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a b s t r a c t 

A new, high performance, solution to the classical problem of direct model reference adaptive control 

for linear time-invariant systems with unknown sign of the high frequency gain is reported in the paper. 

The proposed algorithm directly estimates this parameter with the only required prior knowledge of a 

lower bound on its absolute value. To avoid the possible appearance of singularities in the controller 

calculation a switched projection mechanism is introduced to change, if needed, the sign of the estimate. 

The recently introduced dynamic regressor extension and mixing estimator is used to ensure monotonicity 

of the estimation error of the high frequency gain, guaranteeing that the switching appears (at most) 

once and avoiding the possible appearance of chattering—that may happen in classical gradient-based 

algorithms. Comparative simulations with the Nussbaum gain-based and gradient estimators illustrate 

the dramatic performance improvement of the proposed controller. 
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1. Introduction 

Model reference adaptive control (MRAC) is unquestionably the

most widely studied problem in the adaptive literature that has a

very long history going back to the 1950’s and extending to the

present time. The first attempts to solve the MRAC problem fol-

lowed the classical path of designing an observer, that had to be

made adaptive because of the unknown plant parameters, and then

feeding back the observed state (see [6] ). Very little success was,

however, obtained pursuing these lines—essentially because of the

difficulty of simultaneously estimating state and parameters. A ma-

jor breakthrough, essentially due to [2,8] , was the introduction of

the so–called direct control parameterization (see Lemma 1 below),

which revealed that the estimation of the plant state could be

obviated and only a “good” estimation of the controller parame-

ters was needed to achieve the asymptotic reference model output

tracking objective. The intrinsic simplicity of this parametrization

motivated the overwhelming majority of the researchers to pursue

this line of reasoning and concentrated their effort s into the devel-

opment of suitable parameter estimators. The interested reader is
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eferred to [12] for a vivid description of the history of MRAC as

ell as to the existing textbooks [5,14,19] for further information

n it. 

As it is well-known, the direct control parameterization, re-

erred to as output-error parameterization 

1 in [19] , leads to a bi-

inear regression form, where the parameter that corresponds to

he high frequency gain—denoted k p in the sequel—appears multi-

lying the controller parameters. This difficulty can be overcome

ssuming the knowledge of the sign( k p ), under which a glob-

lly convergent output-error MRAC may be designed introducing

n overparameterisation of the regressor and a normalisation in,

ow classical, augmented error-based estimators [5,14,19] . It was

hown that these algorithms enjoy the fundamental “self-tuning

roperty”, that is, that global tracking is ensured for all reference

ignals—without imposing the stronger parameter convergence re-

uirement. The use of normalisation and overparameterisation,

owever, comes with a very high tag for the overall performance

f the scheme. Indeed, as thoroughly discussed in [10,16,19] , over-

arameterisation hampers parameter convergence while normali-

ation “slows down” the adaptation and severely penalizes the pa-

ameter convergence rate. As shown in [16] , this below par perfor-

ance can be partially overcome using (the unnormalised) Morse’s

igh order tuners [11] , but the additional information of an upper
1 The term “output-error” has been used in [7] to refer to a completely different 

construction used in identification and adaptive control. 

rved. 
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2 In time-domain this is tantamount to the knowledge of the sign of the instan- 

taneous step-response. 
3 These terms will be omitted (without loss of generality) in the sequel. 
ound on k p is required and the scheme is significantly more in-

olved. 

A major theoretical breakthrough for this problem is due to

ussbaum [15] who, motivated by a conjecture in [9] , showed

hat the sign of k p is not necessary for stabilization in MRAC.

ussbaum’s solution relies on the introduction of a function that

hanges periodically the sign of the estimator vector field in a

gain scheduling-like” fashion. It is clear that this kind of algo-

ithms is only of theoretical interest since their transient perfor-

ance is intrinsically bad and practically inadmissible—as it has

een repeatedly reported in the literature. 

Schemes that require the division by the estimate of k p in the

ontroller calculation, e.g. , the one proposed in Section 4.5.2 of

5] and the other one presented in the paper [4] , most incorporate

 switched projection to avoid singularities. There are two draw-

acks to this approach, on one hand, to the best of the authors’

nowledge, no proof of global tracking for this scheme has been

eported in the literature without an unverifiable assumption of

ersistency of excitation (PE) of the regressor. On the other hand,

here is no guarantee that the switching happens only a finite

umber of times nor the possible appearance of chattering phe-

omena. 

In this paper, a new solution to the problem with improved

ransient performance is reported, which includes the following

odifications: 

(M1) Abandon the bilinear model mentioned above, and adopt in-

stead the overparameterized linear regression . 

(M2) Introduce a new factorization of the parameter estimates to

update directly the controller parameters. 

(M3) Instead of classical gradient estimators we use the recently

introduced dynamic regressor extension and mixing (DREM)

estimator from [1] . 

The use of a linear parameterization is essential to apply the

REM estimator. Unfortunately, the estimation law still involves

he division by an estimate of k p . Therefore, similarly to the clas-

ical schemes, a switched projection of this estimate is added to

eep it away from an a priori known band around the zero value.

o avoid the undesirable chattering phenomena indicated above

e exploit a key feature of DREM: that it ensures monotonicity of

he estimation error of the parameter k p , ensuring that the switch-

ng appears (at most) once. The monotonicity property holds for

ll reference signal. However, global tracking can only be ensured

or reference signals that satisfy an excitation requirement, which

olds true if the aforementioned PE assumption on the regressor

f classical schemes is satisfied. 

The remainder of the paper is organized as follows.

ection 2 formulates the MRAC problem addressed in the pa-

er and briefly reviews the current literature available on this

opic. An MRAC, with a gradient-based procedure to estimate

he controller parameters using the new factorization mentioned

bove, is given in Section 3 . Section 4 contains our main result,

amely, the description of the DREM estimator and its stability

roperties when applied in a MRAC scheme. Comparative sim-

lations with the classical Nussbaum gain-based and gradient

stimators, which illustrate the significant performance improve-

ent of the proposed controller, are presented in Section 5 . The

aper is wrapped-up with concluding remarks in Section 6 . 

. The MRAC problem with unknown sign( k p ) 

.1. Problem formulation 

We are interested in the classical problem of relaxing the

nowledge of the high frequency gain in MRAC of the scalar
inear time-invariant (LTI) continuous-time plant 

 (p) y = k p N(p) u, (1)

here y , u are the plant output and input, respectively, D (p) and

(p) are monic and coprime polynomials of degree n and m , re-

pectively, p := 

d 
dt 

, ρ := n − m ≥ 1 and k p ∈ R is the high frequency

ain. The parameters of D (p) and N(p) are unknown. 

We make the following assumptions regarding the plant. 

(A.1) N ( p ) is a Hurwitz polynomial. 

(A.2) n and ρ are known. 

(A.3) A constant k p ∈ R + verifying 

| k p | ≥ k p (2) 

is known. 

The MRAC objective is to asymptotically drive to zero the track-

ng error 

 = y − k m 

D m 

(p) 
r (3) 

here D m 

(p) is a monic, Hurwitz polynomial of degree ρ, k m 

∈ R

nd r is a bounded reference. 

.2. Remarks on the assumptions 

[R1] Assumptions A.1 and A.2, though somehow restrictive, are

tandard in MRAC (see, for example, [5,14,19] ). 

[R2] Conspicuous by its absence is the assumption of knowl-

dge of the sign of the high–frequency gain of the plant k p . 
2 Relax-

ng this assumption is the main subject of interest in this note. In-

tead of its sign we assume that k p is bounded away from zero—by

 known value k p —as indicated in (2) . Although this is a sensible

ssumption in all practical scenarios, it will be shown below that

he transient behavior is degraded if k p is too small. 

[R3] We have assumed ρ ≥ 1 to simplify the notation in the se-

uel. As will become clear later, the scheme proposed here—with

he adequate technical changes—applies as well to the case ρ = 0 . 

[R4] Without loss of generality we have selected the reference

odel without zeros, a scenario usually adopted in MRAC designs.

he theory can be extended verbatim for general reference model

ransfer functions. 

.3. A key lemma 

Instrumental for the development of MRAC is the lemma below,

nown as the direct control model reference parameterization, first

stablished by [2,8] (see also [5,19] for a modern derivation of the

esult). 

emma 1. Consider the plant (1) and the tracking error (3) . There

xists a vector θ ∈ R 

2 n such that 

 = 

k p 

D m 

(p) 
(u − θ� φ) + εt , (4)

here φ ∈ R 

2 n is the regressor vector given by 

= 

1 

λ(p) 
col (u, ˙ u , . . . , u 

(n −2) , y, ˙ y , . . . , y (n −2) , λ(p) y, λ(p) r) (5)

ith a designer-chosen monic, Hurwitz polynomial λ(p) and εt is an

xponentially decaying term due to initial conditions. 3 
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4 In the aforementioned reference the equivalent regression model (8) is used. 
The MRAC designs are completed proposing a controller of the

form 

u = 

ˆ θ� φ, (6)

where ˆ θ ∈ R 

2 n are the estimates of the parameters θ , which are

generated via a parameter adaptation algorithm. 

2.4. Existing results 

The parameterization (4) contains the product of the unknown

parameters k p and θ . To overcome the difficulty of parameter iden-

tification with a bilinear model an overparameterization is intro-

duced, writing (4) as 

e = 

[
k p θ� k p 

][−φ f 

u f 

]
, (7)

where, to simplify the notation, we defined the filtered signals 

(·) f := 

1 

D m 

(p) 
(·) . 

Actually, noting that θ2 n φ2 n = 

k m 
k p 

r and using the definition of the

tracking error (3) , this linear regression can be simplified to 

y = 

[
k p θ� 

0 k p 
][−(φ0 ) f 

u f 

]
, (8)

where θ0 and φ0 contain the first 2 n − 1 elements of θ and φ,

respectively. 

As indicated in Section 1 , if sign( k p ) is known , it is possible

to design an estimator for the parameters col( θ , k p ) that ensures

global tracking for all reference signals. Besides the fact that over-

parameterization was introduced, this estimator includes a normal-

ization factor, hence it suffers from the all the limitations and per-

formance degradation problems mentioned in Section 1 . We refer

the interested reader to the classical textbooks [5,14] for several

versions of these algorithms. 

In Subsection 4.5.2 of [5] it is proposed to use the parameteri-

zation (8) to estimate directly the parameters col( k p θ0 , k p ) and to

recover the controller parameters ˆ θ dividing by the estimate ˆ k p .

To avoid singularities, a projection that requires the knowledge of

the sign and a lower bound of k p is implemented, i.e. Eq. (4.5.18)

of [5] . There are two drawbacks to this approach, on one hand, to

the best of the authors’ knowledge, no proof of global tracking for

this scheme has been reported in the literature without an unverifi-

able assumption of PE of the regressor col(( φ0 ) f , u f ), which ensures

parameter convergence. We underscore the fact that the PE con-

dition is imposed directly on the regressor and, in contrast with

MRAC without switchings, cannot be guaranteed assuming suffi-

cient richness of the reference signal. On the other hand, there is

no guarantee that the switching happens only a finite number of

times nor the possible appearance of chattering phenomena. 

From the regression form (8) we get 

1 

k p 
y = −θ� 

0 (φ0 ) f + u f , 

hence, recalling that θ2 n = 

k m 
k p 

, it can be written in the alternative

form 

u f = θ� 
[
(φ0 ) f 

1 
k m 

y 

]
. (9)

This is the so-called, input-error parameterization introduced in

Section 3.3.1 of [19] . In [19] an estimator that uses this parame-

terization and ensures global tracking is proposed. Unfortunately,

this algorithm includes a parameter projection for the term 

ˆ θ2 n +1 

that requires, besides the knowledge of sign( k p ), and upper bound

on | k p |. Although there is no division by ˆ k p in this algorithm, the
rojection is essential for the proof. Moreover, it has recently been

hown in [3] that, in the absence of the projection, input-error

RAC suffers from an instability mechanism that may give rise

o unbounded trajectories—even in the simplest case of first-order

lants with r(t) = 0 . 

In summary, with the exception of the highly impractical Nuss-

aum gain algorithm, all other MRAC schemes require the knowl-

dge of the sign of k p to prove their stability. 

. Gradient-based MRAC 

As indicated in the previous section in Section 4.5.2 of [5] it is

roposed to use the linear regression model (7) to estimate directly

he parameters col( μ, k p ) := col( k p θ , k p ) using a standard gradient

stimator 4 

˙ ˆ μ = −�θφ f (e + φ� 
f ˆ μ − u f ̂

 k p ) , 

˙ ˆ 
 p = γp u f (e + φ� 

f ˆ μ − u f ̂
 k p ) (10)

ith normalized adaptation gains �θ = �θ0 / (1 + ψ 

� ψ) , �θ0 ∈
 

2 n ×2 n positive-definite and γp = γp0 / (1 + ψ 

� ψ) , γp0 ∈ R + , ψ =
ol (−φ f , u f ) , and compute the controller parameters via 

ˆ := 

ˆ μ

ˆ k p 
. (11)

o be able to avoid the assumption of knowledge of sign( k p ) we

ropose in this section to compute the controller parameters di-

ectly applying the formula 

˙ ˆ = 

˙ ˆ k p ̂  θ + ̂

 k p 
˙ ˆ θ . (12)

ssuming temporarily that 

 ̂

 k p (t) | ≥ k p > 0 (13)

nd doing some basic calculations we obtain from (10) and

12) that 

˙ ˆ θ = −(�θφ f + γp u f 
ˆ θ ) 

(
e 

ˆ k p 
+ φ� 

f 
ˆ θ − u f 

)
, 

˙ ˆ 
 p = γp u f [ e + ̂

 k p (φ
� 
f 

ˆ θ − u f )] . (14)

o enforce the condition (13) a switched projection mechanism is

dded to the estimator of k p as follows 

ˆ 
 p (t + ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

ˆ k p (t ) if | ̂ k p (t ) | > k p 

−k p if k p (t) = k p and 

˙ ˆ k p (t) < 0 

k p if k p (t) = −k p and 

˙ ˆ k p (t) > 0 , 

(15)

ith the corresponding resetting of the initial conditions of 
˙ ˆ k p .

learly, the modification above implements a “jump” to avoid the

nterval [ −k p , k p ] . 

Unfortunately, the MRAC proposed above suffers from the seri-

us drawback that it is not possible to avoid the possible appear-

nce of chattering phenomenon in the band [ −k p , k p ] . Indeed, noth-

ng prevents the estimator from changing the sign of 
˙ ˆ k p after the

ump. Moreover, there is no guarantee that the number of jumps is

nite. To overcome this problem in the section below we propose

o replace the standard gradient estimator by a DREM adaptation

lgorithm proposed in [1] . 
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. DREM-based MRAC 

As discussed in [1] DREM has several advantages over gradient

or least-squares) estimators, including a provable transient perfor-

ance improvement. The feature of DREM that we exploit in this

aper is that it guarantees monotonicity of each element of the pa-

ameter error. This is a much stronger property than monotonic-

ty of the Euclidean norm of the parameter error vector ensured

y standard estimators [5,19] . However, this monotonicity prop-

rty does not preclude the possible appearance of the undesir-

ble chattering phenomena mentioned above. With DREM we will

rove that the absolute value of the parameter error ˜ k p (t) , is non-

ncreasing ensuring in this way that, at most, there will be one

witching in the transient behavior. 

.1. Derivation of the DREM estimator 

To apply DREM to the linear regression (7) we rewrite it in

ompact form as 

 = η� ψ (16) 

ith the extended regressor and parameter vectors 

 := 

[
−φ f 

u f 

]
, η := 

[
μ
k p 

]
. (17)

The proposition below is the main result of the paper. To

treamline the presentation we introduce 2 n + 1 linear distinct op-

rators H i : L ∞ 

→ L ∞ 

and define the signals 

(·) H i = H i (·) , i = 1 , . . . , 2 n + 1 . (18)

n the sequel the subindex ( · ) i will always range in the set

 1 , . . . , 2 n + 1 } therefore this qualifier will be omitted. 

roposition 1. [DREM estimator] Consider the linear regression

16) and the operations (18) and define 

 e := 

⎡ 

⎢ ⎢ ⎣ 

ψ 

� 
H 1 

ψ 

� 
H 2 
. . . 

ψ 

� 
H 2 n +1 

⎤ 

⎥ ⎥ ⎦ 

, E := adj { M e } 

⎡ 

⎢ ⎢ ⎣ 

e H 1 
e H 2 

. . . 
e H 2 n +1 

⎤ 

⎥ ⎥ ⎦ 

, � := det { M e } , (19)

ith adj{ · } the adjoint of the matrix. The DREM estimator 

˙ ˆ i = −γi �(� ˆ ηi − E i ) , γi > 0 , (20)

nsures the following properties. 

(i) [Monotonicity] 

| ̃  ηi (t 2 ) | ≤ | ̃  ηi (t 1 ) | , ∀ t 2 ≥ t 1 ≥ 0 . (21)

ii) [Convergence] 

lim 

t→∞ 

˜ ηi (t) = 0 ⇐⇒ �(t) / ∈ L 2 ⇐⇒ 

∫ ∞ 

0 

�2 (s ) ds = ∞ . (22)

ii) [Square integrability] 

� ˜ ηi ∈ L 2 

roof. Applying H i to (16) and piling up the signals we get 
 

 

 

 

e H 1 
e H 2 

. . . 
e H 2 n +1 

⎤ 

⎥ ⎥ ⎦ 

= M e η. 

ultiplying by adj{ M e } and using the identity 

I 2 n +1 := adj { M e } M e , (23)
ith I s the s × s identity matrix, yields 

 i = �ηi . (24) 

eplacing (24) in (20) one gets 

˙ ˜ i = −γi �
2 ˜ ηi . (25) 

he proof of (i) and (ii) is completed solving these simple scalar

ifferential equations to get 

˜ i (t 2 ) = e 
−γi 

∫ t 2 
t 1 

�2 (τ ) dτ
˜ ηi (t 1 ) , t 2 ≥ t 1 ≥ 0 . 

o establish (iii) evaluate the derivative of the function ˜ η2 
i 

along

25) and integrate from zero to infinity. �

It is important to underscore that the identity (23) holds even

f M e is not full-rank. 

.2. Application of DREM to MRAC 

To compute the controller parameters we proceed as done in

ection 3 . That is, define ˆ μ = ̂

 k p ̂  θ and apply the formula (12) —

otice that μ = col (η1 , . . . , η2 n ) and k p = η2 n +1 . Assuming tem-

orarily (13) and doing some basic calculations we obtain 

˙ ˆ θ j = (γ2 n +1 − γ j )�
2 ˆ θ j + 

�

ˆ k p 

(
γ j E j − γ2 n +1 E 2 n +1 ̂

 θ j 

)
, j = 1 , . . . , 2 n 

˙ ˆ 
 p = −γ2 n +1 �(�ˆ k p − E 2 n +1 ) . (26) 

s before, to enforce the condition (13) we propose to add a

witching mechanism to the estimator of k p . Namely, 

ˆ 
 p (t + ) = 

⎧ ⎨ 

⎩ 

ˆ k p (t ) if | ̂ k p (t ) | > k p 
−k p if k p (t) = k p 
k p if k p (t) = −k p . 

(27) 

otice that we have removed the condition on 

˙ ˆ k p imposed in (15) ,

hich is now unnecessary because ˆ k p (t) = ˆ η2 n +1 (t) is a monotonic

unction as indicated in (21) . 

The following corollary of Proposition 1 summarizes the stabil-

ty properties of the proposed DREM-based MRAC. 

orollary 1. Consider the plant (1) verifying Assumptions A .1–A .3

nd the tracking error given in (3) . The adaptive controller (5) and

6) , where the parameters are updated with the DREM estimator (18) ,

19) , (26) and (27) , ensures the following properties. 

a) The following implications are true 

sign ( ̂ k p (0)) = sign (k p ) ⇒ no switching appears 

sign ( ̂ k p (0)) � = sign (k p ) ⇒ at most one switching appears . 

b) ˆ k p (t) is a monotonically non-increasing function, more precisely 

˜ k p (t 2 ) ≤ ˜ k p (t 1 ) , ∀ t 2 ≥ t 1 ≥ 0 . 

c) If �(t) / ∈ L 2 then 

lim 

t→∞ 

e (t) = 0 , lim 

t→∞ 

˜ θi (t) = 0 . 

.3. Remarks 

[R5] Two simple options for the linear, L ∞ 

-stable operators H i 

sed to define the extended regressor matrix M e (19) are LTI, first

rder filters 

 

αi ,βi 

i 
(p) = 

αi 

p + βi 

, αi � = 0 , βi > 0 , (28)

r delay operators of the form 

 

T i 
i 
(·)(t) := (·)(t − T i ) , T i > 0 . 
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Note, that the filters have to be chosen distinct. 

See [18] for a generalization to linear time-varying filters. 

[R6] We underscore the fact that, to ensure that the matrix

M e ( t ) is not rank deficient for all times, it is necessary to avoid

the situation where ψ H i 
(t) = ψ H j 

(t) , ∀ t ≥ 0 for i � = j . Hence, the op-

erators H i should be different . 

[R7] Unfortunately, we have not been able to prove that the

tracking error goes to zero without the assumption that r ( t ) is

such that �(t) / ∈ L 2 . In this respect, the proposed DREM MRAC

suffers from the same drawback as the gradient-based MRAC with

switching of Section 3 and the one of Section 4.5.2 of [5] . Namely,

that there is no proof that the tracking error converges to zero for

all reference signals without an excitation assumption. This is in

contrast with classical MRAC with known sign( k p ) and Nussbaum-

based MRAC, which ensure this property. 

[R8] We have recently shown that, if r ( t ) is sufficiently rich,

in the classical sense of [19] , then �(t) / ∈ L 2 for almost all opera-

tors H i —implying that, under richness conditions, DREM-MRAC en-

sures parameter (hence, tracking error) convergence with the ad-

ditional advantage, with respect to gradient estimation, of guaran-

teeing that the individual parameter errors are monotonic. 

[R9] Notice that, even though all parameter errors ˜ ηi (t) are

monotonically non-increasing, this is not necessarily the case for
˜ θ (t) because they satisfy ˆ θ j = 

1 
ˆ k p 

ˆ η j for j = 1 , . . . , 2 n, and the divi-

sion of two monotonic functions is not necessarily monotonic. 

[R10] It worth noting that instead of constant adaptation gains

γ j , j = 1 , . . . , 2 n + 1 in (26) one can select time-varying functions

in the form: 

γ j = 

γ0 j 

1 + �2 
. 

where γ0 j , j = 1 , . . . , 2 n + 1 are positive constants. Such a choice

provides normalization of DREM estimator and, as a result,

“almost” uniform convergence of parametric errors. Moreover, the

rate of parametric convergence can be regulated by selecting the

design parameters γ 0 j . 

Normalization gains are used in the next section with compar-

ative simulations. 

5. Simulations 

In this section simulation results of three MRAC schemes for the

second order plant (
p 2 + d 1 p + d 0 

)
y = k p u 

with unknown parameters d 1 = 2 , d 0 = 1 and k p = 3 are demon-

strated and compared. The first scheme is based on the use of

a Nussbaum gain, cf. (see Chapter 9 of [14] ). The second and the

third schemes use the gradient and DREM identifiers described in

Sections 3 and 4 , respectively. 

The objective of MRAC is to ensure boundedness of all signals

and asymptotic convergence to zero of the tracking error 

e = y − k m 

D m 

(p) 
r = y − 6 

p 2 + 5 p + 6 

r. 

The reference signal is given as 

r(t) = 3sin 2 t +4cos t +10 , 

which is sufficiently rich. In the case of MRAC with known sign( k p ),

this ensures that the regressor φ is persistently exciting (PE) [19] ,

but it is not the case for the switching scheme of Section 3 nor

the estimator of Section 4.5.2 of [5] . The error model (4) takes the

form 

e = 

k p 

p 2 + 5 p + 6 

(
u − θ� φ

)
, 
here θ = col (−3 , 9 , −3 . 67 , 2) and the regressor is given by 

= col 

(
1 

λ(p) 
u, 

1 

λ(p) 
y, y, r 

)
, 

here we have selected λ(p) = p + 1 . The filtered regressor φf is

hen defined as 

f = 

1 

D m 

(p) 
φ = 

1 

p 2 + 5 p + 6 

φ. 

he control signal is given by (6) with estimates ˆ θ ∈ R 

4 ,

hich are generated according to the three aforementioned

chemes. Initial conditions for all algorithms are taken as ˆ θ (0) =
ol ( −10 , 10 , −5 , 5 ) and 

ˆ k p (0) = −4 —notice that k p has the opposite

ign . The initial conditions for all the other state variables are zero.

.1. Nussbaum gain MRAC 

The algorithm using Nussbaum gain is taken from Section 9.2 of

14] , which is a simplified version of the scheme proposed in [13] .

t is based on the following modified augmented error scheme 

ε = e + N(x ) k N χ

= 

ˆ θ� φ f −
k m 

D m 

(p) 

(
ˆ θ� φ

)
, 

here the controller parameters and the gain k N are given by 

˙ ˆ θ = N(x ) 
φ f 

1 + φ� 
f 
φ f 

ε 

˙ 
 N = −N(x ) 

χ

1 + φ� 
f 
φ f 

ε, 

nd the Nussbaum gain N ( x ) is generated via 

(x ) = x 2 cos x 

x = z + 

k 2 N 

2 

˙ z = 

1 

1 + φ� 
f 
φ f 

ε 2 . 

esults of the simulation are shown in Fig. 1 . As shown by the

gure parameter convergence is very slow and we observe a very

arge overshoot of e , mainly due to the oscillating behavior of the

ussbaum gain N ( x ). Furthermore, due to the presence of the sec-

nd harmonic in the reference signal, there is a (slowly decaying)

scillation in the control signal that induces an oscillation in the

racking error. 

.2. Gradient-based MRAC 

In this subsection, we present the simulation results with the

radient identifier (14) . The adaptation gains were selected as

θ0 = 10 I 4 , and γp0 = 10 . This selection yields 

˙ ˆ θ = − 10 

1 + ψ 

� ψ 

(
φ f + u f 

ˆ θ
)(

e 

ˆ k p 
+ φ� 

f 
ˆ θ − u f 

)

˙ ˆ 
 p = 

10 

1 + ψ 

� ψ 

u f 

[ 
e + ̂

 k p 

(
φ� 

f 
ˆ θ − u f 

)] 
, 

here 

 f = 

1 

D m 

(p) 
u = 

1 

p 2 + 5 p + 6 

u, ψ = col(−φ f u f ) . 

he projection (15) was implemented with k p = 0 . 1 . 

The simulation results are presented in Fig. 2 . Compared

ith the Nussbaum gain estimator the tracking error e peak is

ignificantly—almost ten times—smaller but the convergence of the

ontroller parameters is still very slow and the long term oscil-

ations persist. Moreover, the estimate of the high frequency gain
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Fig. 1. (Nussbaum gain estimator) Behavior of the tracking error e (upper left corner), the control signal u (upper right corner), the controller parameter errors ˜ θ (lower left 

corner) and the Nussbaum gain N (lower right corner). 

Fig. 2. (Gradient estimator) Behavior of the tracking error e (upper left corner), the control signal u (upper right corner), the controller parameter errors ˜ θ (lower left corner) 

and the estimation error ˜ k p (lower right corner). 
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f

onverges very slowly to a value far away from k p . This simulation

vidence illustrates the fact that, in contrast with the case when

he sign of k p is known, r ( t ) rich does not imply PE regressor for

he switching MRAC of Section 3 . 5 

In Fig. 3 , we show a zoom of the first few seconds of the simu-

ation when the estimate ˆ k p changes sign, inducing a step change

n the controller parameters. The simulation evidence seems to

uggest that this step change induces the require excitation to the

egressor, because in this time window the estimated parameters

ove towards their true values—but later drift away from it. 
5 Notice that in Theorem 4.5.3 of [5] parameter convergence is guaranteed under 

he assumption that the systems regressor —not the reference signal—is PE. 
k

.3. DREM-based MRAC 

Implementation of the DREM-based adaptation algorithm

26) is made taking into account Remark [R10] and with the same

daptation gains as the gradient-based estimator, that is γ j0 = 10

or j = 1 , . . . , 5 . This yields, 

˙ ˆ θ i = 10 

�

ˆ k p (1 + �2 ) 

(
E i − E 5 ̂  θ

)
, i = 1 , 4 

˙ ˆ 
 p = −10 

�

1 + �2 
(�ˆ k p − E 5 ) , 
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Fig. 3. (Gradient estimator) Zoom of ˜ θ (upper) and ˜ k p (lower) of Fig. 2 . 

 

 

 

 

 

 

 

 

Fig. 5. (DREM estimator) Zoom of ˜ θ (top) and ˜ k p (bottom) of Fig. 4 . 
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where E , M e and � are defined in (19) with the LTI filters 

H 1 (p) = 

10 0 0 

p + 1 

, H 2 (p) = 

20 0 0 

p + 2 

, H 3 (p) = 

40 0 0 

p + 4 

, 

H 4 (p) = 

80 0 0 

p + 8 

, H 5 (p) = 

160 0 0 

p + 16 

. (29)

As there are no precise rules for the selection of the filters, this

was done via trial and error—see [1,18] for some discussion in this

respect. The switched projection (27) was also implemented with

k p = 0 . 1 as before. 

The simulation results depicted in Fig. 4 illustrate the dramati-

cally improved performance achieved with DREM. We draw to the

readers attention the difference in scales , both in time and in am-

plitude, of these plots with respect to the previous two cases. The
Fig. 4. (DREM estimator) Behavior of the tracking error e (upper left corner), the control

and the estimate error ˜ k p (lower right corner). 
ontroller parameters converge to their true values immediately af-

er the estimate ˆ k p changes sign as seen in Fig. 5 , where we show

 zoom of the first few seconds of the simulation. Consequently,

he tracking error converges to zero in less than 5 s and remains

t zero thereafter. This is in total contrast with the previous two

stimators where convergence of e took significantly longer and a

ong oscillation was observed. 

. Concluding remarks and future research 

An alternative solution to the problem of MRAC of LTI, min-

mum phase systems with unknown sign of the high frequency

ain has been presented. The proposed scheme replaces the
 signal u (upper right corner), the controller parameter errors ˜ θ (lower left corner) 
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[  
atter knowledge by the availability of a lower bound on the ab-

olute value of this gain, required to implement a switched pro-

ection of the estimate. The main novelty is the use of a DREM

stimator that guarantees, via the monotonicity of the parameter

stimation error, that the switching happens at most once. More-

ver, it is shown in simulations that, compared with the classical

radient and Nussbaum gain-based schemes, the proposed DREM-

RAC has a dramatically improved transient behavior. 

Current research is under way along the following directions: 

(i) Prove that DREM-MRAC enjoys the fundamental “self-tuning

property” of standard MRAC, that is, that the tracking er-

ror converges to zero for all references, independently of the

convergence of the estimated parameters. Although exten-

sive simulations show that this is the case, a rigorous theo-

retical proof is yet to be established. 

(ii) Although in the example in the simulation a good choice of

the filters in the extended regressor matrix was quite easy to

obtain, in general, it is still an open question how to select

them in a systematic way. The main criterion for its selec-

tion is, of course, to try to guarantee the convergence con-

dition �(t) / ∈ L 2 , but there are no clear indications how this

can be done in a systematic way. Some progress for this task

is reported in [18] , where it is shown that DREM can be re-

cast as a Luenberger functional observer, for which a lot of

research has been reported. 

(iii) Extend the results to the case of multi-input multi-output

systems. In this case, the high frequency gain is a matrix

and, in spite of intensive research on the topic, no complete

answers have been given on the prior knowledge required

to design a provably stable MRAC. See [17] and the recent

survey paper [20] . 
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