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Input-to-State Safety With Control
Barrier Functions

Shishir Kolathaya and Aaron D. Ames

Abstract—This letter presents a new notion of input-
to-state safe control barrier functions (ISSf-CBFs), which
ensure safety of nonlinear dynamical systems under input
disturbances. Similar to how safety conditions are speci-
fied in terms of forward invariance of a set, input-to-state
safety conditions are specified in terms of forward invari-
ance of a slightly larger set. In this context, invariance of the
larger set implies that the states stay either inside or very
close to the smaller safe set; and this closeness is bounded
by the magnitude of the disturbances. The main contribu-
tion of the letter is the methodology used for obtaining a
valid ISSf-CBF, given a control barrier function. The asso-
ciated universal control law will also be provided. Towards
the end, we will study unified quadratic programs that com-
bine control Lyapunov functions and ISSf-CBFs in order to
obtain a single control law that ensures both safety and
stability in systems with input disturbances.

Index Terms—Safety critical control, barrier functions,
input-to-state safety, autonomous systems.

I. INTRODUCTION

REAL-TIME safety in dynamical systems has been receiv-
ing a lot of attention of late: [1], [2], [6], [11], [18].

Safety was initially studied in 2005, when barrier certificates
were introduced in [8] that certified whether a given dynamical
system was safe or not. This was later adapted for real-time
safety critical control via control barrier functions (CBFs),
which were first introduced in [17]. Yet these CBFs did not
allow for safety to be imposed on top of an existing controller
or in conjunction with stability conditions; both of which are
necessary in robotic systems.

Real-time optimization based controllers can be imple-
mented on robotic systems like quadrotors, automotive
systems, and mobile robots due to the accessibility of high
processing capability in remarkably small dimensions. With
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this access to technology, there were several key contributions
in realizing a unifying controller that ensures both safety and
stability via quadratic programs (QPs) [1], [6], [18]. In par-
ticular [1], [18] developed a new notion of control barrier
functions together with conditions that are necessary and suf-
ficient for set invariance. Therefore, CLFs and CBFs can be
encoded as constraints in a single QP that can either a) ensure
both stability and safety or b) prioritize safety or stability over
the other depending upon the applications.

To date, this new notion of CBFs have been successfully
implemented in automotive systems [19], flying systems [15],
multi-robot systems [16], and also walking robots [5]. It has
also been observed that in all these systems uncertainties were
a common occurrence, and we had no means to characterize
them in a formal manner. For example, in [19], safety was
considered in the context of lane keeping, and a barrier func-
tion was used to encode lane boundaries. When the lanes were
narrow, small errors in sensing lead to breaching of the lane
limits. In [15], safety was imposed between the agents in the
form of radial distances, and delay in actuation and sensing
resulted in collisions. A standard workaround to address these
types of uncertainties is to allow some buffer in the margins,
but, there is no existing literature that allows to make an esti-
mate of this buffer while providing a means to study safety
under uncertainties. This is contrary to the fact that there are
existing notions of robustness for modeling and sensing based
uncertainties in the field of stability [14].

Safety and stability have very similar properties and the
construction of Lyapunov-like conditions for barrier functions
(BFs) enabled the translation of concepts from the field of
stability analysis to the domain of safety and characterizations
thereof. There are key contributions in converse Lyapunov-
like theorems [2], construction of barrier functions via sum of
squares [7], and especially, robustness analysis via the notion
of input-to-state safety (ISSf) [9]. Input-to-state safety (ISSf)
is the equivalent of input-to-state stability (ISS) [14], which
is an elegant theory used to characterize stability of nonlinear
systems under input disturbances.

The main objective of this letter is to build upon the
notion of ISSf presented in [9], extending it in the context of
Lypunov-like characterizations of ISSf. Therefore our focus
will be on the construction of input-to-state safe (or safe-
guarding) control barrier functions (ISSf-CBFs), which are
crucial for robust implementations of real-time safety critical
controllers in nonlinear systems. We will study CBFs, and
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the associated ISSf-CBFs, and also realize a unified quadratic
program (QP) based formulation that ensures both safety and
stability in nonlinear systems under input disturbances.

We will first formally define the notion of input-to-state
safety (ISSf) w.r.t. sets. ISSf w.r.t. systems was originally
defined in [10]. Our choice for an alternative definition is moti-
vated by the problem definition in [1]. Having defined ISSf, we
will also define input-to-state safe control barrier functions
(ISSf-CBFs). Similar to how CBFs are constructed for ensur-
ing safety of sets, we will construct ISSf-CBFs for ensuring
ISSf of sets. We will establish that given a CBF, an associ-
ated ISSf-CBF can be constructed that always ensures that the
states stay either inside or very close to the safe set. We will
finally construct a quadratic program (QP) that contains both
CLF and ISSf-CBF based constraints that results in a unified
safeguarding-stabilizing controller under input disturbances.
This will be further demonstrated in two examples.

A preliminary on CBFs will be provided in Section II. ISSf
will be described in Section III, ISSf-CBFs will be described
in Section IV, and finally, the unification of stability and input-
to-state safety via QPs will be described in Section V.

II. PRELIMINARY ON CONTROL BARRIER FUNCTIONS

In this section, we will study barrier functions and also state
their relationships with forward invariance of a set (see [2],
wherein the version we considered was called zeroing barrier
functions). We consider a system of the form:

ẋ = f (x), (1)

where x ∈ R
n, f : R

n → R
n is locally Lipschitz. Given an

initial condition x0 := x(t0) ∈ R
n, there exists a maximum time

interval I(x0) = [t0, tmax) such that x(t) is the unique solution
to (1) on I(x0); in the case when (1) is forward complete,
tmax = ∞. A set S ⊂ R

n is forward invariant w.r.t. (1) if
for every x0 ∈ S, x(t) ∈ S for all t ∈ I(x0). If S is forward
invariant, then we call the set S safe.

Given a closed set C ⊂ R
n (which is a strict subset of R

n),
we determine conditions such that it is forward invariant. C is
defined as

C = {x ∈ R
n : h(x) ≥ 0}, (2)

∂C = {x ∈ R
n : h(x) = 0}, (3)

Int(C) = {x ∈ R
n : h(x) > 0}, (4)

where h : R
n → R is a continuously differentiable function. It

is also assumed that Int(C) is non-empty and C has no isolated
points, i.e., Int(C) �= ∅, and Int(C) = C.

Notation: A continuous function α : [0, a) → [0,∞) for
some a > 0 is said to belong to class K if it is strictly increas-
ing and α(0) = 0. Here, a is allowed to be +∞. A continuous
function α : [0,∞) → [0,∞) is said to belong to class K∞ if
it is strictly increasing, α(0) = 0, and α(r) → ∞ as r → ∞.
A continuous function α : (−b, c) → (−∞,∞) is said to
belong to extended class K for some b > 0, c > 0 if it is
strictly increasing and α(0) = 0 (see [18, Definition 1]). Here
again, b, c are allowed to be +∞. To indicate the domains, we
will denote class K and extended class K functions as K[0,a),
K(−b,c) respectively.

Given the state x, we denote its Euclidean norm as |x|. For
a signal d : R≥0 → R

m, its L
m∞ norm is given by ‖d‖∞ :=

ess supt |d(t)|.

A. Barrier Functions

Given the set C, our objective is to establish safety by taking
into consideration a larger set D ⊆ R

n. This is similar in
analogy to establishing local stability results for systems (see
Remark 1). By assuming that D is open, we have the following
definition of a barrier function (BF).

Definition 1: For the dynamical system (1), a continuously
differentiable function h : R

n → R is a barrier function (BF)
for the set C ⊂ R

n defined by (2)-(4), if there is an open set
D with C ⊂ D ⊆ R

n, an α ∈ K(−b,c) with b, c appropriately
chosen, such that for all x ∈ D,

Lf h(x) ≥ −α(h(x)). (5)

Here Lf h is the Lie derivative of h w.r.t. f . b, c must be
picked such that h(x) ∈ (−b, c). See Remark 1.

Remark 1: To illustrate the importance of D we consider
the following differentiable function:

h(x) =
⎧
⎨

⎩

−1 if x < −1
sin

(
π
2 x

)
if −1 ≤ x < 1

1 if 1 ≤ x
. (6)

It can be verified that C = {x : x ≥ 0}. In addition, if x < −1,
then ∂h

∂x = 0. In other words, h cannot be a valid BF for any
x ∈ (−∞,−1). In order to not restrict our choices of h, we
typically pick a smaller set D that contains C for x. For the
example above, D = (−1,∞).

With this viewpoint, we will make a few of the notations
precise (which will be useful for defining the comparison
functions later on):

b := − inf
x∈Rn

h(x), c := sup
x∈Rn

h(x), e := − lim
r→−b

α(r). (7)

Note that, here, −b, c are the boundaries of the domain of the
extended class K function α introduced in Definition 1. This
ensures that α(h(x)) is well defined for all x. We will define
D for the rest of the letter as

D := {x ∈ R
n : h(x) + b > 0}. (8)

B. Control Barrier Functions

Having defined the BF, h, we can now define control barrier
functions (CBFs).1 Consider the affine control system:

ẋ = f (x) + g(x)u, (9)

with f : R
n → R

n, g : R
n → R

n×m being locally Lipschitz,
x ∈ R

n, and u ∈ U ⊂ R
m. When the set C is not forward

invariant under the natural dynamics of the system, ẋ = f (x),
we are interested in the controller k : R

n → R
m, that can be

specified that will ensure invariance of C. We call this con-
troller a safeguarding controller w.r.t. the set C. We can obtain
a suitable safeguarding controller via CBFs.

1Which were called zeroing control barrier functions in [2].
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Definition 2: Given a set C ⊂ R
n defined by (2)-(4) for a

continuously differentiable function h : R
n → R, the func-

tion h is called a control barrier function (CBF) defined
on the open set D (8) with C ⊂ D ⊆ R

n, if there exists
a set of controls U, and an α ∈ K(−b,c) such that for
all x ∈ D,

sup
u∈U

[
Lf h(x) + Lgh(x)u

] ≥ −α(h(x)). (10)

Here Lf h, Lgh are the Lie derivatives. If C is compact, the
BF h not only ensures forward invariance, but also ensures
asymptotic stability of C (see [18, Proposition 4]).

III. PRELIMINARY ON INPUT-TO-STATE SAFETY

The notion of input-to-state safety (ISSf) was first defined
in [9] and then in [10], wherein the problem formulation was
slightly different, i.e., a set of unsafe states Du ⊂ R

n was
defined, and the goal was to stay away from this unsafe set.
In this letter, since our goal is to stay in the superlevel set C

(see [18, pp. 1–2] for the advantages), we will redefine the
notion of ISSf for the problem definition and notations pro-
vided here (and also in [2]). In addition, in formulations similar
to the notion of input-to-state stability [13], we consider a
safeguarding controller k : R

n → R
m and posit that additional

disturbance d is added to the safeguarding controller. This
is similar to the construction of input-to-state stabilizing con-
trollers in [13]. We intended to apply a safeguarding controller
k(x), but instead k(x) + d(t) was applied to the actual con-
trol system (9). Accordingly, we have the following dynamical
system:

ẋ = f̄ (x) + g(x)d(t), where f̄ (x) := f (x) + g(x)k(x). (11)

We make preliminary assumptions that d ∈ L
m∞. Given this

problem setup, the goal is to ensure that the states remain
either in the superlevel set C, or at least close to C. The close-
ness to the superlevel set is directly related to the smallness
of the disturbance input d.

We say that the set C is safe if it is forward invariant.
Accordingly, we say that C is input-to-state safe (ISSf) if
a slightly larger set Cd ⊇ C is forward invariant. Similar
to (2)-(4), we define the set Cd as

Cd = {x ∈ R
n : h(x) + γ (‖d‖∞) ≥ 0}, (12)

∂Cd = {x ∈ R
n : h(x) + γ (‖d‖∞) = 0}, (13)

Int(Cd) = {x ∈ R
n : h(x) + γ (‖d‖∞) > 0}, (14)

for some γ ∈ K[0,a), and ‖d‖∞ ≤ d̄ ∈ [0, a). The constant a
satisfies limr→a γ (r) = b, which ensures that γ (d̄) < b, which,
in turn, ensures that Cd ⊂ D. It is also assumed that Int(Cd) =
Cd. Having defined Cd, we have the following formal definition
for the set C being (locally) ISSf.

Definition 3: Given a set C ⊂ R
n defined by (2)-(4) for a

continuously differentiable function h : R
n → R, and an open

set D (8) with C ⊂ D ⊆ R
n, the set C is called a (local)

input-to-state safe set, if there exists a γ ∈ K[0,a) satisfying
limr→a γ (r) = b, and a constant d̄ ∈ [0, a), such that for all d
satisfying ‖d‖∞ ≤ d̄, the set Cd ⊂ D defined by (12)-(14) is

Fig. 1. Figure showing some examples of safe and the corresponding
ISSf sets. Blue regions are C, and grey+blue regions are Cd .

forward invariant. In other words, the set C is called an ISSf
set if the set Cd, which depends on d, is safe.

Remark 2: The above definition of ISSf is w.r.t. sets, and
not w.r.t. systems (quite unlike the definitions from [10]).
See Fig. 1 for some examples of ISSf sets. If ‖d‖∞ ≥ a
with a finite, then Cd may not necessarily be contained in
D, and Definition 3 is no longer valid. This is the reason for
including d̄, which is less than a. This can be extended for any
arbitrary ‖d‖∞ if the constants a, b are +∞. In other words,
the definition is global if γ ∈ K[0,∞) and infx∈Rn h(x) = −∞.

The global notion of ISSf is less interesting due to the
fact that large disturbances imply Cd is large, which, in turn,
implies that the states are far into the unsafe zone. Therefore,
we will omit the term local in the ensuing definitions and
results for ISSf.

To motivate the importance of ISSf, we will begin by
studying a concrete example.

Example 1: Consider the system

ẋ = −x + x2u, (15)

along with the safe set C = {x ∈ R : h(x) = 2 − x ≥ 0}. The
goal is to ensure that x(t) ≤ 2 for all t. It can be verified that
k(x) ≡ 0 is, indeed, a safeguarding controller. We have that

ḣ(x) = Lf h(x) = x ≥ x − 2 = −h(x), (16)

which implies that h(x(t)) ≥ 0, if h(x(0)) ≥ 0. Even if x starts
from an unsafe zone, it can be verified that x eventually enters
the safe set C. On the other hand, if a disturbance d is added
(i.e., u = k(x) + d(t)), we have the following:

ḣ(x, d) = x − x2d(t). (17)

If x0 = x(0) = 2 and d(t) = 1, it can be verified that the
state propagates in an unbounded fashion in the unsafe zone.
Despite the application of a safeguarding controller, addition
of a small disturbance input can drive the states away from
the safe set C. In order to address this problem, we propose
the following safeguarding controller:

k(x) = Lgh(x) = −x2, (18)

which yields

ḣ(x, d) = x + x4 − x2d(t)

= x + x4 − x2d(t) + 1

4
d(t)2 − 1

4
d(t)2

≥ x − 1

4
‖d‖2∞, (19)
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Fig. 2. Figure showing the response for different values of input distur-
bances (left) and initial conditions (right) for a safeguarding controller of
the type (18). The dashed line corresponds to x = 2, the boundary of
the safe set.

where the disturbance is replaced with its norm. It can be
verified that the states will either stay close to or enter the
safe zone for small values of d and as ‖d‖∞ → 0 the state x
eventually enters the safe zone (see Fig. 2). This is the type
of formulation we are interested in, and we will use this as
the motivation to construct input-to-state safe barrier functions
(ISSf-BFs).

Remark 3: If a controller is applied such that the resulting
set Cd is rendered safe, we call this controller an input-to-state
safeguarding controller. It can be observed that the new con-
troller (18) is, in fact, an input-to-state safeguarding controller,
which will be the basis for the main result here.

A. Input-to-State Safe Barrier Function

Having defined the notion of ISSf, we have the following
definition of input-to-state safe barrier function (ISSf-BF).

Definition 4: Given the dynamical system (11), a continu-
ously differentiable function h : R

n → R is an input-to-state
safe barrier function (ISSf-BF) for the set C ⊂ R

n defined
by (2)-(4), if there exists an open set D (8) with C ⊂ D ⊆ R

n,
an α ∈ K(−b,c), an ι ∈ K[0,a) satisfying limr→a ι(r) = e, and
a constant d̄ ∈ [0, a), such that ∀ x ∈ D, ∀ μ ∈ R

m satisfying
|μ| ≤ d̄,

Lf̄ h(x) + Lgh(x)μ ≥ −α(h(x)) − ι(|μ|). (20)

Here Lf̄ h is the Lie derivative of h w.r.t. f̄ . We have the
following result.

Theorem 1: Given the dynamical system (11), a set C ⊂ R
n

defined by (2)-(4) for some continuously differentiable func-
tion h : R

n → R, and the set Cd defined by (12)-(14) for some
γ ∈ K[0,a) satisfying limr→a γ (a) = b, and d̄ ∈ [0, a), if h is
an ISSf-BF defined on the open set D (8) with C ⊂ D ⊆ R

n,
then the set C is ISSf.

Proof: We need to prove that the set Cd defined by (12)-(14)
for some γ ∈ K[0,a), d̄ ∈ [0, a), and for all d satisfying
‖d‖∞ ≤ d̄, is forward invariant. Given the disturbance d,
define the new function

η(x, d) := h(x) + γ (‖d‖∞). (21)

Since h is an ISSf-BF, we have the following from (20):

η̇(x, d) = ḣ(x, d) ≥ −α(h(x)) − ι(‖d‖∞)

= −α(η(x, d) − γ (‖d‖∞)) − ι(‖d‖∞), (22)

where η is substituted for h. The next steps are similar to proof
of [2, Proposition 1], where we consider the set ∂Cd (13). If
x ∈ ∂Cd, then η = 0, and (22) reduces to

η̇(x, d) ≥ −α(−γ (‖d‖∞)) − ι(‖d‖∞). (23)

Substitute for β(r) := −α(−r), which is a valid class K func-
tion2 only if r < b. Therefore, we will pick γ = β−1 ◦ ι, and
a small enough d̄ such that the following is satisfied

β−1 ◦ ι(d̄) < b. (24)

Rest of the proof follows [2, Proposition 1], i.e., η̇ ≥ 0 for
η = 0 ⇒ Cd is invariant.

Remark 4: The above result can also be applied for expo-
nential-type barrier functions with α(h(x)) := λh(x) for some
λ > 0. This can be substituted in (22) to obtain the following
invariant set:

Cd = {x ∈ R
n : h(x) + 1

λ
ι(‖d‖∞) ≥ 0}. (25)

It can be verified that for Example 1, Cd = {x : 2 − x +
‖d‖2∞

4 ≥ 0}. We will now study ISSf-CBFs that guarantee ISSf
of C.

IV. INPUT-TO-STATE SAFE CONTROL

BARRIER FUNCTIONS

We will first provide a formal definition for input-to-state
safe control barrier function (ISSf-CBF).

Definition 5: Given a set C ⊂ R
n defined by (2)-(4) for a

continuously differentiable function h : R
n → R, the function

h is called an input-to-state safe control barrier function
(ISSf-CBF) defined on the open set D (8) with C ⊂ D ⊆ R

n,
if there exists a set of controls U, an α ∈ K(−b,c), an ι ∈ K[0,a)

satisfying limr→a ι(r) = e, and a constant d̄ ∈ [0, a), such that
∀ x ∈ D, ∀ μ ∈ R

m satisfying |μ| ≤ d̄,

sup
u∈U

[
Lf h(x) + Lgh(x)(u + μ)

] ≥ −α(h(x)) − ι(|μ|). (26)

Motivated by constructions developed by Sontag, specifi-
cally [13, eqs. (23) and (32)], we can construct ISSf-CBFs
in the following manner. Given a safeguarding controller k(x),
we consider the following controller, which we claim to render
the set C ISSf:

u(x) = k(x) + Lgh(x)T , (27)

which, incidentally, was also utilized in Example 1. Based on
this controller, we have the following theorem which defines
a new ISSf-CBF that renders C ISSf.

Theorem 2: Given a set C ⊂ R
n defined by (2)-(4) for a

continuously differentiable function h : R
n → R, an open set

D (8) with C ⊂ D ⊆ R
n, and a set of controls U, if h satisfies

sup
u∈U

[Lf h(x) + Lgh(x)u − Lgh(x)Lgh(x)T ] ≥ −α(h(x)), (28)

for some α ∈ K(−b,c), and for all x ∈ D, then h is an ISSf-CBF
defined on the set D.

2β(0) = 0. If r1 > r2 > 0, then −α(−r1) > −α(−r2) > 0. The domain
of β is [0, b) and range is [0, e). Therefore, for β−1, the domain and range
are flipped, which implies that β−1 ◦ ι is well defined.
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Proof: After substituting (28) into the derivative of h:

ḣ(x, d) = sup
u∈U

[Lf h(x) + Lgh(x)(u + d(t))]

≥ −α(h(x)) + Lgh(x)Lgh(x)T + Lgh(x)d(t)

≥ −α(h(x)) + |Lgh(x)|2 − |Lgh(x)|‖d‖∞, (29)

since LghLghT = |Lgh|2. Adding and subtracting 1
4‖d‖2∞

yields

ḣ(x, d) ≥ −α(h(x)) +
(

|Lgh(x)| − ‖d‖∞
2

)2

− ‖d‖2∞
4

≥ −α(h(x)) − ‖d‖2∞
4

, (30)

which is of the form (26).
Remark 5: Similar to the universal stabilization formula

by Sontag [12], we provide here the universal input-to-state
safeguarding formula by using (27) and Theorem 2:

u(x) =
⎧
⎨

⎩

0 if B(x) = 0
(
−A(x)+

√
A(x)2+|B(x)|4

)

B(x)T B(x)
B(x) + B(x) otherwise

Here A(x) = Lf h(x) + α(h(x)), B(x) = Lgh(x)T . It can be
verified that A(x) ≥ 0 whenever B(x) = 0.3

V. CONTROL LYAPUNOV FUNCTIONS AND

CONTROL BARRIER FUNCTIONS

In this section, we will study the union of stability and
safety, i.e., the union of stabilization via control Lyapunov
functions (CLFs) and safeguarding via control barrier func-
tions (CBFs). These results were well established by [11],
and by [1], and the goal here is to extend them for inputs
with disturbances.

Consider the system of the form (9), and the corresponding
CBF (Definition 2). We know that the set C defined by (2)-(4)
is safe when a safeguarding controller is applied. If in addition,
we have a stabilization problem, we utilize control Lyapunov
functions (CLFs).

Definition 6: A continuously differentiable function
V : R

n → R≥0 is a control Lyapunov function (CLF), if there
exists a set of controls U ⊂ R

m, and class K∞ functions
α, ᾱ, αv, such that for all x ∈ D with C ⊂ D ⊆ R

n,

α(|x|) ≤ V(x) ≤ ᾱ(|x|)
inf
u∈U

[Lf V(x) + LgV(x)u] ≤ −αv(|x|). (31)

Here Lf V and LgV are the Lie derivatives. Given a CLF
V and a BF h, they can be combined into a single controller
through the use of a quadratic program (QP) in the following
manner [1, Sec. III.B].

u∗(x) = arg min
u=(u,δ)∈Rm+1

1

2
uTH(x)u + FT(x)u (QP)

s.t.

Lf V(x) + LgV(x)u ≤ −αv(|x|) + δ (CLF)

Lf h(x) + Lgh(x)u ≥ −α(h(x)), (CBF)

3On a different note, if B(x) �= 0 always, then we can use a min-
norm controller (like in [1, (22)-(24)]), which is always preferred due to its
optimality.

Fig. 3. Figure showing the response for different values of input distur-
bances (left) and ε (right) for the controller of the type (ISSf-CBF). H was
chosen to be a constant diagonal matrix, and F = 0. The dashed lines
correspond to x = ±2, the boundary of the safe set. The plots show
responses to constant values of d ’s, and the boundedness is true for all
bounded functions of time d(t).

where here H(x) ∈ R
(m+1)×(m+1) and F(x) ∈ Rm+1 are

arbitrary smooth functions that can be chosen based on the
type of control inputs. δ > 0 is the relaxation term used to
ensure feasibility of the QP. It can be verified that this type of
control law u∗(x), with H positive definite, is Lipschitz con-
tinuous and renders the set C, defined by h, forward invariant
[1, Th. 2]. It can also be verified that (QP) may not necessarily
guarantee forward invariance of C under input disturbances4

(see Example 2). We will therefore utilize the following QP
formulation:

u∗(x) = arg min
u=(u,δ)∈Rm+1

1

2
uTH(x)u + FT(x)u (ISSf-QP)

s.t.

Lf V(x) + LgV(x)u ≤ −αv(|x|) + δ

Lf h(x) + Lgh(x)u − εLgh(x)Lgh(x)T ≥ −α(h(x)),

(ISSf-CBF)

which will ensure forward invariance of a slightly larger set Cd.
Note the inclusion of a new user defined ε > 0 in (ISSf-CBF),
which indirectly helps in restricting Cd to a smaller region.
This will be more clear from the examples below.

Example 2: Consider the system

ẋ = − tan−1(x) + u, (32)

with the following CLF and CBF candidates:

CLF : V(x) = x tan−1(x)

CBF : h(x) = 4 − x2. (33)

It can be verified that V is a valid Lyapunov function for u ≡ 0
[3, p. 4], hence a valid CLF. The CBF h ensures that the state
x stays in the interval [ − 2, 2]. It can also be verified that h
is a valid CBF:

ḣ(x, u) = 2x tan−1 x − 2xu ≥ −2(2 tan−1 2 − x tan−1 x) − 2xu.

Here u can be suitably picked in such a way that ḣ(x, u) ≥
−α(h(x)), where α(h(x)) := 2(2 tan−1 2 − x tan−1 x), which is
a valid extended class K function w.r.t. h. A controller of the
form QP will not guarantee ISSf of C = {x ∈ R : 4 − x2 ≥
0} (take x(0) = 0.1, u = 0 and d(t) = 10). On the other

4Due to uncertainties in the system, an unknown disturbance term d(t) gets
added to the control law obtained from (QP).
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Fig. 4. Left figure is showing a 2-DOF robotic system. Gravity is not
included in the model. Right figure is showing the plots of r (t) w.r.t. time
for different values of ε.

hand, the controller of the form (ISSf-CBF), indeed, yields
ISSf of C. Fig. 3 shows comparisons for the controller of the
type (ISSf-CBF) with different values of d and ε.

Example 3: Consider a 2-DOF robot example given
by Fig. 4. We have the following dynamics:

[
mr2 + ML2

3 0
0 m

][
θ̈

r̈

]

+
[

2mrṙθ̇
−mrθ̇2

]

= u =
[
τ

T

]

, (34)

where m = 1 kg is the mass of the second link, M = 1 kg
is the mass of the longer link with length L = 3 m, θ rad is
the rotation, and r is the linear displacement along the axis.
τ is the torque and T is the force acting on the corresponding
joints. The linear displacement r has a limit r∗ = 2 m.

The goal is to drive the configuration q = (θ, r) to
some constant desired values qd = (θd, rd). CLF and CBF
candidates are

CLF : V(x) = (q − qd)
TKp(q − qd) + q̇TD(q)q̇

CBF : h(x) = r∗ − r, (35)

where x = (q, q̇), D is the inertia matrix obtained from (34),
and Kp is a diagonal gain matrix (chosen to be identity). In
order to verify that V is a valid CLF, we need to determine a
control law u that results in asymptotic convergence of V(x(t)).
In fact, PD control laws are sufficient for asymptotic conver-
gence of V [4]. Therefore, we have the following CLF based
semi-definite constraint along with the relaxation δ:

Lf V(x) + LgV(x)u ≤ −q̇TKdq̇ + δ, (36)

with the gain Kd chosen to be identity.
Having obtained the CLF based constraint, we now deter-

mine a suitable ISSf-CBF based constraint. The goal is to
ensure ISSf of C = {(θ, r, θ̇ , ṙ) : r∗ − r ≥ 0} under bounded
disturbances. Since h (defined by (35)) is relative degree two,
we will choose exponential type of barrier functions [6]. We
have the following ISSf-CBF based constraint

μb = −[kp kd]ηb, ηb =
[

h
Lf h

]

L2
f h(x) + LgLf h(x)u − εLgLf h(x)LgLf h(x)T ≥ μb, (37)

for some positive constants kp, kd, ε. We have a new ISSf-QP
formulation with this new constraint instead of (ISSf-CBF).
Fig. 4 shows the response of r for this new controller as a
function of time. Responses are shown for different values of
ε subject to disturbance d = 5. We chose kp = 1, kd = 1.7321.
Note that Cd shrinks for larger values of ε.

VI. CONCLUSION

In this letter we formally defined the notion of input-to-state
safety w.r.t. sets, and the associated input-to-state safe con-
trol barrier functions that ensure forward invariance of sets
under input disturbances. We have also presented methods
to construct ISSf-CBFs from the existing CBF formulation.
Theorem 2 is exactly in the same flavor of [13], wherein,
for affine control systems, input-to-state stabilizing controllers
were constructed via Lyapunov functions, i.e., k(x)−LgV(x)T .
Future work will involve a detailed analysis of the different
properties of ISSf-CBFs. The hope is that the formulations
presented will lay the groundwork for safety-critical control
that is robust to disturbances.
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