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Abstract. The Poincaré-Bendixson theorem plays an important role in the study of the qualitative be-
havior of dynamical systems on the plane; it describes the structure of limit sets in such systems. We prove

a version of the Poincaré-Bendixson Theorem for two dimensional hybrid dynamical systems and describe

a method for computing the derivative of the Poincaré return map, a useful object for the stability analysis
of hybrid systems. We also prove a Poincaré-Bendixson Theorem for a class of one dimensional hybrid

dynamical systems.

1. Introduction

H. Poincaré considered the problem of characterizing the structure of limit sets of trajectories of analytic
vector fields on the plane in 1886 [17]. I. Bendixson improved the solution proposed by Poincaré in 1903 by
solving the problem under the weaker hypothesis of C1 vector fields [2]. Since then, the investigation of the
asymptotic behavior of dynamical systems has been essential to understanding their behavior. The theory
of Poincaré-Bendixson studies so-called limit sets. The classic version of the Poincaré-Bendixson Theorem
states that if a trajectory is bounded and its limit set does not contain any fixed points, then the limt set is a
periodic orbit [16]. Therefore, the problem of determining the existence of limit cycles in planar continuous
dynamics is well understood.

Hybrid systems [6] are non-smooth dynamical systems which exhibit a combination of smooth and discrete
dynamics, where the flow evolves continuously on a state space, and a discrete transition occurs when the
flow intersects a co-dimension one hypersurface. Due to many engineering applications, such as dynamical
walking of bipedal robots [5], [14], [15], there has been an increased interest in recent years in studying the
existance and stability of limit cycles in hybrid systems [10], [11], [12]. There have also been several attempts
at building a foundational qualitative theory for hybrid systems (see [13], [20] and references therein) where
early versions of the Poincaré-Bendixson Theorem were developed. However, many fundamental questions
solved for continuous-time systems still remain open for hybrid systems. The results in [13] are restricted
to the situation of constant vector fields while in [20], the authors considered a particular class of systems
with much stricter assumptions to ensure the existence of periodic orbits.

The Poincaré map, or first return map, is a method of studying the stability of limit cycles by reducing
the dimension of the dynamics for a continuous-time dynamical system by one, and considering this as a
discrete-time system [7], [16], [21]. The map is constructed as follows: if γ is a periodic orbit that intersects
a hypersurface (the Poincaré section) transversely at a point x0, then for a point x near x0, the solution
through x will cross the hypersurface again at a point P (x) near x0. The mapping x 7→ P (x) is called the
Poincaré map. In practice, it is impossible to find the Poincaré map analytically and in closed form due
to the fact that it requires the solution to the differential equation. The extension of the continuous-time
Poincaré map for mechanical systems with impulsive effects was considered in [14]. The hybrid Poincaré
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map is important in applications as it is used to ensure the existence and stability properties of periodic
locomotion gaits [9].

In this work, we study the problem of existence and stability of periodic orbits for hybrid dynamical
systems, in addition to other results concerning the qualitative behavior of these systems. Among these
results, we present a version of the Poincaré-Bendixson Theorem for two dimensional hybrid systems under
weaker conditions than the ones considered in [13], [20]. We also derive an analytical method to compute
the derivative of the hybrid Poincaré map to characterize the stability of periodic orbits. We apply our
results to find a region in parameter space where one can ensure the existence of limit cycles for the rimless
wheel, a popular system in locomotion research used to study essential properties of walking robots. We
additionally prove a Poincaré-Bendixson Theorem for a general class of one dimensional hybrid dynamical
systems.

The paper is organized as follows: Section 2 introduces the formulation of hybrid dynamical systems as
well as hybrid ω-limit sets. Section 3 contains two properties of the hybrid ω-limit set that are needed to
properly formulate our hybrid Poincaré-Bendixson theorem. Section 4 introduces the hybrid Poincaré map
and uses this to prove our hybrid Poincaré-Bendixson Theorem (Theorem 4.4). Section 5 offers an analytic
way to compute the derivative of the hybrid Poincaré map, then uses this result to study the stability of
planar hybrid limit cycles. Section 6 contains a version of the Poincaré-Bendixson theorem for a general
class of one dimensional hybrid dynamical systems. The paper ends with an application of the main theorem
to find conditions for stability of periodic walking of the rimless wheel. Appendix A contains some analogue
results of this work for time-continuous flows.

2. Hybrid Dynamical Systems

Hybrid dynamical systems (HDS) are dynamical systems characterized by their mixed behavior of con-
tinuous and discrete dynamics where the transition is determined by the time when the continuous flow
switches from the ambient space to a co-dimensional one submanifold. This class of dynamical systems is
given by an 4-tuple, (X , S, f,∆). The pair (X ,f) describes the continuous dynamics as

ẋ(t) = f(x(t))

where X is a smooth manifold and f a C1 vector field on X with flow ϕt : X → X . Additionally, (S,∆)
describes the discrete dynamics as x+ = ∆(x−) where S ⊂ X is a smooth submanifold of co-dimension one
called the impact surface.

The hybrid dynamical system describing the combination of both dynamics is given by

Σ :

{
ẋ = f(x), x 6∈ S
x+ = ∆(x−), x− ∈ S.

(1)

The flow of the hybrid dynamical system (1) is denoted by ϕHt . This may cause a little confusion around
the break points, that is, where ϕt0(x) ∈ S. Then, is ϕHt0(x) = ϕt0(x) or ϕHt0(x) = ∆(ϕt0(x))? That is,
at the time of impact with the submanifold S, is the state x− or x+? We will take the second value. i.e.
ϕHt0(x) = x+. However, this means that the orbits will (in general) not be closed.

Definition 2.1. The (forward) orbit and the ω-limit set for the hybrid flow ϕHt (x) are given by

o+
H(x) :=

{
ϕHt (x) : t ∈ R+

}
ωH(x) :=

{
y ∈ X : ∃tn →∞ s.t. lim

n→∞
ϕHtn(x) = y

} (2)
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Additionally, we define the set fix(f) of fixed points for a function f and the covering set of fixed points
Nf (ε) as

fix(f) := {y ∈ X : f(y) = 0}

Nf (ε) :=
⋃

x∈fix(f)

Bε(x) (3)

where Bε(x) is the open ball of radius ε around the point x.

The main problem studied in this work is that of proving an analogue of the Poincaré-Bendixson Theorem
for continuous-time planar dynamical systems for a suitable class of planar HDS. For this purpose, we will
consider a slightly more general HDS form than the one studied in [14].

Definition 2.2. A 4-tuple, (X , S, f,∆), forms a hybrid dynamical system if

(H.1) X ⊂ Rn is open and connected.
(H.2) f : X → Rn is C1.
(H.3) H : X → R is C1.

(H.4) S := H−1(0) is non-empty and for all x ∈ S,
∂H

∂x
6= 0 (so S is C1 and has co-dimension 1).

(H.5) ∆ : S → X is C1.

(H.6) ∆(S) ∩ S ⊂ fix(f) and they intersect transversely.

Note that assumptions (H.1) and (H.2) are required for the continuous flow to exist and be unique. (H.3)
and (H.4) make the impact surface well defined, according to [14]. The assumption (H.5) is included because
without it, the ωH -limit set is not (in general) invariant under the flow. The last assumption, (H.6), is to
rule out the Zeno phenomenon away from fixed points. (A flow experiences a Zeno state ([6],[20]) if the flow
ϕHt intersects S infinitely often in a finite amount of time.) Assumption (H.6) is slightly weaker than as

presented in [14], where it is assumed that ∆(S) ∩ S = ∅ (or equivalently, the set of impact times is closed
and discrete).

Remark 2.3. Dropping hypothesis (H.5), ωH(x) is not always invariant under the flow ϕHt . That is, if
p ∈ ωH(x), then o+

H(p) 6⊂ ωH(x). The following example shows this situation.

Example 2.1. Consider the following hybrid system: Let the state-space be X = [0, 1] × R ⊂ R2 and the
continuous flow be determined by ẋ = 1 and ẏ = −y2. Let the impact surface be S = {(1, y) : y ∈ R} and
the impact map be given by

∆(1, y) =

{
(0, y) y > 0

(0, y − 1) y ≤ 0.

The ωH-limit set of the starting point (0, 1) is the interval [0, 1] × {0} which is clearly not invariant under
the flow of the system because the impact moves the flow away from ωH(0, 1).

3. Properties of Hybrid Limit Sets

In this section we study two relevant properties of hybrid limit cycles. First, we study sufficient conditions
for which the ωH -limit set is nonempty and compact in analogy with Theorem A.1 in the Appendix, but for
hybrid flows. The result is used to show that with assumption (H.5) the ωH -limit set is indeed invariant.

Proposition 3.1. The ωH-limit set of a trajectory o+
H(x) is a closed set. Additionally, if R is compact and

forward invariant set, then ωH(x) is nonempty and compact for x ∈ R.

Proof. The proof follows the same arguments as in Theorem A.1 (see [16] pp. 193).
First, let us prove that ωH(x) is closed. Let {pn}n∈N be a sequence in ωH(x), such that pn → p when

n→∞. We want to show that p ∈ ωH(x). Since pn ∈ ωH(x), there exists a sequence of times, {t(n)
k }, such
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that ϕH
t
(n)
k

(x) → pn when t
(n)
k → ∞. Without loss of generality, consider t

(n+1)
k > t

(n)
k . Then, for all n ≥ 2

there exists Kn > Kn−1 such that for all k ≥ Kn∣∣∣ϕH
t
(n)
k

(x)− pn
∣∣∣ < 1

n
.

Choose a sequence of times tn = t
(n)
Kn

. Then, by the triangle inequality, as tn → ∞ we obtain that ϕHtn(x)
converges to p, that is,∣∣ϕHtn(x)− p

∣∣ ≤ ∣∣ϕHtn(x)− pn
∣∣+ |pn − p| ≤

1

n
+ |pn − p| → 0 when n→∞.

For the second part, we have that ωH(x) ⊂ R, so it is compact since it is a closed subset of a compact
set. To show that it is nonempty, we point out that the sequence {ϕHn (x)}n∈N is in a compact set so by
Bolzano-Weierstrass Theorem, there exists a convergent subsequence. �

Remark 3.2. Note that ωH(x) is closed but o+
H(x) is not.

Proposition 3.3. ωH(x) is invariant under the flow, ϕHt , i.e., if x ∈ X , for all p ∈ ωH(x), o+
H(p) ⊂ ωH(x).

Proof. The proof of the analogous theorem for continuous time systems given in [16] (see Theorem 2, pp.194)
depends on the trajectories changing continuously based on initial conditions. This argument clearly does
not work for hybrid flows, so we need to modify what continuous means. We do this by identifying points
as being close if they are on opposite sides of the jump.

Define an equivalence relation on X by x ∼ y if x = y or if x = ∆(y) for y ∈ S. Re-topologize X by
defining open balls via

B̃ε(x) =
⋃
y∈[x]

Bε(y).

Then, under this topology the flow, ϕHt is continuous. Additionally, we now have continuous dependence on
initial conditions. If the flow takes us away from the impact surface, we get continuous dependence under
normal continuous flows. If it takes us to the impact surface, we are still continuous because the impact is
continuous.

Consider q ∈ o+
H(p). Let t0 be the time such that q = ϕHt0(p). Additionally, let {tn}n∈N be a sequence of

times such that ϕHtn(x)→ p as tn →∞. By the semi-group property of flows and the continuity of the flow
with respect to initial conditions, we get

ϕHt0+tn(x) = ϕHt0 ◦ ϕ
H
tn(x)→ ϕHt0(p) = q.

�

4. Poincaré-Bendixson theorem for 2 dimensional hybrid dynamical systems

4.1. Preliminary result for discrete dynamical systems.

Definition 4.1. Let S be a smooth manifold and P : S → S be C1. The discrete flow is defined as

xn+1 = P (xn). (4)

The discrete ωd-limit set is defined as

ωd(x) :=
{
y ∈ S : ∃Nn →∞ s.t. lim

n→∞
PNn(x) = y

}
. (5)

The set ωd(x) satisfies the following property

Lemma 4.2. Let P : [a, b]→ [a, b] be C1 and injective. Then for all x ∈ [a, b], ωd(x) is either a single point
or two points. i.e. all trajectories approach a periodic orbit.
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Proof. First, because P is invertible on its image and differentiable, P ′ > 0 or P ′ < 0 on the entire interval.
Without loss of generality, assume that it is increasing (by examining P 2 if P ′ < 0). Next, since we are
condsidering the ωd−limit set, we can take an iterate of P . This makes the system into P : [c, d]→̃[c, d]
where c = P (a) and d = P (b). Additionally, since P is a bijection and is continuous and increasing, we must
have P (c) = c and P (d) = d.

Define the closed set F := {x : P (x) = x}. Then, if x ∈ F we are done. So assume that x 6∈ F . Let
a1 ∈ F be the maximal element of F less than x and a2 ∈ F be the minimal element greater than x. Also,
call the invariant interval I = (a1, a2). Since P − Id does not have a root on I and is continuous, we have
two possibilities for all y ∈ I: either P (y) > y or P (y) < y.

If P (y) < y for all y ∈ I, then the sequence P (x), P 2(x), . . . is monotone decreasing and thus is convergent.
Likewise, if P (y) > y, Pn(x) is a monotone increasing sequence. Thus, Pn(x) always converges and its limit
set must be a single point, or two points if we’re dealing with P 2. �

Thus, if P is injective, the ωd-limit set is either a periodic orbit or a fixed point.

4.2. Existence of hybrid Poincaré map. To study periodic orbits it is useful to take a Poincaré section,
of which it would seem natural to take S as the section [14]. The problem is that for a given x ∈ S, it is not
guaranteed that P ′(x) exists. The next theorem addresses this problem.

Theorem 4.3. Let x0 ∈ S \fix(f) be such that there exists a time, T0 > 0, where ϕT0(x0) ∈ S. Additionally,
assume that the flow intersects the impact surface transversely at ϕT0(x0). Then there exists an ε > 0 and
a C1 function τ : Bε(x0) ∩ S → R+ such that for all y ∈ Bε(x0) ∩ S, ϕτ(y)(y) ∈ S.

Proof. Define the function F : (0,+∞) × S → X by F (t, x) = H(ϕt(∆(x))). It follows from Theorem 1 in
Section 2.5 in [16] that (t, x) 7→ ϕt(x) is C1(R× X ). Combining this with the fact that both H and ∆ are
C1 functions, we get that their compositions are. Since F ∈ C1(R+ × S), we can use the implicit function
theorem. At our point x0 ∈ S, we know that the orbit enters the set S at some minimal future time, T0.
This gives F (T0, x0) = 0. Differentiating F with respect to time yields:

∂F

∂t
(T0, x0) =

∂H

∂y

∣∣∣∣
y=ϕT0

(∆(x0))∈S
· f(ϕt(∆(x0))) 6= 0.

The first factor is nonzero because of assumption (H.4) and the second is nonzero because we are away
from a fixed point. Their inner product is nonzero because of the transversality condition. This lets us use
the implicit function theorem (cf., e.g., Theorem 9.28 in [18]), to show that there exists a neighborhood of
Bε(x0) of x0 and a C1 function τ with all the desired properties. �

4.3. Poincaré-Bendixson theorem for planar HDSs. With the existence of a smooth Poincaré map,
we can now prove the Poincaré-Bendixson theorem for planar HDSs.

Theorem 4.4. Assume the conditions (H.1)-(H.6). Additionally, assume

(C.1) X ⊂ R2.
(C.2) ∆ : S → X is injective.
(C.3) There exists a forward, invariant, compact set F ⊂ X with F ∩ fix(f) = ∅.
(C.4) F ∩ S is diffeomorphic to an interval.
(C.5) The vector field, f , is transverse to both F ∩ S and ∆(F ∩ S).

Then, if x0 ∈ F , ωH(x0) is a periodic orbit. Moreover, ωH(x0) intersects the impact surface, S, at most
twice.

Proof. For the entirety of this proof, we will redefine S by F ∩S. That is, S is diffeomorphic to an interval.
Consider the Poincaré return map, P : x 7→ ϕτ(∆(x))(∆(x)). The domain of this differentiable function is an

open subset of S (by Theorem 4.3). Call this set S1. i.e.

S1 := {x ∈ S : ∃t > 0 with ϕt(∆(x)) ∈ S}
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Specifically, we want to look at all points of S that return back to S infinitely often. Call this set S∞. We
can define S∞ recursively as such.

Sn+1 := {x ∈ Sn : ∃t > 0 with ϕt(∆(x)) ∈ Sn}

S∞ :=

∞⋂
n=1

Sn

We have two cases for x0: either o+
H(x0) hits S∞ (and thus the impact surface infinitely often), or o+

H(x0)
avoids S∞.

Case 1: o+
H(x0) misses S∞.

In this case, there exists a time large enough where the flows completely stops being hybrid. In this setting,
we can invoke the normal Poincaré-Bendixson theorem for continuous systems. See Theorem 1 in chapter
3.7 in [16].

Case 2: o+
H(x0) hits S∞.

Because o+
H(x0)∩S∞ 6= ∅, we know that S∞ 6= ∅. We wish to show that S∞ is either an interval or a point.

This will let us use Lemma 4.2 to show that P : S∞ → S∞ converges to a limit cycle.
We will begin by showing that for each n ≥ 0, Sn is an interval. By assumption (C.4), S0 is an interval.

We will continue by induction. Assume that Sn is an interval and we wish to prove that Sn+1 is also an
interval.

Since Sn is diffeomorphic to an interval, let gn : Sn → [an, bn] be a diffeomorphism. Define the points
an+1 and bn+1 as follows:

an+1 := min
{
x ∈ [an, bn] : o+(∆(g−1

n (x))) ∩ Sn 6= ∅
}

bn+1 := max
{
x ∈ [an, bn] : o+(∆(g−1

n (x))) ∩ Sn 6= ∅
}
.

(6)

We claim that Sn+1 is diffeomorphic to [an+1, bn+1]. Denote the points on the curve Sn by A := g−1
n (an+1)

and B := g−1
n (bn+1). The claim can then be verified by constructing the set B under the continuous dynamics

as the region bounded by the four curves: ∆([A,B]), Sn, o+(A), and o+(B). Using assumption (C.5), we
know that for every initial condition on ∆([A,B]), the flow will eventually hit the set Sn. Thus we can be
apply the Rectification Theorem [1], to straighten out the flow.

�

Conditions (C.2), (C.4), and (C.5) are unfortunate restrictions, however, they are necessary. If (C.4) is
dropped, the flow can end up looking like a Kronocker flow; see Example 4.1. If (C.2) or (C.5) are dropped,
mixing can be added to the system and chaos can occur; see Example 4.2

Example 4.1. Let S = x2 + y2 − 4. Thus the impact surface is the circle of radius 2 centered about the
origin. Let the impact map be given by ∆(x, y) = (x/2, y/2), so the image of the map is the unit circle.

Lastly, define the vector field to be (in polar coordinates) ṙ = θ̇ = 1. Then, F = {1 ≤ |r| ≤ 2} is a compact
invariant set. But for all x ∈ F , ωH(x) = F .

Example 4.2. Let S = {x = 2} and define ∆ as ∆(2, y) = (y, 4y(1− y)). Then, if the flow is ẋ = 1, ẏ = 0,
the first return map becomes the Logistic map which leads to chaos (see [8] pp. 344 for more details).

5. Stability of Periodic Orbits

Given that we have now a method to determine the existence of periodic orbits, we would like to be able
to determine their stability. As such, we would like to be able to compute the derivative of P and get a
result analogous to Theorem A.4 for hybrid dynamical systems. There are a couple of differences we are
faced with in the hybrid approach as opposed to the continuous-time situation. First, we do not get to
choose Σ to be normal to the flow as in [16]; we are stuck with Σ = S. Second, we are no longer dealing
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with a closed orbit and we have to take the geometry of the impact into consideration. We first look at a
helpful result about the continuous flow we will use in Theorem 5.2.

Lemma 5.1 ([16], p. 86). Let ϕt(x0) be the flow of ϕt : X → X , ddtϕt(x) = f(ϕt(x)) with initial condition
x0. Then,

det
∂

∂x
ϕt(x)

∣∣∣∣
x=x0

= exp

(∫ t

0

∇ · f(ϕs(x0)) ds

)
. (7)

To understand the stability of our orbit, we want to look at the hybrid Poincaré return map, P : S1 → S.
As in Theorem 4.3, let τ : ∆(S1) → R be the time required to return to the impact surface. Then, if we
denote y := ∆(x), we can write P as

P (x) = ϕτ(y)(y) =

∫ τ(y)

0

f (ϕs(y)) ds. (8)

Theorem 5.2. Assume that we have a hybrid periodic orbit that intersects S once. Suppose that x ∈ S
and y = ∆(x). Additionally, let θ be the angle f(x) makes with the tangent of S at x and α be the angle of
f(y) with ∆(S). Assume that θ and α are not integer multiple of π. If we denote the continuous flow that
connects y to x by γ(t) and suppose that it takes time T to complete the loop, the derivative of the Poincaré
map is

P ′(x) = ∆′(x) · ‖f(y)‖
‖f(x)‖

sinα

sin θ
· exp

(∫ T

0

∇ · f(γ(t)) dt

)
. (9)

Figure 1. The orbit of the periodic orbit for the system given by Theorem 5.2.

Proof. To differentiate P , let’s first look at the continuous part (that is, starting at y0 = ∆(x0)). Let n be
the unit normal vector to ∆(S) at y and let p be the unit tangent vector. To make things reasonable, we
want 〈f(y0), n0〉 6= 0.

∂

∂p
ϕτ(y)(y)

∣∣∣∣
y=y0

=

∫ τ(y)

0

∂

∂y
f (ϕs(y))

∣∣∣∣
y=y0

ds · ∂y
∂p

+
∂

∂t
(ϕτ(y0)(y0)) · ∂t

∂p

= F (y0) · δy +G(y0) · δt
(10)

Now call the flow ϕt(y) =: γ(t), the time T = τ(y), and recall that the final point is ϕτ(y)(y) = x. Then,
G(y) = f(x) and δy is the unit vector p rooted at y0. We need to figure out what δt and F (y) are. By
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Lemma 5.1, we know the determinant of F (y).

det (F (y)) = exp

(∫ T

0

∇ · f(γ(t)) dt

)
(11)

To find F (in the direction of δy), we note that we know the derivative in the direction of the flow: F (y) ·
f(y) = f(x). Knowing the determinant and this direction, we can attempt to find F (y) in the direction of
δy. We first differentiate H from (H.3) along S, which is zero because S is a level set of H.

0 =
∂

∂p
H(ϕτ(y)(y))

∣∣∣∣
y=y0

=
∂

∂x
H(x)

∣∣∣∣
x=x0

· (F (y) · δy + f(x) · δt)

∣∣∣∣∣
y=y0

(12)

This tells us that F (y) · δy + f(x) · δt lies on the tangent to S at x.

Figure 2. The vector δx = F (y)δy + f(x)δt, where the green line is the tangent to S at
the point x.

Let V (u, v) be the area of the parallelogram spanned by the two vectors u and v. Additionally, let
Λ = det(F (y)). Then, we have

V (f(y), δy) = ‖f(y)‖ · ‖δy‖ sinα

V (F (y) · f(y)︸ ︷︷ ︸
=f(x)

, F (y) · δy) = Λ‖f(y)‖ · ‖δy‖ sinα

= V (f(x), F (y) · δy + f(x) · δt)
= ‖f(x)‖ · ‖δx‖ sin θ.

(13)

Collecting terms, we see that
‖δx‖
‖δy‖

=
‖f(y)‖
‖f(x)‖

sinα

sin θ
Λ. (14)

Combining this with equation (11), we arrive at equation (9). �

Corollary 5.3. Suppose now that we have a hybrid periodic orbit that intersects S n times. Let x1, . . . , xn ∈
S and yi = ∆(xi). Additionally, let γi be the flow that connects yi to xi+1, i.e. γi(0) = yi and γi(Ti) = xi+1.
Also, let αi be the angle f(yi) makes with ∆(S) and θi be the angle f(xi) makes with S. Then, the derivative
of the Poincaré map is given by

(Pn)′(x1) =

n∏
i=1

∆′(xi)
‖f(yi)‖
‖f(xi)‖

sinαi
sin θi

exp

(∫ Ti

0

∇ · f(γi(t)) dt

)
. (15)

This gives a precise test for determining the stability of planar hybrid orbits. We would like to extend
this to higher dimensions, but we can only calculate detP ′(x0) and not its individual eigenvalues.
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Theorem 5.4. Assume that X = Rn and that γ(·) is a periodic orbit intersecting S once with x ∈ S and
y = ∆(x) and period length T . Let α and θ be described as in Theorem 5.2. If γ is stable, then∣∣∣∣∣det (∆′(x))

‖f(y)‖
‖f(x)‖

sinα

sin θ
· exp

(∫ T

0

∇ · f(γ(t)) dt

)∣∣∣∣∣ ≤ 1. (16)

Proof. Equation (16) is equal to detP ′(x). Thus, if the determinant is greater than 1, it must have an
eigenvalue greater than 1 and the system is unstable. �

Corollary 5.5. If the expression in (16) has value is less than 1 and the orbit, γ(t), is unstable, the point
x0 under P must be a saddle type instability.

5.1. Example: Hybrid Van der Pol. Consider the Van der Pol system

ẋ = y

ẏ = µ(1− x2)y − x
(17)

If we let z = [x; y] and let f be such that that the dynamics is given by ż = f(z), then ∇ · f(z) = µ(1− x2).
This allows us to cut up the state space as P = {−1 < x < 1} and N = {−∞ < x < −1} ∪ {1 < x < ∞}.
The divergence of f is strictly negative on N and strictly positive on P . Additionally, it is known that the
stable limit cycle of this system intersects both P and N ; as is required by Dulac’s criterion (see for instance
[21], p. 204). As such, let us take S = {(x, y) ∈ R2|x = 1} because we know the continuous limit cycle
intersects S.

5.1.1. Numerical Simulation. Let µ = 1 and ∆(x, y) = (x,−1.5y). Let z0 = [1; 3]. After running 100 cycles

Figure 3. 1000 cycles of the flow from §5.1.1.

and seeing that the flow ends up being periodic, the initial and final y values are:

y− = −1.0498
y+ = 1.5747

(18)

Now, we want to calculate the stability of this orbit. We use the following formula for the derivative of the
Poincaré map:

P ′(z) = ∆′(y−) · ‖f(y+)‖
‖f(y−)‖

sinα

sin θ
· exp

(∫ T

0

∇ · f(γ(t)) dt

)
(19)
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This can be interpreted as multiplying together the discrete part, the geometric part and the continuous
part. Numerically integrating over the limit cycle yields a derivative of

|P ′| = 0.3338

5.1.2. Testing Instability. Now, we will modify the impact map (while keeping the continuous flow and
the impact surface fixed) to make the orbit unstable. We will do this by making the impact map be
∆(1, y) = (1,m(y − A) + B) where A = y− and B = y+ as in equation (18). This allows us to control the
derivative of ∆ (that is, m) while keeping the orbit from changing. Using the results from equation (19), we
see that the derivative is now

|P ′(y−)| = 0.2225|m| (20)

If we run the simulations for m increasing in magnitude past ≈ 4.4943 the orbit should become unstable.
Also, the sign of m will determine the number of times the orbit intersects the impact surface.

m −4.6 −4.55 −4.5 −4.45 −4.4
y+ 1.6034 1.5898 1.5768 1.5747 1.5747

If we let m be positive, the resulting unstable periodic orbit will intersect the impact surface twice.

m 4.4 4.45 4.5 4.55 4.6

y+
1 1.5747 1.5747 1.5059 1.3758 1.3091
y+

2 1.5747 1.5747 1.6475 1.8119 1.9132

All of the numerics were performed with Matlab’s ode45 differential equation solver, equation (19) was

Figure 4. Displaying the locations of the jumps after performing 1000 iterations of the
system in §5.1.2.

integrated via the trapezoidal rule, and all tests ran for a duration of 1000 iterations to locate the steady-
state.

5.2. An Analytic Example. Consider the continuous dynamics (in polar coordinates)

ṙ = 1− r

θ̇ = 1
(21)

Under these continuous dynamics, for all points x0 = (r0, θ0), ωc(x0) = S1. Additionally, the flow of the
system is

ϕt(r0, θ0) =
(
(r0 − 1)e−t + 1, θ0 + t

)
. (22)
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The last notable feature is that the divergence is everywhere equal to -1, i.e. ∇·f(r, θ) ≡ −1. Let us consider
the hybrid system where the impact map is the ray from the origin at angle α, that is S = {(r, θ)|θ = α}
and the impact map is given as

∆(r, α) = (βr, γ). (23)

Let us now compute the Poincaré map both analytically and by equation (19) to compare. We will assume
that 0 ≤ γ < α ≤ 2π. Then the time between all impacts is α − γ. Using the fact that the time between
impacts is constant and equations (22) and (23), we obtain the Poincaré map

P (r0) = β
[
(r0 − 1)eγ−α + 1

]
. (24)

If βeγ−α < 1, this yields a fixed point of

r∗0 =
β [eγ−α − 1]

βeγ−α − 1
. (25)

Then the derivative is
P ′(r∗0) = βeγ−α. (26)

Now, we compare with equation (19). Computing each of the three pieces,

∆′(y−) = β

‖f(y+)‖
‖f(y−)‖

sinα

sin θ
= 1

exp

(∫ T

0

∇ · f(γ(t)) dt

)
= eγ−α.

(27)

which matches up with equation (26).

6. Poincaré-Bendixson theorem for 1-dimensional hybrid dynamical systems

In this section we contrast the above results to a Poincaré-Bendixson theorem for hybrid systems in one
dimension.

Lemma 6.1. Let S ⊂ R be a finite set and P : S → S. Then, for all x ∈ S there exists N 6= M large
enough such that gN (x) = gM (x). Specifically, ωd(x) is a periodic orbit.

Proof. Fix a x ∈ S. Define the sequence {xn}n∈N where xn = Pn(x). Since the set S is compact, by
Bolzano-Weierstrass there exists a convergent subsequence, {xnk

}k∈N⊂ {xn}n∈N. Call the limit x. Since S
is uniformly separated, there exists a K large enough such that for all p ≥ K, xnp

= x. Take N = nK and
M = nK+1 and we have found our periodic orbit. �

Here, we prove a version of Poincaré-Bendixson for a much more general class of hybrid systems in one
dimension. In this section, we drop the assumptions (H.1)-(H.6) and replace them with the following:

(A.1) X ⊂ R is open and connected.
(A.2) f : X → R is C1.
(A.3) S is a subset of R.
(A.4) ∆ : S → R.

Under these considerably weaker assumptions (which requires the dimension restriction) we can prove the
following theorem. Recall Nf (ε) from equation (3).

Theorem 6.2. If either

(S.1) S ⊂ R is uniformly discrete, that is

inf
x,y∈S
x 6=y

|x− y| = δ > 0.
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(S.2) The image of ∆ is far from S if we are away from a fixed point of f , that is for ε > 0

inf
x,y∈S\Nf (ε)

|∆(x)− y| = η(ε) > 0.

Then, if R ⊂ R is a forward invariant, compact set and for some x ∈ R such that ωH(x) ∩ fix(f) = ∅, then

ωH(x) is a limit-cycle. Moreover, ωH(x) ⊂ o+
H(x).

First note that condition (S.1) is similar to (H.4) and condition (S.2) is similar to (H.6). Before we can
prove this result, we need to go through some preliminaries results given in the following lemmas. Do note,
however, that Proposition 3.1 still holds for this class of HDSs, i.e. ωH(x) is still a closed set.

Lemma 6.3. Let R be a compact, forward invariant set. Fix x ∈ R. Then for all ε > 0 there exists T > 0
such that for all t > T , ϕHt (x) ∈ Bε(ωH(x)).

Proof. Fix ε > 0. Suppose the for all T > 0, there exists t > T such that ϕHt (x) 6∈ Bε(ωH(x)). So let
Tn → ∞ and choose tn > Tn such that ϕHtn(x) 6∈ Bε(ωH(x)). Then, the sequence {ϕHtn(x)}n∈N is far away
from ωH(x). But, because R is compact, by Bolzano–Weierstrass, there exists a convergent subsequence,
ϕHtnk

(x)→ x. By the definition of ωH(x), x ∈ ωH(x). �

Lemma 6.4. If fix(f) ∩ ωH(x) = ∅ and x ∈ R as in Theorem 6.2, then

dist
(
o+
H ,fix(f)

)
= δ > 0.

i.e. o+
H(x) ∩Nf (δ) = ∅.

Proof. Because f is a C1 function and therefore a Lipschitz function, fix(f) is a closed set. Since ωH(x) ⊂ R,
ωH(x) is compact. This implies that since fix(f) and ωH(x) are disjoint, they are uniformly separated. So
there exists an ε > 0 such that Nf (ε) ∩ ωH(x) = ∅. By Lemma 6.3 for T > 0 large enough, all t > T we
have ϕHt (x) ∈ Bε/2(ωH(x)). This tells us that for sufficiently large times, the forward orbit of x is far away

form fix(f). So, we just need to examine the orbit up to time T . Call the set oTH(x) = {ϕHt (x) : t ∈ [0, T ]}.
We know that oTH(x) is disjoint from fix(f), but because oTH(x) is not closed, we can’t say for sure that it is
uniformly distant. The only points that can cause trouble are the points close to oTH(x) but not in the set.
The only points that fit this bill are the break points. However, if one of the break points of the flow is a
fixed point of f , the flow would approach it asymptotically and thus the limit set would be that point. �

It is interesting to note that because both Lemmas 6.3 and 6.4 do not require assumption (A.1), they still
hold for HDS as defined by definition 2.2.

Lemma 6.5. Let f , S, ∆, R, and x be as in Theorem 6.2. Then, for all y ∈ o+
H(x) there exists a time, t0,

such that ϕt0(x) ∈ S.

Proof. Assume not. Then, o+
H(y) never jumps. So we can replace it with o+(y). But, by Lemma 6.3, o+(y)

is uniformly far from fix(f). So the flow of y is either monotonically increasing or decreasing for all time with
a speed bounded away form zero. This means that y must approach either +∞ or −∞ as time approaches
infinity. This contradicts the assumption that o+(y) is confined to a compact set. �

Proof of Theorem 6.2. First, let us assume that condition (S.1) holds. Then there exist finitely many points
inside R ∩ S. Label these points in ascending order s1, . . . , sn. Define the set E := {s ∈ R ∩ S|∆n(s) ∈
R ∩ S, ∀n}. Then, since E is a finite set with discrete dynamics by Lemma 6.1, x ∈ E must eventually be a
fixed point or a periodic orbit. So, if x ∈ E then ωH(x) is a periodic orbit. Additionally, if there exists any
time where the orbit of x intersects E, then ωH(x) is a periodic orbit. So, let’s assume that o+

H(x)∩E = ∅.
Without loss of generality, let x0 6∈ S.

Then, by Lemma 6.5, there exists a point sk0 ∈ R ∩ S such that the flow ϕt0(x) = sk0 . Now, let
x1 := ∆(sk0) and let sk1 be the impact point x1 gets mapped to. This gives dynamics on the impact points,

skn+1
=M(skn).
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But since there are only finite many sj ’s, we must either end up with a periodic orbit or a fixed point
(Lemma 6.1). Thus ωH(x) is a limit cycle.

Now, assume condition (S.2) holds. Since ωH(x) contains no fixed points, o+
H(x) is uniformly far from

roots of f (Lemma 6.4). Let us rename the set R to be R = o+
H(x) (which is closed). Then,

R ∩ S = (R ∩ S) \ Nf (δ)

with Nf (ε) as in equation (3).
So, condition (2) tells us that there exists some positive η such that

inf
x,y∈R∩S

d(∆(x), y) = η > 0.

Additionally, let ξ := inf
x∈R
|f(x)|. Then, the minimal time between consecutive impacts is bounded below by

η/ξ. By concatenating the smooth dynamics between impacts and using Lemma 6.5, the orbit looks like

o+
H(x) =

∞⊔
n=0

[akn , bkn+1).

But each interval has a minimal length of η and therefore since R is compact, they must eventually intersect.
Additionally, if [aj , bj)∩ [ai, bi) 6= ∅ then bj = bi. This shows that there only may exist finitely many distinct
bkn ’s. This allows us to define dynamics on a finite set,

bkn+1
=M(bkn).

and thus, a periodic orbit of M must exist (Lemma 6.1). Therefore ω+
H(x) is a limit-cycle.

Since we construct a periodic orbit via Lemma 6.1 for both cases (S.1) and (S.2), we point out that
Lemma 6.1 states that we hit the periodic orbit after finitely many impacts. Thus, the forward orbit enters

ωH(x) at some finite time and ωH(x) ⊂ o+
H(x). �

7. Application to periodic walking: the rimless wheel

The rimless wheel is a one-degree-of-freedom hybrid mechanical system in which the guard is reached
when the swinging spoke makes contact with the inclined plane (see Figure 5. For a rimless wheel rolling
along an inclined plane an analytically computable stable limit cycle exits [4].

α

2δ

θ

`

Figure 5. The rimless wheel.

For this system let x = (θ, θ̇), the continuous dynamics are given by equations (28) and (29) below (see
[4] and [19] for an in depth formulation of this problem). We assume the mass m is lumped into the center
of the robot, the length of each leg is given by `, and each inter-leg angle is 2δ = 2π

N , with N being the
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number of legs. Here, δ is the angle the leg makes with the ground when it lifts off and α is the grade of the
slope the passive walker is walking down.

ẋ = f(x) =

[
x2

ζ sin(x1)

]
, ζ = g/` (28)

The impact surface is given by S = {x1 = −δ − α} and the impact map is

∆(x) =

[
δ − α

cos(2δ)x2

]
. (29)

By applying Theorem 4.4, all the smooth hybrid assumptions (H.1)-(H.6) are satisfied as well as points
(C.1), (C.2), and (C.4). The transversality condition, (C.5), is satisfied as long as the trajectory stays away
from the origin. To find the forward invariant compact set free of fixed points we do an energy balance.

The (potential) energy gained over a single swing is

∆P = 2`g sin δ sinα. (30)

While the amount of (kinetic) energy lost at impact is

∆V =
1

2
(`x−2 )2

(
1− cos2 2δ

)
. (31)

Call the total energy of the system E. If ∆V > ∆P , then E(P (x)) < E(x). And if ∆V < ∆P , then
E(P (x)) > E(x). This is how we will locate a forward invariant compact (FIC) set.

Clearly, for x−2 large enough, more kinetic energy will be lost through impacts than is acquired over the
swing phase. The remaining question is for x−2 being small enough that we gain more energy.

If δ > α, then we can fail to swing forward. In this case, we can calculate the minimum velocity, x2,
needed at the beginning of the swing phase to make it to the next one.

(x+
2 )2 > 2ζ (1− cos(δ − α)) , (x−2 )2 >

2ζ (1− cos(δ − α))

cos2(2δ)
(32)

If we start the swing with this velocity and by equations (30) and (31) we gain energy, then

∆V =
`2

2

(
1− cos2 2δ

)(2ζ (1− cos(δ − α))

cos2(2δ)

)
. (33)

Therefore, if δ > α and

2 sin δ sinα >
(
1− cos2 2δ

)( (1− cos(δ − α))

cos2(2δ)

)
, (34)

then there exists at least one periodic orbit that intersects the impact surface either once or twice.
In Figure 6 (left) we show the parameters α and δ where a stable limit cycle exists as well as (right) a

trajectory and the region of attraction for the choice set of parameters δ = π/10, α = π/30, and ζ = 9.8.

Appendix A. Continuous-time Poincaré-Bendixson theorem and stability of periodic orbits

Because HDS are a mixture of continuous and discrete dynamics in this appendix we review the main
results used in the work for both continuous and discrete dynamical systems.

For a (smooth) manifold X , let f be a C1 vector field on X . Then we can study the flow induced by the
vector field,

ϕt : X → X , d

dt
ϕt(x) = f(ϕt(x)). (35)

Then, assuming the flow is complete (e.g. p. 62 in [3]), let us define the (continuous) forward orbit and
ωc-limit set.

o+
c (x) :=

{
ϕt(x) : t ∈ R+

}
. (36)

ωc(x) :=
{
y ∈ X : ∃tn →∞ s.t. lim

n→∞
ϕtn(x) = y

}
. (37)
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Figure 6. Left: The green region indicates values of α and δ where there exists a limit
cycle as predicted by equation (34). Right: The green region is the domain of attraction
for the limit cycle, whose existence is guaranteed by equation (34).

Theorem A.1 ([16], p. 193). Assume that X ⊂ Rn. The set ωc(x) is a closed subset of Rn. Furthermore,
if o+

c (x) is contained in a compact subset of Rn, then ωc(x) is a non-empty, connected and compact subset
of Rn.

Now, we can state the Poincaré-Bendixson Theorem for R2.

Theorem A.2 (Poincaré-Bendixson, [16], p. 245). Suppose that f ∈ C1(X ), where X is an open subset of
R2, and that o+

c (x) is contained in a compact subset F of X . Then, if ωc(x) contains no fixed points of f ,
ωc(x) is a periodic orbit.

While Theorem A.2 can assert the existence of periodic orbits, it says little about their stability. A
method for studying this behavior is the theory of Poincaré maps. Let γ be a periodic orbit of ϕt and choose
a hyper-surface, Σ that is transverse to the flow at a point x0 = γ(t0) (that is f(x0) ·n(x0) 6= 0 where n(x0)
is the unit normal vector to Σ at x0 ∈ Σ). Then, for points y near x0 in Σ, define τ(y) to be the time for
the flow starting at y to return to Σ. Then the Poincaré map (or first return map), is defined as

P (y) = ϕτ(y)(y).

See [7] and [16] for more information on Poincaré maps. If we can determine the derivative of P , then an
orbit is stable if all the eigenvalues of P ′ have modulus less than one (see [8], p. 219). In general it is not
possible to analytically compute P ′, but there are a helpful results in the literature ([21], p. 282). The next
two results deal with the differentiability of P as well as a way to compute P ′ for planar systems.

Theorem A.3 ([16], p. 212). Let X be an open subset of Rn and let f ∈ C1(X ). Suppose that ϕt(x0) is a
periodic solution of (35) of period T and that the cycle

Γ = {x ∈ Rn : x = ϕt(x), 0 ≤ t ≤ T}
is contained in X . Let Σ be the hyperplane orthogonal to Γ at x0; i.e. let

Σ = {x ∈ Rn : (x− x0) · f(x0) = 0} .
Then there is a δ > 0 and a unique function τ(x) defined and continuously differentiable for x ∈ Bδ(x0),
such that τ(x0) = T and

ϕτ(x)(x) ∈ Σ

for all x ∈ Bδ(x0).
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Theorem A.4 ([16], p. 216). Let X be an open subset of R2 and suppose that f ∈ C1(X ). Let γ(t) be a
periodic solution of (35) of period T . Then the derivative of the Poincaré map P (s) along a straight line Σ
normal to Γ = {x ∈ R2|x = γ(t)− γ(0), t ∈ [0, T ]} at x = 0 is given by

P ′(0) = exp

(∫ T

0

∇ · f(γ(t)) dt

)
. (38)

This gives us a straightforward method for finding the stability of a periodic orbit for planar systems.
The problem is that when going to higher dimensions, we can no longer systematically find a derivative of
P . However, we can still get necessary conditions for stability.

Theorem A.5 ([16], p. 230). Let f ∈ C1(X ) where X is an open subset of Rn containing a periodic orbit
γ(t) of (35) of period T . Then, γ(t) is not asymptotically stable unless∫ T

0

∇ · f(γ(t)) dt ≤ 0. (39)

References

[1] V.I. Arnold and R.A. Silverman. Ordinary Differential Equations. London, 1978.

[2] I. Bendixson. Sur les courbes definies par des equations differentielles. Acta Mathematica, 24 (1901), 1-88.
[3] A. Bloch, J. Baillieul, P. Crouch, and J. Marsden. Nonholonomic mechanics and control. Interdisciplinary Applied Math-

ematics. Springer New York, 2008.

[4] M. Coleman. A stability study of a three-dimensional passive-dynamic model of human gait. Ph.D. dissertation, Cornell
University, 1998.

[5] S. Collins, A. Ruina, R. Tedrake, M. Wisse. Efficient bipedal robots based on passive-dynamic walkers. Science 307 (5712),

1082-1085.
[6] R. Goebel, R. Sanfelice, and A. Teel. Hybrid dynamical systems. Princeton University Press. 2012

[7] J. Guckenheimer and P. Holmes. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Applied

Mathematical Sciences. Springer New York, 2002.
[8] M. Hirsch, S. Smale, and R. Devaney. Differential Equations, Dynamical Systems and an Introduction to Chaos, Academic

Press, 2004 - Mathematics, volume 14. 01 2004.
[9] P. Holmes, R. Full, D. Koditschek, and J. Guckenheimer. Dynamics of legged locomotion: Models, analyses, and challenges.

SIAM review, 48(2) 207-304, 2006.

[10] X. Lou, Y. Li, and R. Sanfelice. On robust stability of limit cycles for hybrid systems with multiple jumps. Proceedings of
the 5th Analysis and Design of Hybrid Systems, 199–204, 2015.

[11] X. Lou, Y.Li, and R. Sanfelice. Results on stability and robustness of hybrid limit cycles for a class of hybrid systems.

Proceedings IEEE 54th Annual Conference on Decision and Control (CDC), 2235-2240, 2015.
[12] X. Lou, Y.Li, and R. Sanfelice. Existence of hybrid limit cycles and Zhukovskii stability in hybrid systems. American

Control Conference (ACC), 2017, 1187-1192.

[13] A. Matveev and A. Savkin. Qualitative Theory of Hybrid Dynamical Systems. Birkhauser Boston, 2000.
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[17] H. Poincaré. Sur les courbes definies par les equations differentielles, J. Math. Pures Appl., 2, 151-217, 1886.

[18] W. Rudin. Principles of Mathematical Analysis. International series in pure and applied mathematics. McGraw-Hill, 1976.
[19] C.Saglam, A. Teel, and K. Byl. Lyapunov-based versus Poincaré map analysis of the rimless wheel. IEEE 53rd Annual
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