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Strict Lyapunov Functions for Model Reference Adaptive Control:
Application to Lagrangian Systems

Antonio Lorı́a , Elena Panteley , and Mohamed Maghenem

Abstract—Model reference adaptive control is a well-understood
and popular method used in the case when the plant’s constant
parameters are unknown and must be identified. The related lit-
erature is very rich and there exist many proofs of stability and
convergence. Lyapunov functions for such systems, having the
property that the total derivative is negative definite, are, however,
very scarce. In this note, we use the Mazenc construction to design
a simple strict Lyapunov function in a rather intuitive manner, based
on a first-choice function whose derivative is negative semidefinite.
Furthermore, we provide, for the first time in the literature, a Lya-
punov function for a popular passivity-based adaptive controller
for Lagrangian systems.

Index Terms—Adaptive control, identification, Lyapunov, persis-
tency of excitation.

I. INTRODUCTION

Driven by concrete control problems of physical systems (specifi-
cally, mechanical, electrical, and electromechanical), analysis and de-
sign of adaptive control systems have been, in turn, a steering force
in control theory and practice for decades now. An early significant
breakthrough was the certainty-equivalence principle, which states that
in the case of parametric uncertainty, one can use the same controller
that would be used in the case that all the parameters of the system
were known, replacing their values with estimates. Then, an adapta-
tion law is designed to update such estimates. In view of its simplicity,
model-reference adaptive control [1] is among the most popular control
and estimation techniques, but it also poses significant challenges to
stability analysis, due to its inherent nonlinear and time-varying na-
ture; even in the case when the plant to be controlled is linear and
autonomous [2].

Two distinct analysis problems naturally appear: that of tracking-
errors convergence and that of parameter-estimation errors conver-
gence. For the former, a commonly used method is based on properties
of signals inLp spaces and the popular Barbălat’s lemma [3]. Establish-
ing convergence of the parameter estimation errors, however, is a much
more challenging task of analysis. The one condition that is invoked
under various control schemes is known as persistency of excitation
and it was introduced in [4] in the context of identification of discrete-
time linear systems. While conserving its conceptual substance, this
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condition has taken different mathematical forms in the literature, de-
pending on the context: for continuous-time linear systems necessary
and sufficient conditions for uniform convergence are presented in [5]–
[7]; for non-uniform convergence, in [6]; for nonlinear time-varying
systems, in [8] and [9]—see also [10]; for linear parameterized systems
in [11]. Its equivalence to uniform complete observability is discussed
in detail in [12] and its equivalence to detectability, in the realm of
nonlinear time-varying systems, was established in [13]. In the spe-
cific context of adaptive control, [10] and [14] provide a thorough
study.

Now, because adaptive control systems are inherently nonlinear, a
crucial question beyond that of convergence is whether the origin is
uniformly asymptotically, or exponentially, stable. For linear systems,
the latter may be established upon the scrutiny of the state transition
matrix [15], or using the concept of uniform complete observability
and output injection techniques [12]; see also [16], where an explicit
stability bound is computed. For nonlinear systems, however, exponen-
tial stability is impossible [17]; one can “only” achieve uniform global
asymptotic stability [18].

Certainly, the most direct method of stability analysis is Lyapunov’s
second. Yet, constructing a strict Lyapunov function for adaptive con-
trol systems has eluded the research community, at least until [19]
where, to the best of our knowledge, the first strict Lyapunov function
for nonlinear systems reminiscent of model-reference-adaptive control
was proposed. Mazenc et al. [19] relies on the neat Mazenc construc-
tion, which was introduced in [20] and is described in great detail
in [21]. Roughly speaking, the starting point is a Lyapunov function
whose derivative is negative in part of the state variables only; then, a
function of this nonstrict Lyapunov function is constructed. See also
[22] and [23].

In this note, we employ the Mazenc construction on a narrower class
of systems than the one considered in [19] and [22], but the systems
that we study here appear in model-reference-adaptive control of non-
linear systems and other passivity-based control techniques. For the
purpose of illustration, we also propose, as far as we know for the first
time, a strict Lyapunov function for the popular Slotine-and-Li adap-
tive tracking controller for Lagrangian systems originally proposed in
[24], which continues to inspire solutions to more contemporary prob-
lems, such as mutual synchronization of Lagrangian systems—see e.g.,
[25]–[28].

The rest of this note is organized as follows. In the next section,
we describe the class of systems that we consider. In Section II-C,
we present our main results, the utility of which is illustrated through
a concrete example in Section III. Finally, we conclude with some
remarks in Section IV.

II. PROBLEM SETTING AND ITS SOLUTION

A. Motivating Example

We start by emphasizing the well-known fact that, even when the
plant is linear autonomous, model-reference-adaptive-control systems
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are nonlinear. To that end, let us consider a feedback-linearizable sys-
tem, in normal form, i.e.

ẋi = xi+1 i ∈ [1, n − 1] (1a)

ẋn = Φ(x)�θ + g(x)u (1b)

where x := [x1 · · · xn ]�, Φ : Rn → Rm is a regressor function and
θ ∈ Rm is a vector of unknown lumped parameters. The control goal
is to design u such that this system behaves as the reference model

ẋ∗
i = x∗

i+1 i ∈ [1, n − 1] (2a)

ẋ∗
n = f (x∗) (2b)

or, in other words, to steer x(t) → x∗(t), where x∗(t) is solu-
tion of (2). The feedback-linearizing control input that achieves this
goal is u := g(x)−1

[
f (x∗) − Φ(x)�θ − Ke

]
with e := x − x∗ and

K :=
[
κ1 · · · κn

]
. In the case, that the parameters θ are unknown, we

use the certainty-equivalence adaptive controller

u = g(x)−1 [f (x∗) − Φ(x)�θ̂ − Ke
]

(3a)

˙̂
θ = γΦ(x)B�Pe (3b)

where B is part of a controllable pair (A, B), A is Hurwitz by de-
sign, and P = P � > 0 satisfies A�P + PA = −Q, given an arbitrary
positive-definite symmetric matrix Q. Then, defining the parameter-
estimation errors θ̃ := θ̂ − θ, we see that the closed-loop system takes
the form

ė = Ae + B(t, e)θ̃ (4a)

˙̃
θ = −γB(t, e)�Pe (4b)

with B(t, e) := −BΦ(e + x∗(t))�.
Clearly, the equation ė = Ae corresponds to that of the tracking

errors under the assumption that the parameters are known, which is
the starting point in certainty-equivalence-based adaptive control. If B
depended only on time, we would recover a well-studied system in
textbooks on adaptive control, e.g., [15]. However, even in the simplest
case in which (1) is linear, that is, if Φ(x)�θ := x�θ and g(x) ≡
const., the resulting closed-loop system is nonlinear time varying; this
is a well-documented fact [2], [10] that is sometimes obliterated in the
literature. Thus, we see that the benefits of feedback linearization are
lost in the case of uncertainties, whereas the use of other nonlinear
control techniques, such as passivity based, do not necessarily render
the stability analysis problem significantly more complex. In either
case, we are often confronted to analyze systems of the form

ẋ1 = F (t, x1 ) + Φ(t, x1 )x2 (5a)

ẋ2 = −σΦ(t, x1 )�
∂V1

∂x1

�
, σ > 0 (5b)

with states x1 ∈ Rn and x2 ∈ Rm , V1 : R≥0 × Rn → R≥0 is a func-
tion that is (at least) one continuously differentiable and, for the pur-
pose of existence and uniqueness of solutions, the functions F and
Φ : R≥0 × Rn → Rn , and ∂ V 1

∂ x 1
are locally Lipschitz continuous in x,

uniformly in t.
Systems (5), under the following standing hypotheses that we de-

scribe in detail below, are our subject of study.

B. Main Assumptions

Assumption 1: There exist K∞ functions β1 , β2 : R≥0 → R≥0 ,
positive definite functions ρ1 , γ1 : R≥0 → R≥0 , and a positive-definite

and radially unbounded function V1 : R≥0 × Rn → R≥0 such that

β1 (|x1 |) ≤ V1 (t, x1 ) ≤ β2 (|x1 |) (6a)

∂V1

∂t
+

∂V1

∂x1
F (t, x1 ) ≤ −γ1 (|x1 |) (6b)

max
{ ∣∣

∣
∣
∂V1

∂x1

∣∣
∣
∣ , |F (t, x1 )|

}
≤ ρ1 (|x1 |). (6c)

The condition (6c) simply imposes that F (t, 0) ≡ 0 and F (t, x1 ) ≡
0 is uniformly bounded in t; similarly, for ∂V1/∂x1 .

More importantly, the class of systems for which inequalities (6a)
and (6b) hold, includes marginally stable systems. This follows, by a
direct computation, observing that the function

V2 (t, x) := V1 (t, x1 ) +
1
2σ

|x2 |2 (7)

where x := [x�
1 x�

2 ]�, is positive definite and radially unbounded and,
moreover, its total derivative along the trajectories of (5) yields

V̇2 (t, x) ≤ −γ1 (|x1 |) (8)

which is negative semidefinite. Hence, a key feature of the systems (5)
under Assumption 1 is the property (8) from which, together with (6a),
one can conclude uniform global stability and even infer that x1 → 0.
For instance, if γ1 (s) ∝ s2 , we see that x1 ∈ L2 ∩ L∞, and x2 ∈ L∞.
In this case, standard arguments that appeal to Barbălat’s lemma may
be used to conclude that x1 → 0.

In the following, we construct a strict Lyapunov function for (5) by
regarding this system as if composed of a nominal (simpler) part and
some vanishing output-injection terms that depend on x1 . That is, let

K(t, x1 ) := [Φ(t, x1 ) − Φ◦(t)] and Φ◦(t) := Φ(t, 0). (9)

Then, the equations in (5) are equivalent to

ẋ1 = F (t, x1 ) + Φ◦(t)x2 + K(t, x1 )x2 (10a)

ẋ2 = −σΦ◦(t)�
∂V1

∂x1

�
− σK(t, x1 )�

∂V1

∂x1

�
. (10b)

As previously discussed, in view of Assumption 1, we have
x1 (t) → 0 which, in view of (9), implies that K(t, x1 (t)) → 0. Fur-
thermore, since by assumption Φ(t, x1 ) is locally Lipschitz in x1 ,
uniformly in t and it is uniformly bounded in t, there exist a continuous
nondecreasing function ρ2 : R≥0 → R≥0 , such that

|K(t, x1 )| ≤ ρ2 (|x1 |). (11)

On the other hand, as we shall see through an example in
Section III, Φ◦ is reminiscent of a function of the system’s dynam-
ics, evaluated along exogenous signals, such as reference trajectories.
This is all the more significant since our second main hypothesis is
inspired by the fact that persistency of excitation of Φ◦, and not of
Φ(t, x) as it might be supposed, is sufficient and necessary for uniform
global asymptotic stability [18]. This brings us to our second main
hypothesis.

Assumption 2: There exist real positive numbers μ, T , and φM

such that

max
{ |Φ◦(t)|∞, |Φ̇◦(t)|∞

} ≤ φM (12a)
∫ t+T

t

Φ◦(s)�Φ◦(s)ds ≥ μI ∀ t ≥ 0. (12b)
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C. Main Result

Theorem 1: Consider the system (5) under Assumptions 1 and 2.
Then, the origin is uniformly globally asymptotically stable and it
admits a strict Lyapunov function V : R≥0 × Rn +m → R≥0 defined
as follows:

V(t, x) := 2cσV2 (t, x) + V3 (t, x) +
1
4
V4 (t, x2 ) + W (t, x) (13)

where c := φM +
φ 2

M
2

V3 (t, x) :=
3∑

i=1

αi

(
V2 (t, x)

)
, i ∈ {1, 2, 3} (14a)

V4 (t, x2 ) := −
∫ ∞

t

∣∣Φ◦(τ )x2
∣∣2 et−τ dτ (14b)

W (t, x) := −x�
1 Φ◦(t)x2 (14c)

and αi : R≥0 → R≥0 are positive definite nondecreasing functions
such that, for any λ1 and λ2 > 0, it holds that

∂α1

∂V2
(V2 (t, x))γ1 (|x1 |) ≥ φM

[
ρ2 (|x1 |) − ρ2 (0)

]
|x2 |2 (15)

∂α2

∂V2

(
β1 (|x1 |)

)
γ1 (|x1 |) ≥ λ2

2
φ2

M |x1 |2 +
λ1

2
ρ1 (|x1 |)2

+ γ ′
2 (|x1 |) + ρ3 (|x1 |)|x1 | (16)

α3 (β1 (|x1 |)) ≥ c|x1 |2 (17)

where ρ1 is defined in Assumption 1, ρ2 is introduced in (11) and, if
necessary, it is redefined to satisfy

8 ρ2 (0)φM ≤ μe−T . (18)

In addition, the function ρ3 : R≥0 → R≥0 is defined as

ρ3 (|x1 |) := σφM

[
ρ2 (|x1 |) + φM

]
ρ1 (|x1 |) (19)

and, for any positive-definite function γ2 : R≥0 → R≥0

γ ′
2 (|x1 |) := γ2 (|x1 |) + 2λ2φ

2
M ρ3 (|x1 |)2 . (20)

�
The inequalities (15)–(17) are all met by construction and K(t, 0) ≡

0 so, ρ2 may be chosen such that ρ2 (0) = 0; this obviates the condition
(18). Nonetheless, defining ρ2 so that ρ2 (0) > 0 be arbitrarily small
may result convenient to verify inequality (15) locally, in cases in which
the growth of ρ2 (s) is higher than that of γ1 (s) near the origin—see
Section III ahead. Furthermore, we stress that, through V2 , α1 is a
function of |x2 |2 and since it is smooth by design, |x2 |2 may be factored
out of ∂α1/∂V2 using the relation

ϕ(v) = v

∫ 1

0

∂ϕ

∂v
(sv)ds + ϕ(0)

which holds for any smooth function v �→ ϕ. For instance, if α1 is
constructed as a polynomial of degree p, that is

α1 (V2 ) := k1V2 + k2V
2

2 + · · · + kq V
p

2 (21)

Inequality (15) holds if there exist reals ki ≥ 0 such that

γ1 (|x1 |)
p∑

i=2

iki
i − 1
2σ

β1 (|x1 |)i−2 ≥ φM

[
ρ2 (|x1 |) − ρ2 (0)

]
(22)

where β1 is introduced in Assumption 1.

Proof of Theorem 1: First, we prove that V is positive definite on
Rn +m and radially unbounded. Then, we show that its total derivative
satisfies

V̇ ≤ −1
4
|Φ◦(t)x2 |2 − μe−T

8
|x2 |2 − γ2 (|x1 |) (23)

which is negative definite.
To establish the positivity and the radial-unboundedness of V , we

first observe that

φM

2
[ |x1 |2 + |x2 |2

] ≥ W (t, x) ≥ −φM

2
[ |x1 |2 + |x2 |2

]

while the function V4 defined in (14b) satisfies

−φ2
M |x2 |2 ≤ V4 (t, x2 ) ≤ −μe−T |x2 |2 . (24)

Thus, after (17), we obtain

2σcV2 (t, x) + α3 (V2 (t, x)) +
1
4
V4 (t, x2 ) + W (t, x) ≥ c

2
|x|2 .

Furthermore, V(t, x) is decrescent because it is bounded from above
by

[
α1 + α2 + α3 + 2σc Id

] ◦
(
β2 (|x1 |) +

1
2σ

|x2 |2
)

+ φM |x|2

where Id(s) = s.
We proceed now to evaluate the total derivative of V along the

trajectories of (5). To that end, let us define ξ := Φ◦(t)x2 . Then, the
total derivative of W along the trajectories of (5) yields

Ẇ (t, x) = − F (t, x1 )�ξ − |ξ|2 − x�
2 K(t, x1 )Φ◦(t)x2

− x�
1 Φ̇◦(t)x2 − σx�

1 Φ◦(t)Φ(t, x1 )�
∂V1

∂x1

�

and, for any λ1 , λ2 > 0, we have

Ẇ (t, x) ≤ λ1

2
ρ1 (|x1 |)2 +

|ξ|2
2λ1

− |ξ|2 + φM |x2 |2ρ2 (|x1 |)

+
|x2 |2
2λ2

+
λ2φ

2
M

2
|x1 |2

+ σφM |x1 |
[
ρ2 (|x1 |) + φM

]
ρ1 (|x1 |). (25)

In the computation of the latter, we used Young’s inequality to bound
cross-terms as well as (6c), (11), and (12a).

The total derivative of V3 (t, x) satisfies

V̇3 (t, x) ≤ −
[

∂α1

∂V2
+

∂α2

∂V2

]
γ1 (|x1 |) ≤ 0 (26)

where we used
[
∂α3/∂V2

]
V̇2 ≤ 0, which holds since α3 (V2 ) is non-

decreasing and V̇2 ≤ 0. Putting together (25), (26), and using (16), we
see that the total derivative of V3 + W along the trajectories of (10)
yields

V̇3 (t, x) + Ẇ (t, x) ≤ −
[ ∂α1

∂V2
γ1 (|x1 |) − φM ρ2 (|x1 |)|x2 |2

]

−
[
1 − 1

2λ1

]
|ξ|2 − γ ′

2 (|x1 |) +
1

2λ2
|x2 |2

so fixing λ1 > 1, we obtain, in view of (15),

V̇3 (t, x) + Ẇ (t, x) ≤ −1
2
|ξ|2 − γ ′

2 (|x1 |)

+
[ 1
2λ2

+ φM ρ2 (0)
]
|x2 |2 .
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Finally, we evaluate the total derivative of V4 in (13) and add it to
the previous expression. We have

V̇4 (t, x2 ) = |ξ|2 + V4 (t, x2 )

+ 2σx�
2

[∫ ∞

t

Φ◦(τ )�Φ◦(τ )Φ(t, x)et−τ dτ

]
∂V1

∂x1

�

so, using (12a), we obtain

V̇4 (t, x2 ) ≤ −μe−T |x2 |2 + |ξ|2 +
1

2λ2
|x2 |2

+ 2λ2σ
2φ4

M

[
φM + ρ2 (|x1 |)

]2
ρ1 (|x1 |)2 .

Thus, setting λ2 to satisfy

1
λ2

<
1
8
μe−T − φM ρ2 (0)

and in view of (20), we obtain inequality (23). �

III. ADAPTIVE CONTROL OF LAGRANGIAN SYSTEMS

We illustrate the utility of Theorem 1 by presenting, as far as we know
for the first time, a proof via Lyapunov’s direct method of uniform
global asymptotic stability for a well-known adaptive controller for
Euler–Lagrange systems. These are defined by the equations

Dθ (q)q̈ + Cθ (q, q̇)q̇ + gθ (q) = u, q ∈ Rn (27)

where Dθ : Rn → Rn×n defines the inertia matrix, which is positive
definite symmetric, Cθ : Rn × Rn → Rn×n defines the Coriolis-and-
centrifugal-forces matrix, which satisfies

Ḋθ (q) = Cθ (q, q̇) + Cθ (q, q̇)�. (28)

The function gθ : Rn → Rn defines the gravity forces vector. All these
functions depend, in addition to the generalized positions q and gen-
eralized velocities q̇, on lumped constant parameters θ ∈ Rm . It is
assumed, moreover, that Dθ , Cθ , and gθ are linear in θ, that is, there
exists a function Υ : R3n → Rm ×n such that the right-hand side of
(27) equals to Υ(q, q̇, q̇)�θ. Furthermore, in view of (28), Cθ is linear
in q̇ and, as it is customary, it is assumed that Dθ and Cθ is uni-
formly bounded for all q ∈ Rn . More precisely, there exist dm , dM ,
and kc > 0, such that, for all q, q̇ ∈ Rn , and θ ∈ Rm

dm ≤ |Dθ (q)| ≤ dM (29a)

|Cθ (q, q̇)| ≤ kc |q̇|. (29b)

The adaptive state-feedback tracking control problem for (27) con-
sists in the following. Given a sufficiently smooth reference trajectory
t �→ qd , bounded and with bounded derivatives, find an adaptive con-
troller so that q̃ := q − qd and ˙̃q := q̇ − q̇d tend to zero asymptotically.
This problem is solved, at least, since the seminal paper [24], where
the (non-uniform) convergence of the tracking errors is established and,
under a condition of persistency of excitation, in [29], it is showed that
the parameter estimation errors also converge to zero. In [30], a strict
Lyapunov function, with which global asymptotic stability is estab-
lished, is given for the non-adaptive case; see also [31] for a statement
on global exponential stability. To the best of our knowledge, the first
proof of uniform global asymptotic stability in the adaptive case (hence,
including uniform convergence of the parameter estimation errors) un-
der the action of the controller proposed in [24] was established in
[32], under a condition on persistency of excitation along the reference
trajectories. Here, we present, as far as we know for the first time, a

proof of uniform global asymptotic stability for the adaptive controller
of [24], via Lyapunov’s direct method.

We recall that the adaptive controller of [24] is given by

u = Dθ̂ q̈r + Cθ̂ (q, q̇)qr + gθ̂ (q) − kd s (30a)

˙̂
θ = −σΨ(t, q̃, s)s, σ > 0 (30b)

where s := q̇r − q̇, q̇r := q̇d (t) − λq̃, and λ, kd are positive constants.
Furthermore, θ̂ is an estimate of the unknown lumped parameters θ and
Ψ is the so-called regressor function which is defined by the identity

Dθ̃ (q)q̈r + Cθ̃ (q, q̇)q̇r + gθ̃ (q) =: Ψ(t, q̃, s)�θ̃ (31)

which holds in view of the linearity of Dθ , Cθ , and gθ with respect to θ.
For the purpose of analysis, we stress that the regressor Ψ is a function
of (t, q̃, s); indeed, we observe that even though the terms on left-hand
side of (31) are written as functions of q, q̇, q̈r , and q̇r , the latter are,
in turn, functions of the closed-loop variables q̃ and s, as well as time,
through the reference trajectories q̇d (t) and its derivatives. That is

q = q̃ + q̇d (t), q̇ = q̇d (t) − λq̃ − s

q̇r = q̇d (t) − λq̃, q̈r = q̈d (t) − λs + λ2 q̃.

Thus, with an abuse of notation, we write the closed-loop dynamics
of (27) with (30) as

Dθ (q)ṡ + Cθ (q, q̇)s + kd s = Ψ(t, q̃, s)�θ̃ (32a)

˙̃q = −λq̃ + s (32b)

˙̃
θ = −σΨ(t, q̃, s)s. (32c)

Now, as it was established in [30], a direct computation shows that
the total derivative of the function

V (t, q̃, s) :=
1
2
s�Dθ (q)s +

λkd

2
|q̃|2 +

1
2σ

|θ̃|2 (33)

along the trajectories of (32) yields

V̇ (t, q̃, s) ≤ −1
2

[
kd |s|2 + λkd |q̃|2

]
.

Remark 1: Once more, in the previous expressions, we used the fa-
miliar notation Dθ (q) instead of the more appropriate, but cumbersome
one, Dθ

(
q̃ + qd (t)

)
. •

This is the starting point to establish a direct proof of the following
statement, using Lyapunov’s first method—cf. [32].

Proposition 1: Consider the system (27) and assume that the in-
equalities in (29) hold. For the reference trajectories t �→ qd assume
that there exists βd > 0, such that

max
{
|q̈d |∞, |q̇d |∞, |qd |∞

}
≤ βd (34)

and there exist T and μ > 0 such that
∫ t+T

t

Ψ(τ, 0, 0)Ψ(τ, 0, 0)�dτ ≥ μI ∀ t ≥ 0. (35)

Then, the origin in the state space of the closed-loop system (32), that is
{(q̃, s, θ̃) = (0, 0, 0)}, is uniformly globally asymptotically stable. �

Remark 2: We stress that Ψ(t, 0, 0) is a matrix that depends only
on the reference trajectories and its derivatives and solves the identity

Dθ̃ (qd )q̈d + Cθ̃ (qd , q̇d )q̇d + gθ̃ (qd ) =: Ψ(t, 0, 0)�θ̃ (36)

in which we dropped the argument (t) from qd (t) and its deriva-
tives. Moreover, the condition (35) is also necessary for uniform global
asymptotic stability [32]. •
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The statement of Proposition 1 is a consequence of the following
original result.

Proposition 2: The closed-loop system (32), under the conditions
of Proposition 1, admits the strict Lyapunov function

V(t, q̃, s, θ̃) :=
3∑

j=1

δj

[
1
2
s�Dθ (q(t))s +

λkd

2
|q̃|2 +

1
2σ

|θ̃|2
]j

−
∫ ∞

t

∣∣Dθ (qd (τ ))−1Ψ(τ, 0, 0)�θ̃
∣∣2 et−τ dτ

− s�Dθ (qd (t))−1Ψ(t, 0, 0)�θ̃ (37)

which is positive definite, radially unbounded, and its derivative satis-
fies

V̇(t, q̃, s, θ̃) ≤ −1
2
γ ′

1

[ |s|2 + |q̃|2 ] − 1
8
μe−T |θ̃|2 (38)

where γ ′
1 := (kd/2) min

{
1, λ

}
, for sufficiently large values of the

constant parameters δj > 0. �
Proof: The construction of V follows by verifying the conditions

of Theorem 1. The first step is to write the closed-loop equations in the
form (5). To that end, let

x1 := [q̃ s]�, x2 := θ̃.

Then, since Dθ (q) is invertible for all q ∈ Rn , we may define

F (t, x1 ) :=

[
−λI I

0
[
D−1

θ Cθ + kd I
]

][
q̃
s

]
(39)

Φ(t, x1 ) =
[

0
D−1

θ Ψ(t, q̃, s)�

]
(40)

in which, to simplify the notation, we dropped the arguments of Dθ (q̃ +
qd (t))−1 and Cθ (q̃ + qd (t), q̇d (t) − λq̃ − s).

The function V1 in Assumption 1 corresponds to the first two terms
of the function V in (33) and corresponds to the function proposed in
[30], which we repeat here for convenience

V1 (t, x1 ) :=
1
2
s�Dθ (q(t))s +

λkd

2
|q̃|2 . (41)

That is

∂V1

∂x1

�
=

[
λkd q̃

Dθ (q(t))s

]

so, (32c) has exactly the form (5b) and, actually, the system (32) has
the form of (5).

Now, we verify Assumption 1. On one hand, the inequalities in (6a)
follow from (29) with

β1 (|x1 |) := β ′
1 |x1 |2 , β2 (|x1 |) := β ′

2 |x1 |2 (42)

where

β ′
1 :=

1
2

min
{
dm , λkd

}
β ′

2 :=
1
2

max
{
dM , λkd

}
.

On the other hand, a direct computation using (28) shows that (6b)
holds with γ1 (|x1 |) := γ ′

1 |x1 |2 and, after (29a)
∣
∣
∣
∣
∂V1

∂x1

∣
∣
∣
∣ ≤ ρ′

1 |x1 |, ρ′
1 := max

{
dM , λkd

}
.

In addition, a simple inspection of (39) and the inequalities in (29)
shows that F (t, x1 ) is of order |x1 |2 for large |x1 | and of order |x1 |
near zero. Hence, (6c) holds with

ρ1 (|x1 |) := ρ11 |x1 | + ρ12 |x1 |2 (43)

where ρ11 ≥ ρ′
1 and ρ12 depend on βd in (34) as well as on dm and kc

in (29).
Next, we verify Assumption 2. Inequality (12a) holds because Φ◦ and

Φ̇◦ are continuous functionals of qd , q̇d , and q̈d , which are bounded—
see (34), whereas (12b) is equivalent to (35), since Dθ (·)−1 is full
rank.

Now, we proceed to construct three functions α1 , α2 , and α3 , sat-
isfying (15)–(17). The fact that β1 , β2 , ρ1 , and γ1 are polynomials
motivates a similar choice for the functions αi . To determine their re-
spective orders [so that (15)–(17) hold] it is left to find an appropriate
function ρ2 which, in turn, shall determine ρ3 . For this, we see that
all the functions on the left-hand side of (27) are at most of quadratic
growth hence, in view of (29) and (34), there exist ρ21 and ρ22 > 0
such that

∣
∣Ψ(t, q̃, s) − Ψ(t, 0, 0)

∣
∣ ≤ ρ21 |x1 | + ρ22 |x1 |2 . (44)

This implies that (11) holds with ρ2 (|x1 |) = ρ21 |x1 | + ρ22 |x1 |2 .
Nonetheless, another simple inspection shows that with this choice
of ρ2 , the condition (15) may not hold locally (i.e., near zero) the left-
hand side of this inequality is at least of second order in |x1 | (due to
the factor γ1 ), whereas the right-hand side contains a first-order term
of |x1 |. Therefore, we use the inequality |x1 | ≤ 1 + |x1 |2 to redefine
ρ2 as

ρ2 (|x1 |) :=
ερ21

2
+

[ρ21

2ε
+ ρ22

]
|x1 |2 , ε > 0. (45)

With this new choice of ρ2 (11) still holds and, moreover, inequality
(22) holds with p = 2, for sufficiently large k2 ; in turn, this implies
(15). It is to be noted that the choice of ε > 0 is determined by (18),
this lifts any possible restriction on the parameters μ and T , which
are given. Thus, we conclude that defining α1 (V2 ) as a second-order
polynomial of V2 will do.

Next, we construct α2 so that inequality (16) hold. Let γ2 (|x1 |) :=
(1/2)γ ′

1 |x1 |2 . A simple inspection, using (43) and (45), shows that ρ3

in (19) is a polynomial of fourth order, hence the right-hand side of
(16) is bounded from above by

5∑

j=2

�j |x1 |j , �j > 0.

Therefore, using the triangle inequality

�j |x1 |j ≤ 1
2
[
�j |x1 |j−1 + �j |x1 |j+1 ]

for j = 3 and j = 5, we see that (16) holds if α2 (V2 ) is a polynomial
of third order that is, if

α2 (V2 ) :=
3∑

j=1

kj V
j

2 .

Indeed, if such is the case

∂α2

∂V2

(
β ′

1 |x1 |2
)
γ ′

1 |x1 |2 ≥ γ ′
1

3∑

j=1

jkj β
′j−1
1 |x1 |2j .

So, (16) holds provided that kj are sufficiently large.
The term α3 (V2 ) is designed to make V positive definite and radially

unbounded. Inequality (17) trivially holds with α3 (β1 ) := (c/β ′
1 )β1 .

Finally, from (40), we see that V4 and W correspond to the last two
terms on the right-hand side of (37), respectively.

Thus, all the conditions of Theorem 1 hold with the function V in
(37), which is of the form (13), α1 , α2 , and α3 being polynomials in
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V2 of second, third, and first order, respectively, and the inequality (23)
corresponds in this case to (38). �

IV. CONCLUSION

We have provided a relatively simple and intuitive strict Lyapunov
function for nonlinear time-varying systems that appear in the context
of passivity-based adaptive control. We believe that the construction
provided here may serve as a building block in the solution of other
complex problems, such as adaptive observer-based tracking control.
In that regard, we provided a strict Lyapunov function for a well-known
controller that is recurrently used in its original or in modified forms, in
a variety of more modern control problems, such as formation control
and synchronization.

REFERENCES

[1] K. Narendra and A. Annaswamy, “Robust adaptive control in the presence
of bounded disturbances,” IEEE Trans. Autom. Control, vol. 31, no. 4,
pp. 306–315, Apr. 1986.

[2] H. Khalil, Nonlinear Systems. New York, NY, USA: Macmillan, 2nd ed.,
1996.
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[23] F. Mazenc and D. Nesić, “Lyapunov functions for time varying systems
satisfying generalized conditions of Matrosov theorem,” in Proc. 44th
IEEE Conf. Decis. Control, 2005, pp. 5432–5437.

[24] J. J. Slotine and W. Li, “Adaptive manipulator control: A case
study,” IEEE Trans. Autom. Control, vol. 33, no. 11, pp. 995–1003,
Nov. 1988.
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