deviations in closed-loop
systems.

For open-loop systemswe can similarly design a linear feedback
in order to guarantee theminimal possible deviations with desired
damping. Consider SDP

∥P∥ → min, (23)

P(A + bK T )T + (A + bK T )P ≼ −2σP, (24)
I ≼ P. (25)

Lyapunov inequality (24) guarantees that the decay rate of the
closed-loop system exceeds σ and that the ellipsoid E = {x ∈ Rn

:

(x, P−1x) ≤ 1} is its invariant set, while conditions (23) and (25)
Table 1
Numerical values of κn .

n 2 3 4 5

κn 0.3863 0.5151 0.7726 1.2362
κn 1.60 5.75 17.18 66.46
κn 17.94 337.00 6.8 · 103 1.47 · 105

Table 2
Eigenvalues and stability degree for closed-loop systems.

n 2 3 4 5

σ(F) 2.31 2.39 2.17 2.26

Λ(F) −2.31±2.21i −18.27
−2.40 ± 1.26i

−2.96 ± 5.13i
−2.17 ± 0.91i

−4.38 ± 5.79i
−2.39 ± 1.55i

−2.26

imply that E contains the unit ball {x : |x| ≤ 1} and has minimal
ratio of the semi-major and the semi-minor axes. Inequality (24)
is nonlinear with respect to the unknown variables P and K . This
difficulty can be easily overcome by introducing new variable Y =

PK . In terms of variables P and Y (24) reads

AP + PAT
+ bY T

+ YbT ≼ −2σP. (26)

This is a typical SDP problem and it can be solved numerically
(Grant & Boyd, n.d.). Its solution K = P̂−1Ŷ can be a good candidate
for a feedback with desired stability degree and small deviation for
all non-zero initial conditions. Similar approaches can be found in
the references mentioned above.

It is of interest to compare lower and upper bounds for systems
in companion form with desired decay rate σ . The lower bounds
are given by Theorem 1; having in mind that ρ ≥ σ , estimate (12)
implies

max
0≤t

max
|x(0)|=1

|x(t)| ≥ γnσ
n−1

= κn, γn =
0.3863

n
. (27)

To obtain upper boundswe fix the desired σ and solve SDP (23),
(25), (26) with its solution P̂ . Then we guarantee the estimate

max
0≤t

max
|x(0)|2=1

|x(t)|2 ≤ ∥P̂∥ = κn. (28)

Minor incomparability of the bounds is that we used ∞-norm
for lower bounds and 2-norm for upper bounds; however | · |∞ ≤

| · |2 and this leads to more conservative results.
Finally we calculate the true maximal deviation in 2-norm as

κn = max
t>0

max
|x(0)|2=1

|x(t)|2 = max
t

∥eFt∥2 (29)

where F is closed-loop system matrix with the controller K =

P̂−1Ŷ .
In numerical calculations we fixed σ = 2, the results are

collected in Table 1:
We see that both lower and upper bounds are highly conserva-

tive even for small dimensions n.
Another problem of interest is to investigate the closed-loop

system obtained by solving upper bound (23), (25), (26) with fixed
σ = 2. For system in canonical form we calculate the matrix
F = A+ bK T , K = P̂−1Ŷ , its eigenvaluesΛ(F) and stability degree
σ(F) = −maxk Reλk; they are shown in Table 2 for several n.

We conclude that true stability degree σ(F) is close to desired
decay rate σ = 2. Surprisingly the spectrum Λ(F) exhibits no
regularity; eigenvalues are both real and complex and some of
them (e.g. for n = 3) have large modulus.

We have seen that lower and upper bounds differ strongly.
However for large eigenvalues their asymptotic behavior (for σ
large) is similar. To provide this result we reformulate Theorem 5
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(relating to systems in general form and large σ ) in terms of
quadratic Lyapunov functions V (x) = (P−1x, x). We denote χ(P)
the condition number of matrix P , that is χ(P) = ∥P∥∥P−1

∥ =

M/m,M,m being the largest and the smallest eigenvalues of P .
Obviously large χ(P) correspond to ellipsoids E = {x ∈ Rn

:

(x, P−1x) ≤ 1}with large ratio of its biggest and smallest half-axis.

Theorem 6. For any feedback u = K T x such that the closed-loop
matrix F = A + bK T has eigenvalues λi with Reλi ≤ −σ < 0 and
for any V (x) = (P−1x, x) which is Lyapunov function for closed-loop
system ẋ = Fx the following estimate holds:

χ(P) ≥ γ σ 2(n−1). (30)

Here γ > 0 depends on A, b but not on K .

Indeed for |x(0)|2 = 1 due to Theorem 6 and the Lyapunov
function properties, we have

1/m = (1/m)|x(0)|22 ≥ V (x(0))

≥ max
t≥0

V (x(t)) ≥ (1/M)max
t>0

|x(t)|22

≥ (1/M)max
t>0

|x(t)|2 ≥ (1/M)γ 2
n σ

2(n−1). (31)

Thus condition number of P can be used for comparison of
upper and lower bounds for deviations of the trajectories in
2-norm. Nowwe are in a position to present themain result of this
section.

Theorem 7. For controllable system (1) and any σ > 0 there exist
a feedback u = K T x and a quadratic form V (x) = (P−1x, x) such
that the closed-loop matrix F = A + bK T has eigenvalues λi with
Reλi ≤ −σ and V (x) is its Lyapunov function while

χ(P) ≤ γ (σ + 3/2)2(n−1), (32)

where γ depends on A, b only.

Of course dependence of γ and γ on n (for instance for systems
in companion form) can be different; moreover terms σ 2(n−1) and
(σ + 3/2)2(n−1) in lower and upper bounds (30), (32) are also
different. However both bounds are of order O(σ 2(n−1)) for σ large.

6. Conclusions and future research

We provided some results on transient response in linear sys-
tems with non-zero initial conditions. First we investigated sys-
tems in companion form and obtained lower bounds for maximal
deviations in such systems. The bounds depend on pole location
of closed-loop systems; large deviations are unavoidable for vari-
ous locations. The results are extended to systems in general form.
Comparison confirms asymptotic equivalence of lower and upper
bounds.

However these are just the first steps in the challenging area.
We can mention few open problems relating to transient response
research:

(1) The results on lower bounds for systems in companion form
(Section 3) are formulated for specific eigenvalue locations. But
what can be said for arbitrary eigenvalues? How to estimate
αn = infΛ supt>0 sup|x(0)|=1 |x(t)|? Here x(t) is the solution
of equation with matrix (10) having spectrum Λ. Our initial
conjecture was that Λ = {−σ , . . . ,−σ } with real σ > 0
depending on n is the answer. However this conjecture is false;
counterexamples can be constructed for small n. Probably the
question has sense only if some restrictions onΛ are added, for
example |λi| ≤ ω, i = 1, . . . , n. To the best of our knowledge,
the problem remains open.
(2) Similar question: what are the best constants in all theorems
of Section 3?

(3) Lower bounds for systems in general form (Section 4) can be
rather conservative. Are there some classes of systems (beyond
canonical) which allow more accurate estimates?

(4) The case of discrete-time systems is challenging. It is well
known that for Shur stable matrix A its powers Ak can increase
at initial iterations. But what is an analog for lower bound
results of Section 3?

(5) Lower bounds for deviations of transient response from
steady-state outputs for systems with zero initial conditions
and harmonic inputs deserve similar analysis. Some results in
this direction are presented in Polyak et al. (2015).
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Appendix. Proofs

A.1. Auxiliary results

Assume that all the eigenvalues λ1, . . . , λn of system (2) are
different. Consider the Cauchy problem

Φ̇(t) = FΦ(t), Φ(0) = I, (33)

where I is the identitymatrix. The components ofΦ(t) are denoted
by φi,j(t). Recall some results from Smirnov et al. (2009) used
below. Denote by L(Φ)(s) the Laplace transform of the matrix
Φ(t), the solution of problem (33). Applying the Laplace transform
to differential equation (33), we obtain L(Φ̇)(s) = FL(Φ)(s).
From this we get

L(Φ)(s) = (sI − F)−1
= ∆(s)−1M(s), (34)

where M(s) is a matrix with polynomial elements and ∆(s) =

det (sI − F) =
n

j=1


s − λj


. Using the inversion theorem, we

have

Φ(t) =
1

2π i


Γ

exp (st)
M(s)
∆(s)

ds, (35)

where Γ is a closed curve containing inside all points λk, k = 1, n.
From this we have

φn,l(t) = −
1

2π i


Γ

exp (st)

l−1
β=0

an−βsn+β−l−1

(s − λ1) . . . (s − λn)
ds (36)

and

φ1,n(t) =
1

2π i


Γ

exp (st)
ds

(s − λ1) . . . (s − λn)
. (37)
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Expanding the exponential function in series, using the equality

(1 − h1)
−1 . . . (1 − hn)

−1

=

∞
q=0


q1+···+qn=q

hq1
1 . . . h

qn
n , |hj| < 1, j = 1, n, (38)

with bj = λj/λ, and calculating the residue at infinity, from (36)
and (37) we obtain

φn,l(t) = −

l−1
β=0


1≤i1<···<in−β≤n

λi1 . . . λin−β

×


α≥l−β

tα

α!


q1+···+qn=α+β−l

λ
q1
1 . . . λ

qn
n (39)

and

φ1,n(t) =

∞
α=n−1

tα

α!


q1+···+qn=α−n+1

λ
q1
1 . . . λ

qn
n (40)

respectively. The details can be found in Smirnov et al. (2009).

A.2. Proof of Theorem 1

Assume that all the eigenvalues λ1, . . . , λn of system (2) are
different. From (39) we have

φn,1(t) = −λ1 . . . λn

∞
α=1

tα

α!


q1+···+qn=α−1

λ
q1
1 . . . λ

qn
n . (41)

Let ω = max{|λj| : j = 1, n} and t∗ = θ/(ωn), θ being a
parameter. Then we have

|φn,1(t∗)| =
|λ1 . . . λn|

ωn
δ(θ), (42)

where

δ(θ) = θ

1 +

∞
α=2

tα−1
∗

α!


q1+···+qn=α−1

λ
q1
1 . . . λ

qn
n

 . (43)

The number of terms in the last sum equals
α + n − 2

n − 1


=


1 +

n − 1
α − 1


1 +

n − 1
α − 2


. . .


1 +

n − 1
1


≤ nα−1. (44)

Since |λj| ≤ ω, we get

δ(θ) ≥ θ


1 −

∞
α=2

θα−1

α!(ωn)α−1


q1+···+qn=α−1

ωα−1



= θ


1 −

∞
α=2

θα−1

α!(ωn)α−1
ωα−1


α + n − 2

n − 1



≥ θ


1 −

∞
α=2

θα−1

α!


= 2θ + 1 − eθ . (45)

Since the functionψ(θ) = 2θ+1−eθ , θ ≥ 0, attains itsmaximum
at θ = log 2, we obtain the result for different λ1, . . . , λn. But
the matrix of system (2) continuously depends on λ1, . . . , λn and
φn,1(t∗) continuously depends on thematrix, thus the result is true
for arbitrary λ1, . . . , λn. �
A.3. Proof of Theorem 2

Assume that all the eigenvalues λ1, . . . , λn of system (2) are
different. From (40) we obtain

φ1,n(t) =

∞
α=n−1

tα

α!


q1+···+qn=α−n+1

λ
q1
1 . . . λ

qn
n

=
tn−1

(n − 1)!
+

∞
α=n

tα

α!


q1+···+qn=α−n+1

λ
q1
1 . . . λ

qn
n . (46)

Let ω = max{|λj| : j = 1, n}, t∗ = θ/ω, where parameter θ will be
specified later. Then, as in the previous proof, we have

|φ1,n(t∗)| ≥
θn−1

ωn−1(n − 1)!
−

∞
α=n

θαωα−n+1

α!ωα


α

n − 1



=
θn−1

ωn−1(n − 1)!


1 −

∞
α=n

θα−n+1

(α − n + 1)!



=
θn−1

ωn−1(n − 1)!


2 − eθ


. (47)

Since 2 − eθ ≥ 1 − θ/ log 2, whenever 0 ≤ θ ≤ log 2, maximizing
the function ψ(θ) = θn−1 (1 − θ/ log 2)we obtain

θ∗
= argmaxψ(θ) =

n − 1
n

log 2, ψ(θ∗) ≥
(log 2)n−1

en
. (48)

This leads to (13). Thus, the theorem is proved for different
λ1, . . . , λn. We conclude as in the previous proof. �

A.4. Proof of Theorem 3

We need the following auxiliary estimate.

Lemma 1. Assume that Reλj < 0, j = 1, . . . , n, and (14) is satisfied.
Then the following inequality holds 
1≤i1<···<iν≤n

λi1 . . . λiν

 ≥ |λ1 . . . λν | ≥ ην . (49)

Proof. Since the coefficients of the characteristic polynomial∆(λ)
are real, the roots have the following structure: λj ∈ R, j ∈ J =

{j1, . . . , jµ}, and λj = αj ± iβj, αj, βj ∈ R, j ∉ J . (The set J can
be empty or can coincide with the set of all indices.) We obviously
have

∆(λ) =

n
j=1

(λ− λj)

= λn + · · · + (−1)ν


1≤i1<···<iν≤n

λi1 . . . λiνλ
n−ν

+ · · ·

+ (−1)nλ1 . . . λn

=

µ
r=1

(λ− λjr )

(n−µ)/2
r=µ+1

((λ− αjr )
2
+ β2

jr )

=

µ
r=1

(λ+ |λjr |)

(n−µ)/2
r=µ+1

((λ+ |αjr |)
2
+ β2

jr )

=

µ
r=1

(λ+ |λjr |)

(n−µ)/2
r=µ+1

(λ2 + |λjr |
2
+ 2λ|αjr |). (50)
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From thiswe see that the coefficient ofλn−ν of the polynomial∆(λ)
is a sum of positive terms and therefore has the form

(−1)ν


1≤i1<···<iν≤n

λi1 . . . λiν = |λ1 . . . λν | + δ, (51)

where δ > 0. �

Proof of Theorem 3. Assume that all the eigenvalues λ1, . . . , λn
are different. Set l = n − ν + 1. Then from (39) we have

φn,n−ν+1(t) = −


1≤i1<···<iν≤n

λi1 . . . λiν t

−


1≤i1<···<iν≤n

λi1 . . . λiν

×


α≥2

tα

α!


q1+···+qn=α−1

λ
q1
1 . . . λ

qn
n

−

n−ν−1
β=0


1≤i1<···<in−β≤n

λi1 . . . λin−β

×


α≥n−ν−β+1

tα

α!


q1+···+qn=α+β−n+ν−1

λ
q1
1 . . . λ

qn
n . (52)

Since exp(a)− (1 + a) ≤ exp(a)a2/2, a ≥ 0, we get
α≥2

tα

α!


q1+···+qn=α−1

λ
q1
1 . . . λ

qn
n


≤


α≥2

tα

α!


q1+···+qn=α−1

ωα−1

=


α≥2

tα

α!
ωα−1


α + n − 2

n − 1



≤


α≥2

1
ωn

(ωnt)α

α!
≤
ωnt2

2
exp(ωnt) (53)

(see the proof of Theorem 1). Similarly, we obtain 
α≥n−ν−β+1

tα

α!


q1+···+qn=α+β−n+ν−1

λ
q1
1 . . . λ

qn
n


≤


α≥n−ν−β+1

tα

α!
(ωn)α+β−n+ν−1

=


α≥n−ν−β+1

(ωnt)α

α!
(ωn)β−n+ν−1

≤
tn−ν−β+1

(n − ν − β + 1)!
exp(ωnt) ≤

t2

2
exp(ωnt), (54)

wheneverβ ≤ n−ν−1 and t < 1. Using Lemma1 and assumption
(14) we get

n−ν−1
β=0

 
1≤i1<···<in−β≤n

λi1 . . . λin−β

 
1≤i1<···<iν≤n

λi1 . . . λiν


=

n
m=ν+1

 
1≤i1<···<im≤n

λi1 . . . λim

 
1≤i1<···<iν≤n

λi1 . . . λiν


Fig. 6. Curves Γ1 and Γ2 .

≤

n
m=ν+1


1≤i1<···<im≤n

ξm

ην
=

n
m=ν+1


n
m


ξm

ην

≤

n
m=0


n
m


ξm

ην
=
(1 + ξ)n

ην
. (55)

Set t∗ = θ/(ωn); θ will be chosen later. Then we have

|φn,n−ν+1(t∗)| ≥

 
1≤i1<···<iν≤n

λi1 . . . λiν

 t∗
×


1 −

t∗ exp(ωnt∗)
2


ωn +

(1 + ξ)n

ην


≥
ην

ωn
θ


1 − α

θeθ

2


, α = 1 +

(1 + ξ)n

ωnην
. (56)

From (15) we get α ≤ 1.1. Taking θ = log 2 we have (16).
Arguing as at the end of the proof of Theorem 2 we obtain the

result. �

A.5. Proof of Theorem 4

Let ζ and ζ̄ be the points of intersection of the circumference
|s| = ω + (η − ξ)/2 with the line Res = −(η + ξ)/2. Consider
the closed curves Γ1 = {s | |s| = ω + (η − ξ)/2, Res <
−(η + ξ)/2} ∪ [ζ̄ , ζ ] and Γ2 = {s | |s| = ξ, Res < 0} ∪ [−iξ, iξ ]
(see Fig. 6).

From (40) we have φ1,n(t) = I1 + I2, where

Ik =
1

2π i


Γk

exp (st)
ds

(s − λ1) . . . (s − λn)
, k = 1, 2. (57)

Obviously, we have

|I1| ≤
π(ω + (η − ξ)/2)

2π
e−(η+ξ)t/2

((η − ξ)/2)n
. (58)

Taking t = 1/ξ and having in mind that due to (18) η− ξ ≥ 2 and
ξ < 1, we obtain

|I1| ≤ c1ω, c1 = 0.75e−2. (59)

Now let us estimate I2. Expanding the exponential function and
using (38), we get I2 =

1
2π i


Γ2


q≥0,α≥0,qν+1+···+qn=s

tα
α!
sα−n+ν−sλ

qν+1
ν+1 . . . λ

qn
n

ν
j=1
(s − λj)

ds. (60)
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Calculating the residue at s = 0, we get

I2 =
(−1)ν
ν

j=1
λj


α≥n−ν−1

qν+1+···+qn
=α−n+ν+1

tα

α!
λ
qν+1
ν+1 . . . λ

qn
n . (61)

Set t = 1/ξ . Then we have

I2 =
(−1)ν
ν

j=1
λj

(1/ξ)n−ν−1

(n − ν − 1)!

×

1 + (n − ν − 1)!

α≥n−ν

qν+1+···+qn
=α−n+ν+1


1
ξ

α−n+ν+1
λ
qν+1
ν+1 . . . λ

qn
n

α!

 . (62)
Observe that


α≥n−ν

qν+1+···+qn
=α−n+ν+1


1
ξ

α−n+ν+1
λ
qν+1
ν+1 . . . λ

qn
n

α!


≤


α≥n−ν


1
ξ

α−n+ν+1
ξα−n+ν+1

α!


α

n − ν


=

e
(n − ν)!

. (63)

Hence we get

|I2| ≥
c2

ξ n−ν−1ων(n − ν − 1)!
, (64)

where c2 ≥ 1 − e/(n − ν) ≥ 1 − e/3. Finally, we have

|φ1,n(1/ξ)| ≥ |I2| − |I1|. (65)

Combining the last inequality with (59) and (18) we obtain the
result. �

A.6. Proof of Theorem 7

We will need a few auxiliary lemmas. Below s ∈ R does not
belong to spectrum of A; it will be specified later (see (90)).

Lemma 2. The vectors bk = (A − sI)−kb, k = 0, n − 1, form a basis
in Rn.

Proof. Indeed, then the vectors bk are well-defined. It suffices
to show that they are linearly independent. Assume that 0 =n−1

k=0 βkbk =
n−1

k=0 βk(A − sI)−kb. Multiplying this equality by
(A − sI)n−1 we get

0 =

n−1
k=0

βk(A − sI)n−k−1b

=

n−1
k=0

βk

n−k−1
j=0


n − k − 1

j


(−s)n−k−1−jAjb

=

n−1
j=0

n−j−1
k=0

βk


n − k − 1

j


(−s)n−k−1−jAjb. (66)

Since the vectors Ajb, j = 0, n − 1 are linearly independent, we
have

n−j−1
k=0

βk


n − k − 1

j


(−s)n−k−1−j

= 0, j = 0, n − 1. (67)

Taking successively j = n−1, n−2, . . . , we obtainβ0 = 0,β1 = 0,
etc. �
Any vector x ∈ Rn can be represented as x =
n−1

k=0 βkbk and as

x =

n−1
m=0

γmAmb. (68)

The vectors β = (β0, . . . , βn−1) and γ = (γ0, . . . , γn−1) satisfy
the equality

β(s, γ ) = M(s)γ , (69)

whereM(s) is an (n × n)-matrix.

Lemma 3. The following representation takes place:

βk(s, γ ) =

k
r=0

βr
k(γ )(−s)r , k = 0, n − 1. (70)

Proof. Fix γ ≠ 0 and set βk(s) = βk(s, γ ), k = 0, n − 1.
Multiplying the equality

n−1
k=0

βk(A − sI)−kb =

n−1
m=0

γmAmb (71)

by (A − sI)n−1 we get

n−1
k=0

βk(A − sI)n−k−1b =

n−1
m=0

γm(A − sI)n−1Amb (72)

or, equivalently,

n−1
k=0

n−k−1
m=0

βk(−s)n−k−m−1

n − k − 1

m


Amb

=

n−1
m=0

γm(A − sI)n−1Amb. (73)

Switching the order of summation we have

n−1
m=0

n−m−1
k=0

βk


n − k − 1

m


(−s)n−k−m−1Amb

=

n−1
m=0

γm(A − sI)n−1Amb =

n−1
m=0

Pm(s)Amb, (74)

where the degree of the polynomials Pm(s), m = 0, n − 1 is less
than or equal to n − 1. From this we successively determine β0,
β1, etc. The functions βk = βk(s), k = 0, n − 1, have a form of
polynomials

βk(s) =

rk
r=0

βr
k(−s)r . (75)

From
n−1
m=0

n−m−1
k=0

rk
r=0

βr
k


n − k − 1

m


(−s)n+r−k−m−1Amb

=

n−1
m=0

Pm(s)Amb, (76)

we see that the degree of polynomials

n−m−1
k=0

rk
r=0

βr
k


n − k − 1

m


(−s)n+r−k−m−1 (77)
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is also less than or equal to n − 1. Setm = n − q, q = 1, n. We see
that the degree of the polynomials

q−1
k=0

rk
r=0

βr
k


n − k − 1
n − q


(−s)s+r−k−1 (78)

does not exceed n − 1. Considering q = 1, n, we get βr
0 = 0

whenever r > n − q. Then considering q = 2, n, we get βr
1 = 0

for r > n − q + 1, and so on. Finally, we obtain βr
k = 0 whenever

r > k, k = 0, n − 1. Thus we have (70). �

As a special case of this lemma we get

Lemma 4. The coordinates αk, k = 0, n − 1, of the vector Ab with
respect to the basis bk = (A − sI)−kb, k = 0, n − 1, are O(|s|n−1) as
|s| → ∞.

Recall that by matrix norm we intend the norm induced by the
vector norm.

Lemma 5. The norm of the matrix M−1(s) is O(1) as |s| → ∞.

Proof. Indeed, from Lemma 3 we see that βk(s, γ )s−k−m
= o(1),

|s| → ∞, m = 1, n − 1. Dividing (73) by (−s)n−1 we obtain

β0b + c(s) =

n−1
m=0

γmAmb +

n−1
m=0

γmdm(s), (79)

where |c(s)| = o(1) and |dm(s)| = o(1),m = 0, n − 1, as |s| → ∞.
From this we get

γm =


β0 + o(1), m = 0,

o(1), m = 1, n − 1. �
(80)

Proof of Theorem 7. By Lemma 2 the vectors bk = (A − sI)−kb,
k = 0, n − 1, form a basis in Rn. Let x =

n−1
k=0 βkbk and Ab =n−1

k=0 αkbk. Choose linear feedback u(x) = u(β) = sβ0 − (β1 +

β0α0). Since ẋ =
n−1

k=0 β̇kbk and

Ax + u(x)b = A
n−1
k=0

βkbk + (sβ0 − (β1 + β0α0))b

= (A − sI)
n−1
k=1

βkbk + s
n−1
k=1

βkbk + β0Ab

+ (sβ0 − (β1 + β0α0))b

=

n−2
k=1

(sβk + βk+1)bk + sβn−1bn−1

+β0

n−1
k=1

αkbk + sβ0b, (81)

the system ẋ = Ax + u(x)b in the coordinates β takes the form

β̇0 = sβ0, (82)

β̇1 = sβ1 + β2 + β0α1, (83)
· · · (84)

β̇n−2 = sβn−2 + βn−1 + β0αn−2, (85)

β̇n−1 = sβn−1 + β0αn−1. (86)

Put

δ2 = (n − 1) max
k=1,n−1

α2
k (87)
and

W (β) =

n−1
k=1

β2
k + δ2β2

0 . (88)

Then we see that dW (β)/dt is equal to

= 2sW (β)+ 2


n−2
k=1

(βkβk+1 + βkβ0αk)+ βn−1β0αn−1



≤ 2sW (β)+

n−2
k=1

(β2
k + β2

k+1)+

n−1
k=1


α2
kβ

2
k (n − 1)
δ2

+
δ2β2

0

n − 1


≤ (2s + 3)W (β). (89)

Now fix

s = −σ − 3/2, (90)

then the last inequality becomes

Ẇ (β) ≤ −2σW (β). (91)

We introduced Lyapunov function W (β) in variables β , now
convert it into V (x). Recall that x = Hγ (see (68)), where H =

[b Ab . . . An−1b] is the controllability matrix. Due to controllability
assumption H−1 exists and both H,H−1 do not depend on σ . On
the other hand β = M(s)γ (see (69)), and ∥M(s)∥ = O(|s|n−1) ≤

c1(σ + 3/2)n−1 (see (70)), while ∥M(s)−1
∥ = O(1) (Lemma 5).

We have W (β) = (Qβ, β), where Q = diag(δ2, 1, . . . , 1) (88),
with δ2 = O(α2) (see (87)). From Lemma 4 we conclude that
the condition number satisfies the inequality χ(Q ) ≤ c2(σ +

3/2)2(n−1). Collecting all these relations we obtain

W (β) = W (MH−1x) = V (x) = (P−1x, x), (92)

with

P−1
= (H−1)TMTQMH−1, (93)

and

χ(P) ≤ c3(σ + 3/2)2(n−1). (94)

Final remark is that inequality

V̇ (x) ≤ −2σV (x) (95)

for quadratic Lyapunov function V (x) and linear system ẋ = Fx
implies Reλi ≤ −σ for all eigenvalues λi of the matrix F .

Thus we have constructed linear feedback and quadratic
Lyapunov function with the desired properties. �

References

Balandin, L., & Kogan, M. (2009). Lyapunov function method for control law
synthesis under one integral and several phase constraints. Differential
Equations, 45, 670–679.

Bewley, T., & Liu, S. (1998). Optimal and robust control and estimation of linear
paths to transition. Journal of Fluid Mechanics, 365, 305–349.

Boyd, S., El Ghaoui, L., Ferron, E., & Balakrishnan, V. (1994). Linear matrix inequalities
in systems and control theory. Philadelphia: SIAM.

Bulgakov, A. (1980). An efficiently calculable parameter for the stability property
of a system of linear differential equations with constant coefficients. Siberian
Mathematical Journal, 21, 339–347.

Bushenkov, V., & Smirnov, G. (1997). Stabilization problemswith constraints: analysis
and computational aspects. Amsterdam: Gordon and Breach.

Feldbaum, A. (1948). On the distribution of roots of characteristic equations of
control systems. Avtomatika i Telemekhanika, 253–279.

Grant, M., & Boyd, S. (n.d.). Cvx: Matlab software for disciplined convex
programming (web page and software): http://stanford.edu/boyd/cvx.

Herman, I., Martinec, D., Z, H., & Sebek, M. (2015). Nonzero bound on fiedler
eigenvalue causes exponential growth of h-infinity norm of vehicular platoon.
IEEE Transactions on Automatic Control, 60, 2248–2253.

http://refhub.elsevier.com/S0005-1098(16)30315-6/sbref1
http://refhub.elsevier.com/S0005-1098(16)30315-6/sbref2
http://refhub.elsevier.com/S0005-1098(16)30315-6/sbref3
http://refhub.elsevier.com/S0005-1098(16)30315-6/sbref4
http://refhub.elsevier.com/S0005-1098(16)30315-6/sbref5
http://refhub.elsevier.com/S0005-1098(16)30315-6/sbref6
http://stanford.edu/boyd/cvx
http://refhub.elsevier.com/S0005-1098(16)30315-6/sbref8


B.T. Polyak, G. Smirnov / Automatica 74 (2016) 297–307 307
Hinrichsen, D., Plischke, E., & Wurth, F. (2002). State feedback stabilization with
guaranteed transient bounds. In Proc. 15th int. symp. math. theory networks &
syst. p. Paper no. 2132.

Izmailov, R. (1987). The peak effect in stationary linear systems with scalar inputs
and outputs. Automation and Remote Control, 48, 1018–1024.

Liberzon, D. (2003). Switching in systems and control. Boston: Birkhäuser.
Moler, C., & Van Loan, C. (1978). Nineteen dubiousways to compute the exponential

of a matrix. SIAM Review, 20, 801–836.
Moler, C., & Van Loan, C. (2003). Nineteen dubiousways to compute the exponential

of a matrix, twenty-five years later. SIAM Review, 45, 3–49.
Nechepurenko,M. (2002). Bounds for thematrix exponential basedon the lyapunov

equation and limits of the hausdorff set. Computational Mathematics and
Mathematical Physics, 42, 125–134.

Polotskij, V. (1981). Estimation of the state of single-output linear systemsbymeans
of observers. Automation and Remote Control, 41, 1640–1648.

Polyak, B., & Smirnov, G. (2014). Large deviations in continuous-time linear single-
input control systems. In Proceedings 19-th world ifac congress, Cape Town
(pp. 5586–5591).

Polyak, B., Tremba, A., Khlebnikov, M., Shcherbakov, P., & Smirnov, G. (2015). Large
deviations in linear control systemswith nonzero initial conditions.Automation
and Remote Control, 75, 957–976.

Reddy, S., & Henningson, D. (1993). Energy growth in viscous channel flows. Journal
of Fluid Mechanics, 252, 209–238.

Smirnov, G., Bushenkov, V., & Miranda, F. (2009). Advances on the transient
growth quantification in linear control systems. International Journal of Applied
Mathematics & Statistics, 14, 82–92.

Sussman, H., & Kokotovic, P. (1991). The peaking phenomenon and the global
stabilization of nonlinear systems. IEEE Transactions on Automatic Control, 36,
424–439.

Van Dorsselaer, J., Kraaijevanger, J., & Spijker, M. (1993). Linear stability analysis in
the numerical solution of initial value problems. Acta Numerica, 2, 199–237.

Whidborne, J., & Amar, N. (2011). Computing the maximum transient energy
growth. BIT Numerical Mathematics, 51, 447–557.
Whidborne, J., & McKernan, J. (2007). On minimizing maximum transient energy
growth. IEEE Transactions on Automatic Control, 52, 1762–1767.

Wonham, W. (1979). Linear multivariable control: a geometric approach. New York:
Springer-Verlag.

Boris T. Polyak received Ph.D. degree in mathematics
from Moscow State University in 1963 and Doctor of
Science degree in engineering from Institute for Control
Science, Moscow, in 1977. He has been Head of Ya.Z.
Tsypkin Laboratory, Institute for Control Science of
Russian Academy of Sciences, Moscow, Russia (where he
is currently Chief Researcher) and Professor of Moscow
University of Physics and Engineering. He is the author
of more than 200 papers in peer-review journals and
4 monographs, including Introduction to Optimization,
Russian and English editions, and Robust Stability and

Control, coauthored with P.S. Scherbakov. He is on the Editorial Boards of
numerous journals, IFAC Fellow, recipient of EURO-2012 Gold Medal. His research
interests include mathematical programming, nonsmooth optimization, stochastic
estimation and optimization, linear and nonlinear analysis and design, robust
stability, chaos control, Monte-Carlo simulation.

Georgi Smirnov was born in 1961 in Moscow, USSR. His
Ph.D. is from the Moscow State University (1988). He
worked at the Computing Centre of The Soviet Academy of
Sciences. Now he is professor at the University of Minho,
Portugal. Georgi Smirnov’s research interests lie in applied
mathematics, optimization, differential equations, control
theory, as well as in space flight dynamics and control.

http://refhub.elsevier.com/S0005-1098(16)30315-6/sbref10
http://refhub.elsevier.com/S0005-1098(16)30315-6/sbref11
http://refhub.elsevier.com/S0005-1098(16)30315-6/sbref12
http://refhub.elsevier.com/S0005-1098(16)30315-6/sbref13
http://refhub.elsevier.com/S0005-1098(16)30315-6/sbref14
http://refhub.elsevier.com/S0005-1098(16)30315-6/sbref15
http://refhub.elsevier.com/S0005-1098(16)30315-6/sbref17
http://refhub.elsevier.com/S0005-1098(16)30315-6/sbref18
http://refhub.elsevier.com/S0005-1098(16)30315-6/sbref19
http://refhub.elsevier.com/S0005-1098(16)30315-6/sbref20
http://refhub.elsevier.com/S0005-1098(16)30315-6/sbref21
http://refhub.elsevier.com/S0005-1098(16)30315-6/sbref22
http://refhub.elsevier.com/S0005-1098(16)30315-6/sbref23
http://refhub.elsevier.com/S0005-1098(16)30315-6/sbref24

	Large deviations for non-zero initial conditions in linear systems
	Introduction
	Motivating examples
	Lower bounds for systems in companion form
	Large eigenvalues
	Small eigenvalues
	Mixed eigenvalues

	Lower bounds for systems in general form
	Upper bounds
	Conclusions and future research
	Acknowledgments
	Proofs
	Auxiliary results
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4
	Proof of Theorem 7

	References


