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a b s t r a c t

Nussbaum functions have been successfully used in adaptive controller design for dealing with unknown
control direction since the original work in 1983. However, for time-varying control coefficients of an
unknown sign (positive or negative), only a special Nussbaum function can be proved to be effective
based on the explicit calculation on the particular function. It remains open whether a general Nussbaum
function is sufficient in these scenarios and why. This paper gives a No answer with a counter example.
Moreover, it introduces new types of Nussbaum functions and reveals their fundamental characteristics
that are sufficient for dealing with time-varying unknown control coefficients in adaptive control. A
multivariable version is also introduced.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

In a control system, when the sign of control coefficient is
unknown, it is hard to design a controller because a control force of
wrong directionmay deteriorate the system away from the desired
behavior. An interesting idea is to alternatively (periodically in
most scenarios) change the sign of control force in an adaptive de-
sign. In the period with a wrong direction, the controller degrades
the systembut itwould reward the systemwith quickermovement
to the desired state with a higher gain when the sign is changed
to a correct direction in the subsequent period. The success of the
approach relies on an art of increasing the controller gain and the
Nussbaum function invented in Nussbaum (1983) has offered such
an art.

Over the past three decades, the Nussbaum gain technique has
been extensively used for handling an unknown control direction
in many papers. A fundamental tool is the technical lemma that
guarantees the boundedness of a Lyapunov-like energy function
when its derivative along a system is upper bounded by a Nuss-
baum function based manner. Most of these papers are mainly
concerned about construction of such Lyapunov-like functions for
various systems with appropriately designed controllers. Hence,
applying the lemma concludes the desired behaviors.

The first complete formulation of such a lemmawas given in Ye
and Jiang (1998) for the case that the control coefficient is a con-
stant whose sign or value is unknown; see Lemma 3.1. This lemma
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gives a clear picture how a Nussbaum function sufficiently works
to guarantee boundedness of a Lyapunov-like function. In many
other situations, researchers must deal with a time-varying control
coefficient whose sign or value is unknown. A natural question has
arisen whether the lemma still works to guarantee boundedness
of a Lyapunov-like function. However, the question has been par-
tially answered only for some particular Nussbaum functions. For
instance, the result in Ye (1999) was achieved with the note that
‘‘Throughout this paper, we choose v(ξ ) = cos(πξ/2) exp(ξ 2)’’;
and that in Ge, Hong, and Lee (2004) with ‘‘N(ζ ) = eζ2

cos((π/2)ζ )
is used throughout this paper’’. The proofs given in Ge et al. (2004)
and Ye (1999) critically rely on the explicit calculation for the
particularly chosen Nussbaum functions.

The aforementioned lemma in Ye and Jiang (1998) for a con-
stant unknown control direction has been applied in many papers
including Ge and Wang (2002), Jiang, Mareels, Hills, and Huang
(2004), Liu and Tong (2017), Ramezani, Arefi, Zargarzadeh, and
Jahed-Motlagh (2016), Xu and Huang (2010) and Pongvuthithum,
Rattanamongkhonkun, and Lin (2018), while the techniques for
time-varying control coefficients have let to many other applica-
tions in Bechlioulis and Rovithakis (2009), Liu and Huang (2006),
Zhou, Wen, and Zhang (2005) and Xu, Qi, Jiang, and Yao (2017),
etc., which were unavoidably on the same selection of particu-
lar Nussbaum functions. The applications include neuro-adaptive
backstepping control, output regulation, fault tolerant control, etc.
It remains open whether a general Nussbaum function is sufficient
in time-varying scenarios and why. This paper gives a No answer
with a counter example.

When multiple control inputs with unknown control coef-
ficients are considered, for instance, in multiagent systems or
interconnected large scale systems, the multivariable version of
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the aforementioned lemma aims to guarantee boundedness of
a Lyapunov-like function when its derivative is upper bounded
by summation of multiple Nussbaum function based manners.
Again, the lemma has been proved only for some particularly
chosen Nussbaum functions. For instance, N0(k) = cosh(λk) sin(k)
with a lower bound condition on λ is used in Chen, Li, Ren, and
Wen (2014), N(k) = ek

2/2(k2 + 2) sin(k) in Ding (2015), and
N(k) = ek

2
cos(k) in Wang, Wen, and Lin (2017). The proofs again

are critically based on the explicit calculation of the particularly
chosen Nussbaum functions. The current situation is as pointed
out by the authors of Chen et al. (2014) that ‘‘it is not clear how to
use the existing (general) Nussbaum-type functions to prove (the
lemma)’’.

The main contribution of this paper is not only to give a clear
No answer to the long standing question. More importantly, it
introduces an enhanced version of Nussbaum function and reveals
its fundamental characteristics that are sufficient for dealing with
time-varying and/or multivariable unknown control coefficients
using clear-cut proofs that are not necessarily based on explicit
calculation of a particular function. The necessity of using the
enhanced version of Nussbaum function is also discussed. The new
results provide researchers with a better picture how a general
Nussbaum function applies in the scenarios that are more compli-
cated than a scalar constant control coefficient case.

2. Origin of Nussbaum function in parameter adaptive control

A Nussbaum gain used in adaptive control with an unknown
control direction was named after the original work by R. D. Nuss-
baum in Nussbaum (1983). This paper starts with the following
theorem cited from the paper. Throughout the paper, R is the set
of real numbers and R+ the set of non-negative real numbers.

Theorem 2.1 (Nussbaum, 1983). The following system

ẋ = ax + λxσ (y)h(y), λ ̸= 0
ẏ = xσ (y), (1)

with σ (y) = y2 + 1, has the property that limt→∞ x(t) = 0 and
limt→∞ y(t) exists and bounded provided that the function h(s) :

R ↦→ R is even and differentiable and satisfies the properties:

lim sup
y→∞

∫ y

0
h(s)ds = ∞, (2)

lim inf
y→∞

∫ y

0
h(s)ds = −∞. (3)

The theorem in Nussbaum (1983) was proved by explicitly
‘‘solving’’ the system with thinking of x as a function of y. The
method based on explicit solution of a dynamic system cannot be
extended to general situations. An alternative proof is given below
using a technical lemma that reveals more essential mechanism
andmotivates the research in this paper. The proof of the following
lemma is similar to that of Lemma 4.3.

Lemma2.1. Consider two continuously differentiable functions V (t) :

[0, ∞) ↦→ R+, y(t) : [0, ∞) ↦→ R+. If

V̇ (t) ≤ (λh(y(t)) + a/σ (y(t)))ẏ(t) (4)

for two constants a, λ ∈ R and two functions σ and h satisfying the
following properties

σ (s) > 0, ∀s ∈ R (5)

lim sup
y→∞

∫ y
0 h(s)ds∫ y

0 1/σ (s)ds
= ∞, (6)

lim inf
y→∞

∫ y
0 h(s)ds∫ y

0 1/σ (s)ds
= −∞, (7)

then V (t) and y(t) are bounded over [0, ∞).

An alternative proof of Theorem 2.1: Without loss of generality, we
consider the case with x(0) ≥ 0. It is obvious to see that x(t) ≥

0, ∀t ≥ 0. Define a function V (x) = x whose derivative along the
trajectory of the system is

V̇ (x) = x(λσ (y)h(y) + a) = (λh(y) + a/σ (y))ẏ.

The properties (2) and (3) imply (6) and (7), noting the fact that∫
+∞

0
1/σ (s)ds = arctan(+∞) − arctan(0) = π/2.

Then, applying Lemma 2.1 gives that V (t) and y(t) are bounded
over [0, ∞). It can be seen that ÿ(t) is bounded. Thus, ẏ(t) is
uniformly continuous over [0, ∞). When a Nussbaum gain is used
in adaptive control, the function y(t) is usually designed with
ẏ(t) ≥ 0, ∀t ≥ 0, e.g., in (1). Therefore, y(t) has a finite limit as
t → ∞. By Barbalat’s Lemma, one has limt→∞ ẏ(t) = 0 and hence
limt→∞ x(t) = 0. Theorem 2.1 is thus proved. □

3. Motivating examples

Lemma 2.1 was not explicitly given in Nussbaum (1983), but
it reveals why a function satisfying the properties (6) and (7)
are effective in solving an adaptive control problem with a scalar
unknown but constant control coefficient. The function σ (s) =

s2 + 1 > 0 was used in the original system (Nussbaum, 1983). If
we select σ (s) = 1 > 0, the properties (6) and (7) reduce to those
more commonly used in literature, specifically, in the following
definition; see, e.g., Ye and Jiang (1998).

Definition 3.1. A continuously differentiable function h(s) : [0, ∞)
↦→ (−∞, ∞) is called a Nussbaum function (type A) if it satisfies

lim sup
y→∞

1
y

∫ y

0
h(s)ds = ∞, (8)

lim inf
y→∞

1
y

∫ y

0
h(s)ds = −∞. (9)

Also, with σ (s) = 1, Lemma 2.1 reduces to the following version
that was first proved in Ye and Jiang (1998) and later used in Ge
and Wang (2002), Jiang et al. (2004), Xu and Huang (2010) and
Ramezani et al. (2016), etc.

Lemma 3.1 (Ye & Jiang, 1998). Consider two continuously differen-
tiable functions V (t) : [0, ∞) ↦→ R+, y(t) : [0, ∞) ↦→ R+. If

V̇ (t) ≤ (λh(y(t)) + a)ẏ(t) (10)

for two constants a, λ ∈ R and a Nussbaum function (type A) h, then
V (t) and y(t) are bounded over [0, ∞).

Example 3.1. We use the following class of nonlinear systems as a
test platform to demonstrate the application of Lemma 3.1:

ż = q(z, x, w)
ẋ = f (z, x, w) + λu (11)

where z ∈ Rn and x ∈ R are the state variables, u ∈ R is the
input, and w ∈ W represents time-varying uncertainties with W
a compact subset of Rl. The functions q and f are continuously
differentiablewith q(0, 0, w) = 0 and f (0, 0, w) = 0 for allw ∈ W.
The stabilization problem for this class of nonlinear systems, even
of a more complicated lower triangular form, has been widely
studied in Jiang and Mareels (1997), Lin and Gong (2003), Willems
and Byrnes (1984) and Chen and Huang (2015) and many others.
When the constantλ represents an unknown control direction, one
solution is revisited as follows.

Let h be a Nussbaum function (type A) and consider a controller

u = h(y)ρ(x)x
ẏ = ϵρ(x)x2, ϵ > 0. (12)
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Fig. 1. Stable profile of the closed-loop system under the controller with a Nuss-
baum function (type A) (the control direction λ = 2).

With a certainminimumphase assumption and proper selection of
ρ(x), we can explicitly construct a Lyapunov function V (z, x) such
that

V̇ (z, x) ≤ (λh(y) + a)ϵρ(x)x2 = (λh(y) + a)ẏ (13)

for some a > 0.
From Lemma 3.1, V (z(t), x(t)) and y(t) are bounded over [0, ∞),

so are z(t) and x(t). Also, it can be seen that ÿ(t) is bounded. Thus,
ẏ(t) is uniformly continuous over [0, ∞). By Barbalat’s Lemma,
one has limt→∞ ẏ(t) = 0 and hence limt→∞ x(t) = 0 and
limt→∞ z(t) = 0. So, the global stabilization problem for the
system (11) is solved by the controller (12).

Numerical simulation is conducted for

q(z, x, w) = −z + w3x
f (z, x, w) = w1z cos x + w2x3

with uncertainty w = col(w1, w2, w3). The controller (12) is with
ρ(x) = x2 + 5, ϵ = 0.1, and a Nussbaum function (type A)
h(s) = sin(3πs)s2. The performance is shown in Fig. 1 for λ = 2.
The gain y(t) increases to a sufficiently large finite number, with
which the plant state asymptotically approaches the equilibrium
point. The profile for the case with λ = −2 is similar and thus not
repeated. □

Lemma 3.1 holds for a constant λ that represents an unknown
control direction. It is interesting to ask whether the same result
still works for a time-varying control direction, i.e., λ(t). It moti-
vates the following conjecture.

Conjecture. Consider two continuously differentiable functions V (t)
: [0, ∞) ↦→ R+, y(t) : [0, ∞) ↦→ R+. Let λ(t) : [0, ∞) ↦→ [λ, λ̄] for
two constants λ and λ̄ satisfying λλ̄ > 0. If

V̇ (t) ≤ (λ(t)h(y(t)) + a)ẏ(t)
ẏ(t) ≥ 0, ∀t ≥ 0 (14)

for a constant a and a Nussbaum function (type A) h, then V (t) and
y(t) are bounded over [0, ∞).

The conjecture was proved in Ge et al. (2004) and Ye (1999) and
later used inmany other papers but only for a particular Nussbaum
function of the form h(s) = sin(s) exp(s2). It remains open whether
it always holds for a general Nussbaum function. The answer is No
as shown by a counter example (Example 5.4) after the properties
of a Nussbaum function are deeply investigated, following some
preliminary attempt in Chen andHuang (2015). Here,we first show
some numerical observation in the example below.

Example 3.2. Consider the same numerical example studied in
Example 3.1 but with a time-varying control direction function
λ(t). Following the same arguments in Example 3.1, the global
stabilization problem for the system (11) is solved by the same

Fig. 2. Unstable profile of the closed-loop system under the controller with a
Nussbaum function (type A) (the control direction λ(t) is time-varying).

controller (12) with the same Nussbaum function, if the conjecture
is true. However, we can find a function λ(t) such that the closed-
loop system is unstable under the proposed controller. This contra-
diction shows that the conjecture is not always true. The unstable
performance is shown in Fig. 2 where λ(t) = 2+ 0.1 sin(3πy(t)) ∈

[1.9, 2.1] is used. □

4. New types of Nussbaum functions

As observed from Example 3.2 (and a rigorous counter example
given later), the conjecture is false, that is, a Nussbaum function
(type A) does not always apply for a time-varying control direc-
tion. In literature, only the special Nussbaum function of the form
h(s) = sin(s) exp(s2) was proved to be applicable based on the
explicit calculation on the function. In this section,we aim to reveal
the additional properties held by sin(s) exp(s2) that validates the
aforementioned conjecture.

For a function h(s) : [0, ∞) ↦→ (−∞, ∞), denote its positive
and negative truncated functions by h+(s) and h−(s), i.e.,

h+(s) = max{0, h(s)}, h−(s) = max{0, −h(s)}.

Obviously, the truncated functions satisfy the following properties

h+(s) ≥ 0
h−(s) ≥ 0
h(s) = h+(s) − h−(s).

Based on these functions, a Nussbaum function (type A) can be
rewritten in an equivalentway. In particular, it is easy to check that
Eqs. (8) and (9) are equivalent to (15) and (16), respectively.

Definition 4.1. A continuously differentiable function h(s) : [0, ∞)
↦→ (−∞, ∞) is called a Nussbaum function (type A) if it satisfies

lim sup
y→∞

∫ y
0 h+(s)ds −

∫ y
0 h−(s)ds

y
= ∞, (15)

lim sup
y→∞

∫ y
0 h−(s)ds −

∫ y
0 h+(s)ds

y
= ∞. (16)

Next, we introduce another type of Nussbaum function.

Definition 4.2. A continuously differentiable function h(s) : [0, ∞)
↦→ (−∞, ∞) is called a Nussbaum function (type B-L), if, for a
constant L > 1, it satisfies

lim
y→∞

∫ y
0 h+(s)ds

y
= ∞, lim sup

y→∞

∫ y
0 h+(s)ds∫ y
0 h−(s)ds

≥ L, (17)

lim
y→∞

∫ y
0 h−(s)ds

y
= ∞, lim sup

y→∞

∫ y
0 h−(s)ds∫ y
0 h+(s)ds

≥ L. (18)
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Obviously, if L can be selected as infinity, a Nussbaum function
(type B-∞) is simply called a Nussbaum function (type B) defined
as follows.

Definition 4.3. A continuously differentiable function h(s) : [0, ∞)
↦→ (−∞, ∞) is called a Nussbaum function (type B-∞, or shortly,
type B) if it satisfies

lim
y→∞

∫ y
0 h+(s)ds

y
= ∞, lim sup

y→∞

∫ y
0 h+(s)ds∫ y
0 h−(s)ds

= ∞, (19)

lim
y→∞

∫ y
0 h−(s)ds

y
= ∞, lim sup

y→∞

∫ y
0 h−(s)ds∫ y
0 h+(s)ds

= ∞. (20)

A legal fraction (with non-zero denominator) assumption is
implicitly made in the above two definitions which excludes the
trivial function h(s) ≡ 0.

The following lemma shows that a Nussbaum function (type B-L
or type B) is an enhanced version of a Nussbaum function (type A).

Lemma 4.1. A Nussbaum function (type B-L or type B) is a Nussbaum
function (type A).

Proof. From the property (17), there exists a sequence y1 < y2 <
· · ·, with limi→∞ yi = ∞, such that,

lim
i→∞

∫ yi
0 h+(s)ds

yi
= ∞ (21)

and

lim
i→∞

∫ yi
0 h+(s)ds∫ yi
0 h−(s)ds

≥ L > 1. (22)

From (22), one has

lim
i→∞

∫ yi
0 h+(s)ds −

∫ yi
0 h−(s)ds∫ yi

0 h+(s)ds
≥ 1 −

1
L

> 0,

which, together with (21), implies

lim
i→∞

∫ yi
0 h+(s)ds −

∫ yi
0 h−(s)ds

yi
= ∞. (23)

Hence, Eq. (15) is proved. The proof for Eq. (16) is similar. Also, the
proof for L = ∞ follows the same arguments. □

A Nussbaum function (type B-L) has an interesting property
stated in the following lemma. This propertywill play an important
role in developing the main lemmas later.

Lemma 4.2. Suppose a function h with h(s) = h+(s) − h−(s) is a
Nussbaum function (type B-L). Let ĥ(s) = αh+(s) − βh−(s) for two
constants α and β satisfying αβ > 0. Then, ĥ(s) is also a Nussbaum
function (type B-L̂) if

L̂ = min
{

α

β
,
β

α

}
L > 1.

In particular, the statement holds for L = ∞ and L̂ = ∞.

Proof. We only prove the case with α, β > 0, so we can denote
ĥ(s) = ĥ+(s)− ĥ−(s) where ĥ+(s) = αh+(s) and ĥ−(s) = βh−(s). As
h(s) is a Nussbaum function (type B-L), it satisfies (17) and (18).

It is straightforward to verify

lim
y→∞

∫ y
0 ĥ+(s)ds

y
= ∞, lim

y→∞

∫ y
0 ĥ−(s)ds

y
= ∞

from (17) and (18), respectively. From the property (17), one also
has

lim sup
y→∞

∫ y
0 ĥ+(s)ds∫ y
0 ĥ−(s)ds

= lim sup
y→∞

α
∫ y
0 h+(s)ds

β
∫ y
0 h−(s)ds

≥
α

β
L ≥ L̂;

and similarly, from the property (18),

lim sup
y→∞

∫ y
0 ĥ−(s)ds∫ y
0 ĥ+(s)ds

≥
β

α
L ≥ L̂.

As a result, ĥ(s) is a Nussbaum function (type B-L̂). □

One of the main results of this paper is given in the following
lemma. It was pointed out that the aforementioned conjecture
does not hold. However, the following lemma shows that the
conjecture is always true when the Nussbaum function (type A) is
enhanced to a Nussbaum function (type B-L). As a result, this new
lemma will play a fundamental role in dealing with time-varying
unknown control direction.

Lemma4.3. Consider two continuously differentiable functions V (t) :

[0, ∞) ↦→ R+, y(t) : [0, ∞) ↦→ R+. Let λ(t) : [0, ∞) ↦→ [λ, λ̄] for
two constants λ and λ̄ satisfying λλ̄ > 0. If

V̇ (t) ≤ (λ(t)h(y(t)) + a)ẏ(t)
ẏ(t) ≥ 0, ∀t ≥ 0 (24)

for a constant a and a Nussbaum function (type B-L) function h with

L > max
{

λ

λ̄
,
λ̄

λ

}
, (25)

then V (t) and y(t) are bounded over [0, ∞). In particular, the state-
ment holds for L = ∞.

Proof. Let

ĥ(s) = λ̄h+(s) − λh−(s).

For λ̄λ > 0, by Lemma 4.2, ĥ(s) is a Nussbaum function (type B-L̂)
for

L̂ = min
{

λ

λ̄
,
λ̄

λ

}
L > min

{
λ

λ̄
,
λ̄

λ

}
max

{
λ

λ̄
,
λ̄

λ

}
= 1.

By Lemma 4.1, ĥ(s) is also a Nussbaum function (type A).
It is noted that, for all τ ≥ 0,

λ(τ )h(y(τ )) = λ(τ )h+(y(τ )) − λ(τ )h−(y(τ ))
≤ λ̄h+(y(τ )) − λh−(y(τ )) = ĥ(y(τ )).

Integrating the first inequality of (24) gives, for all t ≥ 0,

0 ≤ V (t) ≤

∫ t

0
(λ(τ )h(y(τ )) + a)ẏ(τ )dτ + V (0)

=

∫ t

0
λ(τ )h(y(τ ))ẏ(τ )dτ +

∫ t

0
aẏ(τ )dτ + V (0)

≤

∫ y(t)

y(0)
ĥ(s)ds +

∫ t

0
aẏ(τ )dτ + V (0)

=

∫ y(t)

0
ĥ(s)ds −

∫ y(0)

0
ĥ(s)ds + ay(t) − ay(0) + V (0). (26)

Denote a constant c0 =
∫ y(0)
0 ĥ(s)ds + ay(0) − V (0). One has∫ y(t)

0
ĥ(s)ds + ay(t) ≥ c0, ∀t ≥ 0. (27)

As ĥ(s) is a Nussbaum function (type A), by (9), there exists y∗ > 1
such that
1
y∗

∫ y∗

0
ĥ(s)ds < −|c0| − a.

If y(t) is not bounded over [0, ∞), there exists t∗ > 0 such that
y(t∗) = y∗ and hence

1
y(t∗)

∫ y(t∗)

0
ĥ(s)ds < −|c0| − a <

c0
y(t∗)

− a.
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Fig. 3. Stable profile of the closed-loop system under the controller with a Nuss-
baum function (type B) (the control direction λ(t) is time-varying).

As a result,∫ y(t∗)

0
ĥ(s)ds + ay(t∗) < c0

which contradicts (27). As y(t) is bounded over [0, ∞), so is V (t)
directly from (26). □

Example 4.1. An unstable phenomenon was observed for a Nuss-
baum function (type A) in Example 3.2. For the same example
with the Nussbaum function (type A) replaced by a Nussbaum
function (type B), the global stability of the closed-loop system
is now guaranteed by Lemma 4.3. In the numerical simulation, a
Nussbaum function (type B) h(s) = sin(3πs) exp(s2) is used with
the stable performance plotted in Fig. 3. We choose a Nussbaum
function (type B) with L = ∞, as the boundaries of λ(t) and a finite
L according to (25) are not assumed known. □

Next, we develop a multivariable version of Lemma 4.3. This
version is critically important for handling systems of multiple
control inputs in, e.g., multi-agent systems. The result was proved
in Chen et al. (2014) and Ding (2015) only for two special Nuss-
baum functions. It is proved for the first time that the lemma holds
for a general Nussbaum function (type B-L).

Lemma 4.4. Consider continuously differentiable functions V (t) :

[0, ∞) ↦→ R+ and yi(t) : [0, ∞) ↦→ R+, i = 1, . . . , n. Let
λi(t) : [0, ∞) ↦→ [λ, λ̄], i = 1, . . . , n, for two constants λ and λ̄

satisfying λλ̄ > 0. If

V̇ (t) ≤

n∑
i=1

(λi(t)h(yi(t)) + ai)ẏi(t)

ẏi(t) ≥ 0, ∀t ≥ 0, i = 1, . . . , n (28)

for some constants ai’s and a Nussbaum function (type B-L) h with

L > nmax
{

λ

λ̄
,
λ̄

λ

}
, (29)

then V (t) and yi(t), i = 1, . . . , n, are bounded over [0, ∞). In
particular, the statement holds for L = ∞.

Remark 4.1.When the boundaries |λ̄| and |λ| of the control coeffi-
cients are known, a Nussbaum function (type B-L) with L satisfying
(29) always works. This explains why N0(k) = cosh(λk) sin(k) as a
Nussbaum function (type B-Lwith Ldepending onλ)works in Chen
et al. (2014) for known boundaries. When the boundaries of the
control coefficients are unknown, a Nussbaum function (type B) is
sufficient. Also, this explains why N(k) = ek

2/2(k2 + 2) sin(k) as a
Nussbaum function (type B) works in Ding (2015).

5. Discussions on Nussbaum functions

In the previous section, we have introduced a new type of
Nussbaum function. In particular, we used a Nussbaum function
(type A) h(s) = sin(s)s2 and a Nussbaum function (type B) h(s) =

sin(s) exp(s2) in the examples.More discussions on these two types
of functions are given in this section. ANussbaum function changes
its sign alternatively with a growing magnitude. So, it is typically
represented by h(s) = θ (s)ξ (s) where θ (s) is a sign changing
function, e.g., θ (s) = sin(s), and ξ (s) generates a growing magni-
tude. The two types of Nussbaum functions are classified by the
growing rate of ξ (s) as elaborated below through both sufficient
and necessary conditions.

Lemma 5.1. Consider a continuously differentiable function

h(s) = θ (s)ξ (s)

where ξ (s) is an increasing function with ξ (s) > 0, s > 0 and
lims→∞ ξ (s) = ∞ and θ (s) a2T-periodic functionwith θ (s) > 0, s ∈

(0, T ) and θ (s) < 0, s ∈ (T , 2T ). Denote ki = iT for an integer i ≥ 1
and let

H+

i =

∫ k2i−1

k2i−2

θ (s)ξ (s)ds > 0,

H−

i = −

∫ k2i

k2i−1

θ (s)ξ (s)ds > 0.

(i) If

lim
i→∞

H+

i − H−

i−1 = ∞ and lim
i→∞

H−

i − H+

i = ∞, (30)

then h(s) is a Nussbaum function (type A); if

lim sup
i→∞

H+

i − H−

i−1 < ∞ or lim sup
i→∞

H−

i − H+

i < ∞, (31)

then h(s) is not a Nussbaum function (type A).
(ii) If, for L > 1,

lim
i→∞

H+

i

H−

i−1
≥ L and lim

i→∞

H−

i

H+

i
≥ L, (32)

then h(s) is a Nussbaum function (type B-L); if

lim sup
i→∞

H+

i

H−

i−1
< L or lim sup

i→∞

H−

i

H+

i
< L, (33)

then h(s) is not a Nussbaum function (type B-L). In particular,
the statement holds for L = ∞.

Proof. It is noted that∫ k2i−1

0
h+(s)ds = H+

i + · · · + H+

1∫ k2i−1

0
h−(s)ds = H−

i−1 + · · · + H−

1 .

Proof of (i). Under (30), for any constant K > 0, there exists ℓ

such that H+

i − H−

i−1 > K , i ≥ ℓ. Define

κ =
(H+

ℓ−1 + · · · + H+

1 ) − (H−

ℓ−2 + · · · + H−

1 )
K

.

As a result,

(H+

h̄ + · · · + H+

1 ) − (H−

h̄−1 + · · · + H−

1 )
h̄

≥
(h̄ − ℓ + 1)K + κK

h̄
≥

K
2



Z. Chen / Automatica 102 (2019) 72–79 77

for h̄ ≥ 2(ℓ − 1 − κ). Then,

lim
i→∞

1
k2i−1

∫ k2i−1

0
h(s)ds

= lim
i→∞

(H+

i + · · · + H+

1 ) − (H−

i−1 + · · · + H−

1 )
(2i − 1)T

= ∞,

which implies (8). The verification of (9) is similar. So, h(s) is a
Nussbaum function (type A).

If lim supi→∞ H+

i − H−

i−1 < ∞, there exists K such that H+

i −

H−

i−1 < K for all i. As a result,

1
k2i−1

∫ k2i−1

0
h(s)ds

=
(H+

i + · · · + H+

1 ) − (H−

i−1 + · · · + H−

1 )
(2i − 1)T

=
(H+

i − H−

i−1) + · · · + (H+

2 − H−

1 ) + H+

1

(2i − 1)T

≤
K (i − 1) + H+

1

(2i − 1)T
=

K
2T

+
−K + 2H+

1

2(2i − 1)T
≤

K
2T

+
2H+

1

2T

for all i ≥ 1. It implies that lim supy→∞
1
y

∫ y
0 h(s)ds < ∞, i.e., h(s)

is not a Nussbaum function (type A). If lim supi→∞ H−

i − H+

i < ∞,
the proof follows the similar arguments.

Proof of (ii). Under (32), for any ϵ > 0, there exists ℓ ≥ 2 such
that H+

i
H−

i−1
> L − ϵ, i ≥ ℓ. For h̄ ≥ ℓ, one has

ℓ − 2
h̄ − ℓ + 1

(H−

h̄−1 + · · · + H−

ℓ−1) ≥ H−

ℓ−2 + · · · + H−

1 .

As a result,

H+

h̄ + · · · + H+

1

H−

h̄−1 + · · · + H−

1

=
H+

h̄ + · · · + H+

ℓ + H+

ℓ−1 + · · · + H+

1

H−

h̄−1 + · · · + H−

ℓ−1 + H−

ℓ−2 + · · · + H−

1

≥
H+

h̄ + · · · + H+

ℓ

(1 + (ℓ − 2)/(h̄ − ℓ + 1))(H−

h̄−1 + · · · + H−

ℓ−1)

≥
L − ϵ

1 + (ℓ − 2)/(h̄ − ℓ + 1)
= L − ϵ̄ ≥ L − 2ϵ

for h̄ ≥ L(ℓ − 2)/ϵ + ℓ − 1. In the last inequality, it is noted that

ϵ̄ =
L(ℓ − 2)/(h̄ − ℓ + 1) + ϵ

1 + (ℓ − 2)/(h̄ − ℓ + 1)
≤ L(ℓ − 2)/(h̄ − ℓ + 1) + ϵ ≤ 2ϵ.

As a result,

lim sup
i→∞

∫ k2i−1
0 h+(s)ds∫ k2i−1
0 h−(s)ds

= lim sup
i→∞

H+

i + · · · + H+

1

H−

i−1 + · · · − H−

1
≥ L.

For any K > 0, there exists ℓ such that H+

i > K , i ≥ ℓ. So, one
has
H+

h̄ + · · · + H+

1

h̄
≥

H+

h̄ · · · + H+

ℓ

h̄
≥

K (h̄ − ℓ + 1)
h̄

≥
K
2

for h̄ ≥ 2(ℓ − 1). Then,

lim
y→∞

∫ y
0 h+(s)ds

y
≥ lim

i→∞

∫ k2i−1
0 h+(s)ds
k2i−1 + 2T

= lim
i→∞

H+

i + · · · + H+

1

(2i + 1)T
= ∞.

From above, one has (17). The verification of (18) is similar. So, h(s)
is a Nussbaum function (type B-L).

If lim supi→∞

H+

i
H−

i−1
< L, there exist ϵ and ℓ ≥ 2 such that

H+

i
H−

i−1
< L − ϵ for all i ≥ ℓ. For h̄ ≥ ℓ, one has

ℓ − 1
h̄ − ℓ + 1

(H+

h̄ + · · · + H+

ℓ ) ≥ H+

ℓ−1 + · · · + H+

1 .

As a result,

H+

h̄ + · · · + H+

1

H−

h̄−1 + · · · + H−

1

=
H+

h̄ + · · · + H+

ℓ + H+

ℓ−1 + · · · + H+

1

H−

h̄−1 + · · · + H−

ℓ−1 + H−

ℓ−2 + · · · + H−

1

≤
(1 + (ℓ − 1)/(h̄ − ℓ + 1))(H+

h̄ + · · · + H+

ℓ )
H−

h̄−1 + · · · + H−

ℓ−1
≤ (1 + (ℓ − 1)/(h̄ − ℓ + 1))(L − ϵ) = L − ϵ̄ ≤ L − ϵ/2

for h̄ ≥ 2(ℓ − 1)(L − ϵ)/ϵ + ℓ − 1. In the last inequality, it is noted
that

ϵ̄ = ϵ − (ℓ − 1)/(h̄ − ℓ + 1)(L − ϵ) ≥ ϵ/2.

Then,

lim sup
i→∞

∫ k2i−1
0 h+(s)ds∫ k2i−1
0 h−(s)ds

= lim sup
i→∞

H+

i + · · · + H+

1

H−

i−1 + · · · − H−

1
< L.

So, h(s) is not a Nussbaum function (type B-L). If lim supi→∞

H−

i
H+

i
<

L, the proof follows the similar arguments. □

Remark 5.1. In Lemma 5.1, the sequences H+

i and H−

i represent
the definite integrals (energy) of a Nussbaum function, in two op-
posite directions. For a Nussbaum function (type A), the sequences
arithmetically increase with the ratio approaching infinity. For a
Nussbaum function (type B-L) or a Nussbaum function (type B), the
sequences geometrically increase with the ratio L > 1 or the ratio
approaching infinity, respectively.

Example 5.1. Consider the function

h(s) = sin(s)s2.

Using the identity∫
sin(s)s2ds = (2 − s2) cos s + 2s sin s,

one has

H+

i =

∫ k2i−1

k2i−2

sin(s)s2ds

= −4 + [(2i − 1)2 + (2i − 2)2]π2,

H−

i−1 = −

∫ k2i

k2i−1

sin(s)s2ds

= −4 + [(2i − 2)2 + (2i − 3)2]π2.

It is easy to check (30), in particular,

lim
i→∞

H+

i − H−

i−1 = lim
i→∞

[(2i − 1)2 − (2i − 3)2]π2

= lim
i→∞

2(4i − 4)π2
= ∞.

So, h(s) is a Nussbaum function (type A). For

lim
i→∞

H+

i

H−

i−1
= 1 and lim

i→∞

H−

i

H+

i
= 1,

it is not a Nussbaum function (type B-L) for any L > 1. □
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Example 5.2. Consider the function

h(s) = sin(s) exp(s).

One has (32), in particular,

lim
i→∞

H+

i

H−

i−1
= eπ .

So, h(s) is a Nussbaum function (type B-eπ ) but not a Nussbaum
function (type B) . □

Example 5.3. Consider the function

h(s) = sin(s) exp(s2).

One has (32), in particular,

lim
i→∞

H+

i

H−

i−1
= lim

i→∞

∫ k2i−1
k2i−2

sin(s) exp(s2)ds

−
∫ k2i−2
k2i−3

sin(s) exp(s2)ds
=

lim
i→∞

∫ π

0 sin(s) exp([(s + k2i−3)2 + 2(s + k2i−3)π + π2
])ds∫ π

0 sin(s) exp((s + k2i−3)2)ds

≥ lim
i→∞

exp(2k2i−3π ) = lim
i→∞

exp(2(2i − 3)π2) = ∞.

So, h(s) is a Nussbaum function (type B). □

Finally, it is ready to give a rigorous counter example that shows
that the conjecture is false.

Example 5.4 (A Counter Example to the Conjecture). We will show
that the conjecture does not hold for the Nussbaum function (type
A) h(s) = sin(s)s2. Let y(t) = t , ẏ(t) = 1, and a = 0. Consider the
following time-varying control coefficients, with ki = iπ ,

λ(t) =

{
1, t ∈ [k2i−1, k2i)
1 + ϵ sin(t) t ∈ [k2i−2, k2i−1)

, i ≥ 1,

for some ϵ > 0. Define

Ĥ+

i =

∫ k2i−1

k2i−2

λ(s)h(s)ds = H+

i + ϵ

∫ k2i−1

k2i−2

sin2(s)s2ds.

Note that∫ k2i−1

k2i−2

sin2(s)s2ds =
1
6
[(2i − 1)3 − (2i − 2)3]π3

−
1
4
π2.

By using the calculation of H+

i and H−

i in Example 5.1 and compar-
ing the coefficients of i2, one has

lim
i→∞

H−

i

Ĥ+

i

=
8π2

8π2 + ϵ(2π3)
< 1.

So, there exists a finite ℓ ≥ 1 such that

H−

i < Ĥ+

i , ∀i > ℓ.

Denote ci = (Ĥ+

1 +· · ·+Ĥ+

i )−(H−

1 +· · ·+H−

i ) for i = 1, . . . , ℓ, and
hence a finite c = min{0, c1, . . . , cℓ} ≤ 0. Consider a continuously
differentiable function

V (t) =

∫ t

0
λ(τ )h(τ )dτ − c. (34)

It is noted that

V̇ (t) = λ(t)h(t) = (λ(t)h(y(t)) + a)ẏ(t) (35)

that satisfies (14). Next, we will show that V (t) ≥ 0, that is,∫ t
0 λ(τ )h(τ )dτ ≥ c , for all t ≥ 0.
For t ∈ [0, k1), it is obvious that

∫ t
0 λ(τ )h(τ )dτ ≥ 0 ≥ c. For any

t ≥ k1, there exists h̄ ≥ 1 such that t ∈ [k2h̄−1, k2h̄+1), then∫ t

0
λ(τ )h(τ )dτ ≥ (Ĥ+

1 + · · · + Ĥ+

h̄ ) − (H−

1 + · · · + H−

h̄ ).

If h̄ ≤ ℓ, it is obvious that
∫ t
0 λ(τ )h(τ )dτ ≥ c; otherwise,∫ t

0
λ(τ )h(τ )dτ ≥ [(Ĥ+

1 + · · · + Ĥ+

ℓ ) − (H−

1 + · · · + H−

ℓ )]

+ [(Ĥ+

ℓ+1 + · · · + Ĥ+

h̄ ) − (H−

ℓ+1 + · · · + H−

h̄ )] ≥ c.

From above, a counter example to the conjecture has been con-
structed, noting that y(t) = t is unbounded. □

6. Conclusion

A Nussbaum function provides a control gain with an alter-
natively changing sign and a growing magnitude. Two types of
Nussbaum functions have been defined in this paperwith different
growing rates. It has been shown that the existing Nussbaum
function (type A) is not always effective in the scenarios of mul-
tivariable and/or time-varying control coefficients with unknown
signs. Then, a new Nussbaum function (type B) has been proved
to be successful in these scenarios. The essential characteristic of
a Nussbaum function (type B) is the geometrically increasing rate
of its definite integral rather than arithmetically for a Nussbaum
function (type A). It is interesting to apply the new Nussbaum
functions on more control problems in the future work.
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