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Characterizations of Input-to-State Stability
for Systems With Multiple Invariant Sets

David Angeli, Fellow, IEEE, and Denis Efimov, Senior Member, IEEE

Abstract—We generalize the theory of Input-to-State Stability
(ISS) and of its characterizations by means of Lyapunov dissipa-
tion inequalities to the study of systems admitting invariant sets,
which are not necessarily stable in the sense of Lyapunov but admit
a suitable hierarchical decomposition. It is the latter which allows
to greatly extend the class of systems to which ISS theory can be
applied, allowing in a unified treatement to deal with oscillators
in Euclidean coordinates, almost globally asymptotically stable
systems on manifolds, systems with multiple equilibria in R

n just
to name a few.

Index Terms—Input-to-state stability (ISS), Lyapunov functions.

I. INTRODUCTION AND MOTIVATIONS

A well established technique for the study of stability and
robustness of nonlinear systems, which are described by

a set of differential equations globally defined in Euclidean
space, is the Input-to-State Stability approach, (see [17] and
references therein). The classical definition potentially allows
to formulate and characterize stability properties with respect to
arbitrary compact invariant sets (and not simply equilibria). The
implicit requirement that these sets should be simultaneously
Lyapunov stable and globally attractive, however, makes the
basic theory not applicable for a global analysis of many dy-
namical behaviours of interest, such as multistability or periodic
oscillations, just to name a few, and only local analysis remains
possible [6]. In fact, it is well-known that such systems, when
defined in Euclidean space, normally admit invariant sets (such
as additional equilibria) that fail to be Lyapunov stable.

As an attempt to overcome such limitations for the case
of nonlinear autonomous systems, the almost global stability
property was introduced, [13], and short afterwards, almost
Input-to-State Stability, [2], for systems admitting exogenous
disturbances. In particular, for the case of almost ISS, sufficient
criteria based on a combination of dual Lyapunov techniques
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[13] and classical dissipation inequalities were proposed (see
[18] for an application of such tools to stability analysis of
rotational motions). The key idea of the dual approach is to
replace Lyapunov functions by suitable density functions and
to impose a monotonicity condition on the way these are
propagated by the flow. While converse dual Lyapunov results
have appeared in the literature short afterwards, [14], some
difficulties in the explicit construction of density functions for
systems involving unstable equilibria have also emerged [1].

More recently, in [3], the need for conditions involving
density functions was removed in the case of systems with
exponentially unstable equilibria thanks to a careful application
of integral manifold theory. While geometric tools involving
manifolds and dimensionality arguments provide a very fine
structure to the stability properties, it is also clear that they
depart quite fundamentally in spirit from the standard ISS
paradigm which is essentially an analytical theory.

In this paper we make the point that the most natural way
of relaxing Input-to-State Stability for systems with discon-
nected invariant sets is in fact to relax the Lyapunov stability
requirement [7] (rather than the global nature of the attractivity
property). This, under relatively mild additional assumptions, in
order to avoid classical counter-examples of globally attractive
systems not admitting smooth Lyapunov functions, [5], will al-
low the characterization of the ISS property in terms of classical
Lyapunov-like inequalities, thus generalizing the standard ISS
theory as well as related literature on time-invariant dynamical
systems on compact spaces, [12].

II. BASIC DEFINITIONS

Let M be an n-dimensional C2 connected and orientable
Riemannian manifold without boundary and D be a closed
subset of Rm containing the origin. Consider the map

f(x, d) : M ×D → TxM

which we assume to be of class C1 (TxM denotes as customary
the tangent space of M at x). We deal with nonlinear systems
of the following form:

ẋ(t) = f (x(t), d(t)) (1)

with state x taking value in M . We denote by X(t, x; d(·)) the
uniquely defined solution of (1) at time t fulfilling x(0) = x
(under the input d(.) which is a locally essentially bounded
and measurable signal). Solutions may fail to be defined for
all t ∈ R, however, for the remainder of the Section we assume
(without loss of generality) that solutions of the unperturbed
system are globally defined backwards and forward in time.
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The symbol δ(x1, x2) denotes the Riemannian distance be-
tween x1 and x2 in M . We are now equipped to define a notion
of convergent dynamics for systems as in (1). The unperturbed
system is defined by the following set of equations:

ẋ(t) = f (x(t), 0) . (2)

We say that S ⊂ M is invariant for the unperturbed system (2)
if, for all x ∈ S, X(t, x; 0) ∈ S for all t ∈ R. For a set S ⊂ M
define | · |S as

|x|S = inf
a∈S

δ(x, a).

For a point x0 ∈ M selected as “the origin” on M , denote
|x| = |x|{x0}. For a measurable function d : R+ → R

m define
its infinity norm

‖d‖∞ = ess sup
t≥0

|d(t)|.

A. Decompositions

Let Λ ⊂ M be a compact invariant set for (2). In order to
highlight the structure of the flow of the unperturbed system
it is useful to decompose Λ and explicitly denote existence
of solutions travelling between different components of its
decomposition, as carried out in the following definitions:

Definition 1: An open decomposition for Λ is a finite,
disjoint family of open sets, W1,W2, . . . ,Wk ⊂ M such that
Λ ⊂

⋃k
i=1 Wi.

An open decomposition can be associated with any invariant
set Λ. The roughest decomposition is M itself, while the
finest is made up by open neighborhoods of each connected
component of Λ. However, what qualifies a decomposition for
its treatment by means of Lyapunov-like analytical tools is the
absence of cycles, as detailed in the definitions that follow. For
an open set W ⊂ M , define

W s = {x0 ∈ M : ∃t ≥ 0 : X(t, x0; 0) ∈ W} .

Definition 2: If W1, . . . ,Wk is an open decomposition of Λ,
then

1) An r-cycle, for r ≥ 2 is an ordered r-tuple of distinct
indices i1, . . . , ir such that

Wij ∩ W s
ij+1


= ∅ (j = 1, . . . , r − 1)

Wir ∩ W s
i1


= ∅

2) A 1-cycle is an index i such that

∃x /∈ Wi, ∃s, t > 0 : X(−s, x; 0) ∈ Wi and X(t, x; 0) ∈ Wi.

Informally an r-cycle is therefore a collection of r disjoint open
sets that are reached from one another in a loop by a suitable
concatenation of systems solutions. The above definitions are
taken from [12] where authors also give the following two
definitions and the related proposition.

Definition 3: Let Λ ⊂ M be a compact and invariant set for
(2). A decomposition of Λ is a finite, disjoint family of compact
invariant sets Λ1, . . . ,Λk such that

Λ =
k⋃

i=1

Λi.

For an invariant set Λ, its attracting and repulsing subsets are
defined as follows:

A(Λ) = {x ∈ M : |X(t, x, 0)|Λ → 0 as t → +∞}
R(Λ) = {x ∈ M : |X(t, x, 0)|Λ → 0 as t → −∞} .

Define a relation on W ⊂ M and D ⊂ M by W ≺ D if
A(W) ∩R(D) 
= ∅ (this relation implies that there is a solution
connecting set D with set W).

Definition 4: Let Λ1, . . . ,Λk be a decomposition of Λ, then
1) An r-cycle (r ≥ 2) is an ordered r-tuple of distinct

indices i1, . . . , ir such that Λi1 ≺ · · · ≺ Λir ≺ Λi1 .
2) A 1-cycle is an index i such that [R(Λi)∩A(Λi)]−Λi 
=∅.
3) A filtration ordering is a numbering of the Λi so that Λi ≺

Λj ⇒ i ≤ j.
As we can conclude from Definition 4, existence of an r-cycle
with r ≥ 2 is equivalent to existence of a heteroclinic cycle
for (2)[9]. And existence of a 1-cycle implies existence of a
homoclinic orbit for (2) [9]. In general, existence of cycles has
to be checked on separatrix configurations [11].

Proposition 1: Let W be a compact invariant set containing
all α and ω limit sets of (2). Then a necessary and sufficient
condition for W to be the maximal invariant set of an open
decomposition with no cycles is that W have a decomposition
with no cycles.

According to this result, for any compact invariant set W
containing all α and ω limit sets, the two notions of decom-
position without cycles are equivalent. Notice that in most
examples one might be able to choose W = A ∪R ∪H,
where the set A is composed by locally asymptotically stable
invariant sets, the set R contains locally anti-stable invari-
ant sets and H = H+ ∩H− is an hyperbolic invariant set
(H+ and H− constitute stable and unstable invariant submani-
folds for H), some of these sets may be empty. Hyperbolicity is
however not a requirement for the subsequent discussion. This
makes a large class of systems amenable to be analysed with the
techniques described below. Our main assumption on W which
will be used throughout is the following:

Assumption 1: The compact invariant set W admits a fi-
nite decomposition without cycles,1 W =

⋃k
i=1 Wi for some

non-empty disjoint compact sets Wi, which form a filtration
ordering of W , as detailed in definitions 3 and 4.
An open decomposition of W without cycles will be used
in the proof of the main results below, due to Proposition 1
the existence of such an open decomposition follows from
Assumption 1. The formulation of Assumption 1 is based on a
finite decomposition since verification of this condition is more
simple in examples, see Section IV.

B. Robust Stability Notions for Decomposable W
Our object of study is the following robustness notion for the

system (1):
Definition 5: The system (1) has the practical asymptotic

gain (pAG) property if there exist η ∈ K∞ and q ≥ 0 such that
for all x ∈ M and all measurable essentially bounded inputs
d(·) solutions are defined for all t ≥ 0 and the following holds:

lim sup
t→+∞

|X(t, x; d)|W ≤ η(‖d‖∞) + q. (3)

1This rules out cycles of any length.
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If q = 0, then we say that the asymptotic gain (AG) property
holds.

Definition 6: The system (1) has the limit property (LIM)
with respect to W if there exists μ ∈ K∞ such that for all x ∈
M and all measurable essentially bounded inputs d(·) solutions
are defined for all t ≥ 0 and the following holds:

inf
t≥0

|X(t, x; d)|W ≤ μ (‖d‖∞) . (4)

Definition 7: We say that the system (1) has the practical
global stability (pGS) property with respect to W if there exist
β∈K∞ and q≥0 such that for all x∈M and all measurable
essentially bounded inputs d(·) the following holds for all t≥0:

|X(t, x; d)|W ≤ q + β (max {|x|W , ‖d‖∞}) . (5)

Note that (5) is equivalent to

|X(t, x; d)|W ≤ β̃ (max {|x|W + c, ‖d‖∞})

for some β̃ ∈ K∞ and c ≥ 0.
We would like to characterize (3) in terms of Lyapunov

functions. The following notion is appropriate.
Definition 8: A C1 function V : M → R is a practical

ISS-Lyapunov function for (1) if there exists K∞ functions
α1, [α2], α and γ, and q ≥ 0 [and c ≥ 0] such that

α1(|x|W) ≤ V (x) ≤ [α2(|x|W + c)]

and the following dissipation inequality holds for all (x, d) ∈
M ×D:

DV (x)f(x, d) ≤ −α(|x|W) + γ (|d|) + q. (6)

If (6) holds for q = 0, then V is said to be an ISS-Lyapunov
function.

If, in addition, the set
⋃

x∈Wi
{V (x)} (denoted for short

V (Wi)) is a singleton for all i ∈ {1, 2, . . . , k}, then V is said
to be an ISS-Lyapunov function constant on invariant sets.

Notice that α2 and c are in brackets as their existence follows
(without any additional assumptions) by standard continuity
arguments.

Under Assumption 1, whenever Wi are recurrent invariant
sets of the unperturbed system, any Lyapunov function which is
non-increasing along solutions of (2) also takes constant values
on any Wi, 1 ≤ i ≤ k from the decomposition of W .

In addition, if q = 0, then existence of an ISS Lyapunov
function as in Definition 8 (viz. strictly decreasing outside W)
is possible for a set W admitting a decomposition without
cycles only.

III. MAIN RESULT AND PROOF’S DISCUSSION

We are now ready to state our main result:
Theorem 1: Consider a nonlinear system as in (1) and let

W be a compact invariant set containing all α and ω limit
sets of (2) as in Assumption 1. Then the following facts are
equivalent:

1) The system enjoys the AG property;
2) The system admits an ISS Lyapunov function;
3) The system admits an ISS Lyapunov function constant on

invariant sets;

Fig. 1. Road-map of the main result proof.

4) The system admits a practical ISS Lyapunov function;
5) The system enjoys the pAG property;
6) The system enjoys the LIM property and the pGS.
The system as in (1) that satisfies these properties will be

called ISS with respect to the set W .
Remark 1: The paper [12] (Proposition 6) proves 1. ⇒ 2.

for the case of systems without disturbances and evolving on
compact manifolds. Notice that in this case, extension of the
result to systems with inputs is actually trivial and follows by a
standard continuity argument:

DV (x)f(x, d)≤DV (x)f(x, 0)+|DV (x) [f(x, d)−f(x, 0)]|
≤ − α (|x|W) + γ (|d|)

where

γ(r) := max
|d|≤r,x∈M

|DV (x) [f(x, d)− f(x, 0)]| .

Remark 2: Traditionally ISS is formulated for systems with
a single equilibrium. When such systems fulfill the existence
of a decomposition without cycles (as required in our set-up)
and asymptotic gain, then, they also happen to be stable (in fact
globally) and therefore our notions are genuinely equivalent to
ISS in the classical set-up.

The equivalences of Theorem 1 appear to be non-trivial new
results even in the case of systems evolving in R

n. The only
straightforward relations given without a proof are

ISS Lyapunov function

⇒ practical ISS Lyapunov function ⇒ pAG.

A diagram for the proof of other implications is given in Fig. 1.

A. Direct Lyapunov Argument

To illustrate the consequences of existence of an ISS
Lyapunov function we need the following intermediate results.

Claim 1: If the system (1) admits an ISS Lyapunov function,
then it admits LIM and pGS properties.

Proof: First, the LIM property is satisfied for μ(s) =
α−1 ◦ 2γ(s); if this is not the case then for some so-
lution X(t, x; d) and all t � 0 we have V̇ (X(t, x; d)) ≤
−α(|X(t, x; d)|W)/2. That ensures the asymptotic conver-
gence of V (X(t, x; d)) to a limit and in turn convergence
of α(|X(t, x; d)|W) to 0, given compactness of sublevel sets
of V . The latter implies asymptotic convergence to zero of
|X(t, x; d)|W which is a contradiction. This concludes the proof
of the LIM property.
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As for the practical GS property notice that the Lyapunov
dissipation inequality also implies the following stability notion
for all x ∈ M :

|X(t, x; d)|W ≤ κ (|x|W , t) + σ (‖d‖∞) + q, ∀t ≥ 0 (7)

where κ ∈ KL, σ ∈ K and q > 0. Indeed, α(|x|W/2 + c/2) ≤
α(|x|W) + α(c) and

DV (x)f(x, d) ≤ − α (|x|W/2 + c/2) + α(c) + γ (|d|)

≤ − α ◦ 1

2
α−1
2 (V (x)) + α(c) + γ (|d|)

that leads to the time-domain estimate (7) or pGS property.
Claim 2: For the system (1) the following implications hold:

AG ⇒ (LIM and pGS) ⇒ pAG.

Proof: The LIM property follows by its definition and
fulfillment of the pGS property is proven in Lemma 1 (see
Appendix). Notice that from equation (5) and LIM property
we have

lim sup
t→+∞

|X(t, x; d)|W ≤ q + σ (‖d‖∞) (8)

with σ(s) = β(max{μ(s), s}).
Claim 3: If the system admits an ISS Lyapunov function

constant on invariant sets then it enjoys the AG property.
Proof: From claims 1 and 2 the system admits the pAG

property (8) in this case. This, for any ε > 0, proves AG with
respect to input signals d(·) with ‖d‖∞ ≥ ε and gain η̄ε(s) =
σ(s) + qs/ε as follows considering the inequality below:

q + σ (‖d‖∞) ≤ q‖d‖∞/ε+ σ (‖d‖∞) = η̄ε (‖d‖∞) .

Hence, we only need to show that there exists a sufficiently
small ε̄ > 0 such that AG holds for all input signals d with
‖d‖∞ ≤ ε̄. Let us focus, without loss of generality, on inputs
with ‖d‖∞ ≤ 1. Asymptotically X(t, x; d) enters a compact
set, X := {x : |x|W ≤ q + σ(1) + 1}. Let F be

F := max
x∈X ,|d|≤1

|f(x, d)|x < +∞ (9)

where | · |x denotes the norm on TxM which induces the
Riemannian metric δ. Notice that F is finite by conti-
nuity of f and compactness of X × {d : |d| ≤ 1}. Since
X(t, x; d) eventually enters X whenever ‖d‖∞ ≤ 1, it holds,
|f(X(t, x; d), d)|X(t) ≤ F for all sufficiently large t ≥ 0.

Consider next the minimum distance between the elements
of the decomposition

D̄ := min
1≤i�=j≤k,

xa∈Wi,xb∈Wj

δ(xa, xb) > 0. (10)

Notice that the minimum exists and it is strictly positive by
finiteness of the decomposition and compactness of the Wis.
For all Δ > 0 such that α−1(2γ(Δ)) = μ(Δ) ≤ D̄/4 it holds
that the sets Ni(Δ) defined below

Ni(Δ) :=
{
x ∈ M : |x|Wi

≤ α−1 (2γ(Δ))
}

are disjoint and at least at distance D̄/2 from each other. By
LIM property for ‖d‖∞ ≤ Δ < 1, for all x ∈ M there is a time
instant t′ ≥ 0 such that x(t′) ∈ Ni(Δ) for some 1 ≤ i ≤ k.
Next, for all sufficiently large times, solutions take at least
D̄/2F in order to travel between two of the Ni(Δ) sets. Notice
moreover that for all x ∈ X\

⋃k
i=1 Ni(Δ) and all d with |d| ≤

Δ ≤ 1 it holds

DV (x)f(x, d) ≤ −α (|x|W) + γ (|d|) ≤ −γ(Δ)

where the last inequality follows considering that for all x ∈ M
there exists ix so that |x|W = |x|Wix

. Hence the Lyapunov
function V (x) along any solution that travels between two dis-
tinct sets Ni(Δ) and Nj(Δ) decreases at least by D̄γ(Δ)/2F
between the time that it last leaves Ni(Δ) and the one that it
first enters Nj(Δ).

Consider next the function G : [0,+∞) → [0,+∞) defined
below

G(r) := max
i∈1,...,k

{
max

x∈Ni(r)
V (x)− min

x∈Ni(r)
V (x)

}
+ r. (11)

Notice that G is continuous and increasing, moreover G(0)=0
as V (Wi) is a singleton for all i∈{1, 2, . . . , k}. This function
is a bound from above to the difference in values of V between
points within the same neighborhood of radius r of the Wis. For
any Δ>0 one may pick Δ1≤γ−1((α/2)(α−1(2γ(Δ))/2))≤
Δ positive and sufficiently small so as to fulfill G(Δ1)≤
D̄γ(Δ)/4F for instance by letting

Δ1 := min

{
G−1

(
D̄γ(Δ)

4F

)
,

γ−1

(
α

2

(
α−1 (2γ(Δ))

2

))}
:= γ̃(Δ).

The rationale for this peculiar expression will be clearer after
the following arguments are developed.

We claim that with such a choice, all solutions corresponding
to input signals with ‖d‖∞ ≤ Δ1 cannot visit twice the same
neighborhood Ni(Δ1) if in between they have visited another
set Nj(Δ1). The proof of this fact is sketched below.

Notice that for inputs with infinity norm less than Δ1,
V (x) decreases outside

⋃
i Ni(Δ1), moreover as Ni(Δ1) ⊂

Ni(Δ) for all is, the Lyapunov function decreases at least by
D̄γ(Δ)/2F when traveling between two distinct sets Ni(Δ1)
and Nj(Δ1). On the other hand, while inside such sets, the
Lyapunov function can at most grow by G(Δ1) ≤ D̄γ(Δ)/4F .
Overall, if a solution could visit in a cycle a number of distinct
sets Ni1(Δ1), Ni2(Δ1), . . . , Ni1(Δ1) this would lead to a net
decrease of V which is larger than the maximum gap G(Δ1)
allowed between values of V (x) within the set Ni1(Δ1). This is
a contradiction and therefore we may conclude that all solutions
corresponding to input signals d with ‖d‖∞ ≤ Δ1 eventually
keep visiting a single set Ni(Δ1).

Notice that

Δ1 ≤ γ−1

(
α

2

(
α−1 (2γ(Δ))

2

))

⇒ α−1 (2γ(Δ))

2
≥ α−1 (2γ(Δ1)) .
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Consider next the function ρ(r) := α−1(2γ(r))/2. Our choice
of Δ1 implies that

ρ(Δ) =α−1 (2γ(Δ))− α−1 (2γ(Δ))

2
≤α−1 (2γ(Δ))− α−1 (2γ(Δ1))

so that ρ(Δ)/F is a lower bound to the travel time between any
two points at distance α−1(2γ(Δ1)) and α−1(2γ(Δ)) respec-
tively from any of the Wis. Pick next 0<Δ2≤Δ1 so as to fulfill

G(Δ2)

γ(Δ1)
≤ ρ(Δ)/2F. (12)

The left-hand side is an upper bound to the time that solu-
tions corresponding to inputs of amplitude less than Δ2 can
consecutively spend outside the set Ni(Δ1). In particular as
this upper-bound is smaller than the minimum time to reach
the boundary of Ni(Δ) (from the boundary of Ni(Δ1)), then
any such solution (leaving a set Ni(Δ2)) will never leave
the set Ni(Δ). This fact allows us to establish existence of a
suitable asymptotic gain function for all inputs of sufficiently
small amplitude. In fact we may notice that Δ = γ̃−1(Δ1)
and G(Δ2) ≤ ρ(γ̃−1(Δ1))γ(Δ1)/2F . Thus for all sufficiently
small Δ1 we have

Δ2 ≤ G−1
(
ρ(γ̃−1(Δ1)

)
γ(Δ1)/2F ) := γ̂(Δ1).

A suitable asymptotic gain function for ‖d‖∞ ≤ Δ2 is therefore
given by

η (‖d‖∞) = α−1
(
2γ(γ̃−1

(
γ̂−1 (‖d‖∞))

))
.

Take η(s) = max{η(s), ηΔ2
(s)}, this concludes the proof of

Claim 3 and of the implication 3. ⇒ 1. of Theorem 1.
Remark 3: As it has been shown, existence of an ISS

Lyapunov function for the system (1) implies the AG property
(i.e. the inequality (3) is true for q = 0) and estimate (7), which
is satisfied for all t ≥ 0. One might wonder if it is possible to
combine both results, in order to obtain another estimate

|X(t, x; d)|W ≤ κ′ (|x|W + q′, t) + σ′ (‖d‖∞) , ∀t ≥ 0

where κ′ ∈ KL, σ′ ∈ K, and q′ > 0, which would mimic the
conventional ISS theory. However, it is possible to show that in
the general framework considered, even for q′ > 0, existence of
an estimate like this is not possible.

B. Converse Lyapunov Theorem for (2)

The objective of this subsection is to present an auxiliary
useful result on existence of Lyapunov functions for the system
(2), and in particular to provide an extension to non-compact
manifolds of the following result from [12]:

Proposition 2: Let Assumption 1 be satisfied for a set W and
suppose for all x0 ∈ M

lim
t→+∞

|X(t, x0, 0)|W = 0.

Then, there exists a smooth Lyapunov function L : M → R+

such that
• DL(x) = 0 for all x ∈ W , L(xi) = L(x′

i) 
= L(xj) for
any xi, x′

i ∈ Wi, xj ∈ Wj and all 1 ≤ i 
= j ≤ k;

• υ(|x|W) ≤ L(x), DL(x)f(x, 0) ≤ −
(|x|W) for all x ∈
M and some υ ∈ K and a positive definite 
 : R+ → R+.

If the set W contains only purely attracting or repelling sub-
sets Wi, then this proposition has been proven in [7]. Below a
general case is studied adapting the arguments proposed in [12].

C. Converse Lyapunov Arguments for (1)

The remaining part of the Section will be devoted to the main
steps in the proof of the implication 1. ⇒ 3. of our Theorem 1.
This will be carried out in several steps:

• First of all we remark that existence of an ISS Lyapunov
function as in Definition 8 is equivalent to the following
type of dissipation inequality:

|x|W ≥ χ (|d|) ⇒ DV (x)f(x, d) ≤ −ρ (|x|W)

with χ of class K∞ and ρ positive definite (or equivalently
K∞). This follows by a standard continuity argument and
it is shown for instance in [15] for the case of systems
defined in Euclidean space and W being a single equilib-
rium. The same proof applies here, as the K∞ upper-bound
of V (x) in terms of |x| is never needed in the proof.

• From Lemma 2 (see appendices) it follows that there exists
β of class K∞ such that differential inclusion

ż ∈
⋃

v∈D:|v|≤β−1(|z|W/2)

f(z, v) (13)

fulfills a global attractivity property

lim sup
t→+∞

|Z(t, z0)|W = 0.

Notice that, due to the lack of stability and of KL bounds
we cannot assume β to be directly related to the asymptotic
gain η, see Lemmas 1 and 2. In other words the gain
margin may be much slimmer than the asymptotic gain
(in fact transient overshoots could be much larger than the
asymptotic gain).

• Consider a monotonically increasing sequence of com-
pact subsets M1 ⊂ M2 ⊂ · · · ⊂ Mn · · · ⊂ M with the
property that

M =

+∞⋃
n=1

int(Mn)

where int(S) denotes the interior of the set S. We denote
by Z(t, S) the attainable set of (13) at time t from initial
conditions in S. Consider next

D =

+∞⋃
n=1

⋂
t≥0

Z(t,Mn). (14)

• The following properties of D should be crucial
(see Lemma 3 for a proof):

1) D is positively invariant,
2) D is compact,
3) D is globally asymptotically stable for (13),
4) W ⊂ D moreover due to compactness of D the

following is also true: |x|D ≤ |x|W ≤ |x|D + c for
some non-negative real c.
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• By a standard converse Lyapunov argument (see for in-
stance [10] where the Euclidean case is treated) we show
existence of a smooth W :M→R such that for all |v|≤1

DW (x)f(x, β−1 (|x|W/2) v) ≤ −α (|x|D)

for some α ∈ K∞ and α1, α2 ∈ K∞ which bound from
above and below W as follows:

α1 (|x|D) ≤ W (x) ≤ α2 (|x|D) .

• From Proposition 2 under the stated assumptions there
exists a Lyapunov function U(x) (constant on invariant
sets Wi) for the unperturbed system (2) fulfilling

DU(x)f(x, 0) ≤ −
 (|x|W) (15)

and υ′(|x|W) ≤ U(x) with υ′ ∈ K and a positive definite

 : R+ → R+.

• By continuity of the function DU(x)f(x, d) and the (15)
we see that the following holds for (1):

DU(x)f(x, d) ≤ −
 (|x|W) + γ̂1 (1 + |x|W) γ̂2 (|d|) .

for suitable γ̂1, γ̂2 of class K∞, for all x∈M and all d∈D.
• As U(x) is a semi-proper function (it may be bounded),

we need to add U and W in order to obtain a function
with a class K∞ lower-bound with respect to |x|W . Define
Ũ(x) = U(x) +W (x), then υ̃(|x|W) ≤ Ũ(x), where

υ̃(s) =

{
υ′(s) if s ≤ c
υ′(c) + α1(s− c) if s > c

is a function from classK∞ (sinceα1 is from this class), and

DŨ(x)f(x, 0) ≤ −α̃ (|x|W) (16)

where

α̃(s) =

{ s
1+s infs≤r≤c 
(r) if s ≤ c
c

1+c
(c) + α(s− c) if s > c

is also a function from class K∞ (since α ∈ K∞). More-
over Ũ is constant on invariant sets Wi as U is such and
W is identically 0 on D ⊃ W .

• Next we want to add Ũ and W (suitably rescaled) in order
to get a Lyapunov function as desired. To this end consider
any Lipschitz continuous K∞ function δ fulfilling

δ(r) ≤
{
γ̂−1
2 (α(r − c)) if r ≥ 2c

γ̂−1
2

(
α̃(r)

2γ̂1(1+2c)

)
if r ≤ 2c

.

Rescaling W as

W̃ (x) =

W (x)∫
0

q(r)dr

where the function q ∈ K will be defined later, yields

DW̃ (x)f
(
x, β−1 (|x|W/2) v

)
≤ − q (W (x))α (|x|D)

≤ − q (α1 (|x|D))α (|x|D) .

• Define V (x) = W̃ (x) + Ũ(x). Clearly V (x) is lower-
bounded by a K∞ function of |x|W . Moreover, it fulfills
for all |v| ≤ 1

DV (x)f
(
x,min

{
β−1(|x|W/2) , δ (|x|W)

}
v
)
≤−α̃ (|x|W) /2

which follows considering separately two cases:
1) Case |x|W ≤ 2c

DV (x)f
(
x,min

{
β−1 (|x|W/2) , δ (|x|W)

}
v
)

≤ DŨ(x)f
(
x,min

{
β−1 (|x|W/2) , δ (|x|W)

}
v
)

≤ −α̃ (|x|W) + γ̂1(1 + 2c)γ̂2 (δ(|x|W))

≤ −α̃ (|x|W) + α̃ (|x|W) /2 = −α̃ (|x|W) /2.

2) Case |x|W ≥ 2c

DW̃ (x)f
(
x,min

{
β−1 (|x|W/2) , δ (|x|W)

}
v
)

≤ −q (α1 (|x|D))α (|x|D)

≤ −q (α1 (|x|W − c))α (|x|W − c) .

Moreover

DŨ(x)f
(
x,min

{
β−1 (|x|W/2) , δ (|x|W)

}
v
)

≤ −α̃ (|x|W) + γ̂1 (1 + |x|W) γ̂2 (δ (|x|W))

≤ −α̃ (|x|W) + γ̂1 (1 + |x|W)α (|x|W − c) .

Hence, it is enough to take

q (α1(r − c)) = γ̂1(1 + r)

for all r ≥ 2c, in order to get

DV (x)f
(
x,min

{
β−1 (|x|W/2) , δ (|x|W)

}
v
)
≤ −α̃ (|x|W)

for all |v| ≤ 1 and |x|W ≥ 2c.
• The obtained inequality for V implies that for all x ∈ M

and d ∈ Rm

|x|W ≥ χ (|d|) ⇒ DV (x)f(x, d) ≤ −α̃ (|x|W) /2

for χ−1(s) = min{β−1(s/2), δ(s)}, therefore V is an ISS
Lyapunov function constant on invariant sets.

In order to complete the proof of Theorem 1 we just need to
show that practical AG implies AG. This is discussed below.

Claim 4: If the system (1) enjoys the pAG property, then it
also fulfills the AG property.

Proof: Let us consider input signals with infinity norm
less or equal to 1. From the definition of pAG property, there
exists η ∈ K∞ and q ≥ 0 such that the set Ω = {x ∈ M :
|x|W ≤ η(1) + q + 1} traps in finite time all solutions of (1).
Moreover, in the proof above it has been established that for the
set W satisfying restrictions of Assumption 1 there is a smooth
Lyapunov function Ũ : M → R

n (constant on invariant sets)
such that (16) is true for the unperturbed system (2) with υ̃, α̃ ∈
K∞. Thus by standard continuity arguments for the system (1)
the estimate

DŨ(x)f(x, d) ≤ −α̃ (|x|W) + γ̂1 (1 + |x|) γ̂2 (|d|)
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is satisfied for some γ̂1, γ̂2 ∈ K∞. Since |x| ≤ |x|W + c for
some c ≥ 0, then for all x ∈ Ω and all d ∈ D with |d| ≤ 1, the
following inequality is valid:

DŨ(x)f(x, d) ≤ −α̃ (|x|W) + γ̂1 (η(1) + q + c+ 2) γ̂2 (|d|) .
(17)

Thus, in this case, Ũ is a kind of local ISS Lyapunov function
for (1). Hence given any initial condition x0 ∈ M and any input
d with ‖d‖∞ ≤ 1, (17) eventually holds along the solution and
an asymptotic gain estimate η1 follows along the steps of the
proof of Claim 3. For inputs of larger infinity norm one may use
the upper-bound provided by the pAG property. Overall a single
K∞ asymptotic gain exists, for instance max{η1(r), η(r) +
qr}, just by patching the two cases.

IV. EXAMPLES AND COUNTEREXAMPLES

The main results of this note largely improve the range of
systems to which Input-to-State stability techniques can be
applied. We illustrate this point through simple and effective
examples that show the power of this extended framework.

A. Multistable Systems

Multistable systems cannot be treated by standard ISS theory
as this only applies to globally asymptotically stable attractors.
The presence of multiple stable equilibria, in fact, typically
entails also existence of unstable equilibria or other attractors
which cannot be accomodated by the standard theory. We
illustrate this through a simple scalar example, although similar
considerations apply to much more general systems

ẋ = −x3 + x+ d. (18)

The state manifold M is in this case the Euclidean line R. The
unperturbed system has 3 equilibria in −1, 0 and 1 respectively.
The equilibria in 1 and −1 are locally asymptotically stable
and almost-globally attractive. A standard ISS argument would
necessarily involve the interval I=[−1, 1] which is the only
compact globally asymptotically stable set. In particular, a
Lyapunov function such as |x|2I could be used to prove ISS
with respect to the set I . This however provides a very rough
estimate of where solutions belong asymptotically, especially
for zero or small disturbance amplitudes. In higher dimensional
examples this issue becomes even more critical as explicit
knowledge of the smallest globally asymptotically stable attrac-
tor is normally not possible. On the contrary, Theorem 1 al-
lows to analyze system’s robustness by letting W={−1, 0, 1}.
Assumption 1 is trivially satisfied for this set. A suitable can-
didate ISS-Lyapunov function is V (x)=(x−1)2(x+1)2. No-
tice that |x|W =min{|x−1|, |x|, |x+1|}, and therefore: |x|4W ≤
V (x). Moreover, taking derivatives along solutions of (18), we
have

∂V

∂x
(x)[−x3 + x+ d]

= −2(x− 1)2(x+ 1)2x2 + 4dx(x− 1)(x+ 1)

≤ −(x− 1)2(x+ 1)2x2 + 4d2 ≤ −|x|6W + 4d2.

This proves that V is an ISS-Lyapunov function and by
Theorem 1 the system enjoys the AG property. System (18)

Fig. 2. Results of simulation for (19).

is also amenable to be analyzed along the lines of [3], in
particular, due to the exponential instability of the equilibrium
in 0, it is possible to conclude that almost all solutions converge
to a neighborhood of {−1, 1} of size “proportional” to the
infinity norm of d.

Next we consider a slight modification of the system (18)

ẋ = −x5 + x3 + xd. (19)

The unperturbed system still exhibits 3 equilibria, in −1, 0, 1,
two of which (those in −1 and 1) are asymptotically stable.
The equilibrium in 0 is antistable, but non-hyperbolic. This
makes the almost global stability theory of [3] unapplicable.
In fact a small disturbance is capable of locally stabilizing the
0 equilibrium and creating a basin of attraction of non-zero
measure around it.

Despite this, let W = {−1, 0, 1} and define V (x) = (x−
1)2(x+ 1)2. One may verify that V still serves as an
ISS-Lyapunov function for equation (19)

∂V

∂x
(x)[−x5 + x3 + xd]

= −4x4(x− 1)2(x+ 1)2 + 4x2(x− 1)(x+ 1)d

≤ −2x4(x− 1)2(x+ 1)2 + 2d2 ≤ −2|x|8W + 2d2.

Finally, we would like to show by simulation that even a
“large” perturbation d may stabilize the unstable equilibrium
at the origin. The results of simulation of (19) for different
initial conditions and d(t) = 5 sin(15t) or d(t) = 35 sin(15t)
are shown in Fig. 2. As we can see, for a “small” perturbation
d(t) = 5 sin(15t) almost all trajectories converge to neighbor-
hoods of equilibriums −1 and 1 (size of the neighborhoods
is proportional the amplitude of d), but a “big” perturbation
d(t) = 35 sin(15t) makes the origin attractive, which is not an
intuitively awaited behavior.

B. A Planar Example: Pendulum With Friction

Consider the following set of differential equations, describ-
ing the motion of a forced pendulum with friction which was
also used as a motivating example in [3]:

θ̇ =ω
ω̇ = − a sin(θ)− bω + d. (20)

We regard them as a system with state x = [θ, ω] taking values
on the cylinder M := S× R affected by some exogenous dis-
turbance d(t), whereas a, b are constant positive parameters.
Overall the unperturbed system admits two equilibria [0, 0]
and [π, 0] the latter being a saddle-point. It is shown in [3]
that this system is almost-globally Input-to-State Stable with
respect to the downwards pendulum equilibrium x = [0, 0]′.
The same Lyapunov functions used in [3] can be used in
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order to prove Input-to-State stability with respect to the set
W = {[0, 0], [π, 0]}. Consider the mechanical energy of the
pendulum, that is V (x) = ω2/2− a cos(θ) + a. For the case
d = 0 the dissipation equality V̇ = −bω2 holds, which together
with the fact that there is no trajectory on the line ω = 0
connecting the equilibriums imply Assumption 1. Notice that
|x|W =

√
ω2 +min{|θ|, |θ − π|}2. Therefore ε|x|2W ≤ V (x)

for some sufficiently small ε > 0. Moreover, taking derivatives
of V along solutions of (20) yields

V̇ (x) = −bω2 + ωd ≤ − b

2
ω2 +

1

2b
d2

= − b

2
V (x)− ab

2
cos(θ) +

1

2b
d2

≤ − b

2
V (x) + c+

1

2b
d2

with constant c := ab/2. Therefore system (20) admits a practi-
cal ISS Lyapunov function. By Theorem 1 system (20) is Input-
to-State Stable with respect to W .

C. Non Decomposable Invariant Set

Consider the system

θ̇ =1− cos(θ) + d
ż = − z + d (21)

with state x = [θ, z] taking values in the cylinder S× R. In the
absence of disturbances all solutions converge to the unique
equilibrium x = [0, 0] (up to multiples of 2π in the first coordi-
nate) as it is easy to check by considering separately the θ and
z equation. The equilibrium [0, 0] is not asymptotically stable,
however, and in fact, the singleton {[0, 0]} does not admit a
decomposition without cycles. This means that in order to apply
our main result we need to enlarge the set W . We can in fact
define W = S× {0}. This is an invariant and asymptotically
stable set for the unperturbed system. Moreover, letting V (x) =
z2, yields along solutions

V̇ (x) = 2z(−z + d) ≤ −z2 + d2 = −|x|2W + d2

where the last equality follows since |x|W = |z|. Moreover,
|x|2W ≤ V (x); therefore, the system admits an ISS Lyapunov
function and thanks to Theorem 1 is Input-to-State Stable
with respect to the set W . One may wonder whether tighter
characterizations of the robustness properties of system (21)
could be possible, for instance if ISS with respect to the set
{0} be fulfilled regardless of it exhibiting homoclinic cycles.
To show that this is not possible take any positive and vanishing
disturbance which is not in L1, such as d(t) = 1/(1 + t), and
consider the solution [θ(t), z(t)] := X(t, [0, 0]; d). If ISS would
be true, solutions should converge to 0 by the converging-input
converging-state property. While it is easy to see that z(t) → 0
as t → +∞ it is also clear that

+∞∫
0

|θ̇(t)|dt =
+∞∫
0

1− cos (θ(t)) + d(t)dt ≥
+∞∫
0

d(t)dt = +∞

thus proving that solutions never stop describing full rotations
around the circle. Hence, the choice of W = S× {0} is in fact
the tightest possible.

D. Van der Pol Oscillator

Consider the following set of equations, describing the state
evolution of a system evolving in M = R

2:

ẋ1 =x2

ẋ2 = −x1 − ϕ(x2) + d (22)

where ϕ : R → R satisfies ϕ(0) = 0, ϕ′(0) < 0 and

ϕ(y) → +∞ as y → +∞, ϕ(y) → −∞ as y → −∞.

This set of equations encompasses, for a peculiar choice of ϕ,
the so called Van der Pol oscillator. It was shown in [4] that a
practical asymptotic gain property holds for (22) (as well as
for a broader class of systems). For ϕ(x2) = x2 − (x3

2/3) a
Lyapunov function to establish the practical asymptotic gain
property with respect to the origin is given in [8].Moreover,
it is well known that Van der Pol oscillator in the absence of
external forcing admits 2 invariant sets, namely the origin and
the limit cycle L. Hence, we may define W = {0} ∪ L. As any
solution converges to L, except for the one initiated at 0, which
is antistable, we can conclude that W admits a decomposition
without cycles. As a consequence we can claim existence
of an ISS-Lyapunov function and of a class K∞ function γ
such that

lim sup
t→+∞

|X(t, ξ; d)|W ≤ γ (‖d‖∞) .

E. FitzHugh-Nagumo Model

This model is a 2-D simplification of the Hodgkin–Huxley
model of spike generation

ẋ1 =x1 − x3
1 − x2 + d

ẋ2 = τ−1(x1 − a− bx2) (23)

where x1 ∈ R is the membrane potential, x2 ∈ R is a recovery
variable, and d is the magnitude of stimulus current. The model
(22) is a particular case of (23) for a = b = 0. It is well known
fact that for any constant d this model has an equilibrium xd and
almost globally attracting set Γ containing oscillating trajecto-
ries (depending on values of parameters). Thus Assumption 1
is satisfied for W = {xd} ∪ Γ, but as for L in (22), it is hard
to find an analytical expression for characterization of Γ as a
function of x. Therefore, similarly to (22) we can establish the
practical asymptotic gain property with respect to the origin
using the function

V (x) = 0.5
(
x2
1 + τx2

2

)
V̇ ≤ − 0.5

(
x2
1 + bx2

2

)
+ 1 + 0.5a2/b+ 0.5d2

then the system (23) admits the practical asymptotic gain
property with respect to W since |x|W ≤ |x|. Next, according
to result of Theorem 1 the FitzHugh-Nagumo model is ISS with
respect to W considering stimulus current as input.

A similar consideration can be repeated for the
Hindmarsh-Rose model of neuronal activity.
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F. A Model With a Continuum of Equilibria

Consider the system defined on the cylinder M = R× S by
the following set of differential equations:

ż = −z + 2z cos2(θ) + d

θ̇ = z2 cos(θ) (24)

with state x = [z, θ] expressed in coordinates, with the usual
convention that points x whose second coordinate differs by
a multiple of 2π are identified. It is easy to prove that the set
W = {0} × S is the equilibrium set for the unperturbed system.
This is an invariant connected set that does not admit finer
decompositions. Take the Lyapunov function candidate V given
below

V (z, θ) = z2 + 4− 4 sin(θ).

Clearly, V (x, θ) ≥ z2 = |x|2W . Moreover, differentiating V
along solutions of (24) yields

V̇ (z, θ) = 2z(−z + 2z cos2(θ) + d)− 4z2 cos(θ)2

= −2z2 + 2zd ≤ −z2 + d2 = −|x|2W + |d|2.

Hence V is an ISS Lyapunov function and the system is ISS
with respect to W . Notice that V (W) = [0, 8] and is therefore
not a singleton. Finding a Lyapunov function constant on
invariant sets appears to be more challenging. In particular,
V (x) = z2 is not appropriate as its derivative is not negative
definite already for the unperturbed dynamics.

V. CONCLUSION

The paper proposes definitions and characterizations of
input-to-state stability for systems with multiple attractors, in
the cases when the invariant sets of the system are not connected
by homoclinic and heteroclinic trajectories or, alternatively,
these are included in the invariant set themselves. The invari-
ant sets under consideration may contain disjointed subsets,
some of which may be unstable in the Lyapunov sense. It
is shown that under such assumptions the practical stability
notions are equivalent to “conventional” ones. Necessary and
sufficient characterizations of input-to-state stability in terms
of Lyapunov function existence are given. Applicability of the
proposed framework is demonstrated on several examples of
popular systems.

APPENDIX

A. Some Technical Lemmas

Lemma 1: Consider a nonlinear system as in (1), and assume
that it enjoys the AG property (3). Then, there exists β of class
K∞ and q ≥ 0 such that for all x ∈ M and all measurable inputs
d(·) the pGS property holds.

Proof: Define, for all r ≥ 0 the following open set:

Ω(r) := {x ∈ M : |x|W < η(r) + 1} (25)

where η denotes the asymptotic gain. For all solutions
X(·, x; d) we define the hitting time as follows:

τx,d(r) = inf {t ≥ 0 : X(t, x; d) ∈ Ω(r)} . (26)

Notice that, for all d with infinity norm less or equal to r,
τx,d(r) < +∞ by virtue of the asymptotic gain property. By
virtue of Corollary III.3 in [16], given any compact set C ⊂ M
of initial conditions

TC,r := sup
x∈C,d(·):‖d‖∞≤r

τx,d(r) < +∞.

(notice that the corollary is stated for systems evolving in
Euclidean space, but the same proof applies to systems on
manifolds). Define next the reachable set

RT (C, r) := {z ∈ M : ∃t ∈ [0, T ], ∃x ∈ C, ∃d(·) :
‖d‖∞ ≤ r : z = X(t, x; d)} .

Clearly, if C ⊃ Ω(r) we have

R(C) :=
⋃
T≥0

RT (C, r) = RTC,r (C, r). (27)

By virtue of Proposition 5.1 in [10], RTC,r (C, r) is bounded.
Define, the set Cr as follows:

Cr = {z ∈ M : |z|W ≤ max {r, η(r) + 1}} .

Notice that by construction Cr ⊃ Ω(r). Let, for any r ≥ 0, the
function Γ be defined as follows:

Γ(r) := sup
z∈Cr,d(·):‖d‖∞≤r,t≥0

|X(t, z; d)|W . (28)

Hence, by boundedness of RTCr,r (Cr, r), Γ is a well defined
non-decreasing function. Moreover, for any x ∈ M and any
bounded input d we may let r = max{|x|W , ‖d‖∞} and by (28)
we see that

|X(t, x; d)|W ≤ Γ (max {|x|W , ‖d‖∞}) ∀t ≥ 0.

Hence, for some K∞ function β and q = Γ(0)

|X(t, x; d)|W ≤ q + β (max {|x|W , ‖d‖∞}) ∀t ≥ 0.

Lemma 2: Consider a system as in (1) and fulfilling all
assumptions of Lemma 1. Then, provided β(·) ≥ η(·) (which
can be assumed without loss of generality) the differential
inclusion

ż ∈
⋃

v∈D:|v|≤β−1(|z|W/2)

f(z, v). (29)

has uniformly bounded solutions. Moreover, all solutions con-
verge asymptotically to W .

Proof: Consider z ∈ M arbitrary and let Z(t, z) denote
any solution of (29) (maximally defined over some open inter-
val I including 0). By selection, there exists μ, measurable and
‖μ‖ ≤ 1 such that, Z(t, z) is a solution of

ż = f
(
z, β−1 (|z|W/2)μ

)
.
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By Lemma 1, Z fulfills for all t ≥ 0 in I

‖|Z(·, z)|W‖[0,t]
≤ q + β

(
max

{
|z|W , β−1(‖|Z(·, z)|W‖[0,t]/2)

})
.

Then we have for all t ∈ I

|Z(t, z)|W ≤ 2q + 2β (|z|W) . (30)

Hence, solutions of (29) are uniformly bounded and defined for
all t ≥ 0. It follows from the asymptotic gain property that:

lim sup
t→+∞

|X(t, x; d)|W ≤ η

(
lim sup
t→+∞

|d(t)|
)
.

Applying this inequality to the solution Z previously defined
we have

lim sup
t→+∞

|Z(t, z)|W ≤ η

(
lim sup
t→+∞

β−1 (|Z(t, z)|W/2)

)
≤ lim sup

t→+∞
|Z(t, z)|W /2.

Hence, |Z(t, z)|W → 0 as t → +∞.
Lemma 3: The set D defined in (14) is bounded, closed,

forward invariant and globally asymptotically stable. Moreover
it contains W .

Proof: Consider the differential inclusion (29) and letRT(S)
denote its reachable set up to time T for initial conditions in S,
and R(S) :=

⋃
T≥0 RT (S); by Lemma 2 each solution conver-

ges to W and therefore enters in finite time the set Z :={z∈M :
|z|W ≤ 1} as well as a suitable compact subset of int(Z).

There exists index n such that Z ⊂ Mn. Indeed,
{int(Mn)}+∞

n=1 is an open cover of M , and therefore, due
to paracompactness of M , it admits a locally finite refinement,
i.e. any point x in M has a neighboorhood Ux that intersects
only finitely many sets in the refinement {Vk}+∞

k=1. Denote by
nk the integer (as a function of k) such that Vk ⊂ int(Mnk

).
Any compact subset K of M is covered by the {Ux : x ∈ K},
and in particular (by compactness) by a finite number of them

K ⊂ Ux1
∪ Ux2

∪ · · · ∪ UxN
.

Each one of the Uxi
s is in its turn contained in a finite number

of sets from the refinement {Vk}+∞
k=1 so that, overall, every

compact set K is covered by a finite number of Vns. Let n̄ be
the maximum of the indexes ks involved in such a cover. Then
K ⊂

⋃n̄
k=1 Vk ⊂

⋃n̄
k=1 int(Mnk

) = MN̄ , where

N̄ = max
k∈{1...n̄}

nk

and the last equality follows by monotonicity of the Mn se-
quence. This shows that every compact set is contained in some
Mn. Without loss of generality assume M1 ⊃ Z .

By virtue of Corollary III.3 in [16] for each n ∈ N there
exists Tn < +∞, such that for all z ∈ Mn and any solution
Z(·, z) of (29) there exists some time tZ(·),n ≤ Tn, such that
Z(tZ(·),n, z) ∈ Z . Hence, for all t ≥ Tn the following holds:

Z(t,Mn) ⊂
⋃
T≥0

RT (Z) = RT1(Z)

where the last equality follows since M1 ⊃ Z . Notice that
RT1(Z) is a compact set, by forward completeness of (29) and
compactness of Z . This entails that R(Z) is also compact.

Hence,
⋂

t≥0 Z(t,Mn) ⊂ RT1(Z) and

D =

+∞⋃
n=1

⋂
t≥0

Z(t,Mn) ⊂
+∞⋃
n=1

RT1(Z) = RT1(Z)

thus showing boundedness of D.
By boundedness of D, there exists n̄ ∈ N such that for all

integers n ≥ n̄ it holds Mn ⊃ D and Mn ⊃ W . Moreover,
assuming without loss of generality Lipschitzness of the dif-
ferential inclusion (29) (this can be done as any K∞ function
admits a Lipschitz and K∞ lower bound), it holds Z(t,W) =
W , for all t ≥ 0. Hence

D =
⋃
n≥n̄

⋂
t≥0

Z(t,Mn) ⊃
⋃
n≥n̄

⋂
t≥0

Z(t,W) = W. (31)

Notice that, for all n large enough, (say larger than n̂) it holds

Mn ⊃ R(Z).

Moreover, we see that⋂
t≥0

Z (t,R(Z)) ⊂
⋂
t≥0

Z(t,Mn)

⊂
⋂
t≥Tn

Z(t,Mn) ⊂
⋂
t≥0

Z(t,R(Z))

where the last inclusion holds since any solution originating
in Mn ends up in R(Z) at time Tn (having touched Z in the
meanwhile). Hence, the following holds for all n large enough:⋂

t≥0

Z(t,R(Z)) =
⋂
t≥0

Z(t,Mn).

We exploit this fact by remarking that

D=
⋃
n≥n̂

⋂
t≥0

Z(t,Mn)=
⋃
n≥n̂

⋂
t≥0

Z(t,R(Z))=
⋂
t≥0

Z(t,R(Z)) .

Notice the following monotonicity property, Z(t,R(Z)) ⊂
R(Z) (for t ≥ 0), as any solution initialted in the reachable set
R(Z) is after t units of time still inside R(Z). More generally

t1 ≥ t2 ≥ 0 ⇒ Z (t1,R(Z)) ⊂ Z (t2,R(Z))

as it follows considering that:

Z (t1,R(Z)) = Z (t2, Z (t1 − t2,R(Z))) ⊂ Z (t2,R(Z)) .

This can be used in order to see that for all τ ≥ 0

Z(τ,D) =Z

(
τ,
⋂
t≥0

Z (t,R(Z))

)

=
⋂
t≥τ

Z (t,R(Z)) =
⋂
t≥0

Z(t,R(Z)) = D.

Finally, D is closed as it can be written as an intersection of
closed sets, (viz. Z(t,R(Z)) for t ≥ 0, where each of the set is
closed by forward completeness of the flow and compactness
of R(Z). In order to show Global Asymptotic Stability it is
enough to remark that this is equivalent to uniform Attraction
(as in [10]). Notice also that the latter follows Corollary 3.3
in [16].
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B. Converse Lyapunov Theorems for Dichotomy Systems
on Manifolds

In the proof of Proposition 2 (see Appendix C) we will
need the following auxiliary lemmas dealing with two forward
invariant sets Ai, Bi ⊂ M (the case of a compact set Ai has
been treated in [7]). Define ρimax = infx∈Ai,y∈Bi

δ(x, y). As in
Proposition 2, it is assumed that Assumption 1 is satisfied, then
the set Ai ∪Bi admits a finite decomposition without cycles.

Lemma 4: Let Ai, Bi be forward invariant sets, which are
asymptotically stable for forward and backward flows of (2)
in M \Bi and M \Ai respectively. Then for any 0 < ρ <
ρimax there exists a locally Lipschitz continuous function V :
M\Dρ → R+, Dρ = {x ∈ M : |x|Bi

< ρ} (continuous on the
set Ai) such that α1(|x|Ai

) � V (x) for all x ∈ M\Dρ for
α1 ∈ K∞, and DV (x)f(x, 0) � −β(V (x), |x|), β ∈ KL for
a.e. x ∈ M\Dρ.

Proof: For any x0 ∈ M\Dρ, define

v(x0) = sup
t�0

|X(t, x0, 0)|Ai

by construction |x0|Ai
� v(x0) and v(x) = 0 for x ∈ Ai due to

forward invariance of Ai. From attractivity of Ai and continuity
of X(t, ·, 0), for any x0 ∈ M\Dρ there exists Tx0

∈ R+ such
that v(x0) = sup0�t�Tx0

|X(t, x0, 0)|Ai
. To analyze continu-

ity of the function v, consider

|v(x1)− v(x2)|

= | sup
t�0

|X(t, x1, 0)|Ai
− sup

t�0
|X(t, x2, 0)|Ai

|

= | sup
0�t�Tx1

|X(t, x1, 0)|Ai
− sup

0�t�Tx2

|X(t, x2, 0)|Ai
|

� sup
0�t�T

∣∣|X(t, x1, 0)|Ai
− |X(t, x2, 0)|Ai

∣∣
where T = max{Tx1

, Tx2
} and x1, x2 ∈ M \Dρ. Due to

Lipschitz continuity of the system (2), for any compact set of
initial conditions E ⊂ M \Dρ and any time 0 � T < +∞,
there exist K ∈ R+, L ∈ R+ such that

δ(X(t, x1, 0), X(t, x2, 0)) � Kδ(x1, x2)∣∣|X(t, x1, 0)|Ai
− |X(t, x2, 0)|Ai

∣∣ � Lδ(x1, x2)

for all 0 � t � T and any x1, x2 ∈ E . For all 0 < ρ <
ρimax and for any compact E ⊂ M \Dρ there exists Tρ =
supx0∈E Tx0

with the property Tρ < +∞ (due to local repelling
property of the set Bi, for any 0 < ρ < ρimax there exists 0 <
ρ′ � ρ such that trajectories initiated into the set E never reach
the set Dρ′ ). Keeping this in mind we see that

|v(x1)− v(x2)| � sup
0�t�Tρ

∣∣|X(t, x1, 0)|Ai
−|X(t, x2, 0)|Ai

∣∣
� Lδ(x1, x2)

for all x1, x2 ∈ E , and the function v is locally Lipschitz
continuous on the set E for any fixed 0 < ρ < ρimax as claimed.

Moreover, the function v is not increasing on any trajectory
of the system (2), indeed for any x0 ∈ M \Dρ

v (X(t, x0, 0)) = sup
τ�0

|X(τ,X(t, x0, 0), 0)|Ai

= sup
τ�t

|X(τ, x0, 0)|Ai

� sup
τ�0

|X(τ, x0, 0)|Ai
= v(x0).

Now, define a new function for all x0 ∈ M \Dρ

V (x0) = sup
t�0

{v (X(t, x0, 0)) k(t)}

where k : R+ → R+ is a continuously differentiable function
satisfying 0 < κ1 � k(t) � κ2 < +∞ and k̇(t) � κ3(t) >
0 for all t � 0, where κ3 is a monotonically decreasing func-
tion. An example of such a function is

k(t) = (κ1 + κ2t)(1 + t)−1, k̇(t) = (κ2 − κ1)(1 + t)−2.

The functionV has a lower boundκ1|x0|W �V (x0) and V (x)=
0 for all x∈Ai. Again, for any x0∈M \Dρ there exists Tx0

∈
R+ such that V (x0) = sup0�t�Tx0

{v(X(t, x0, 0))k(t)}. This
claim follows from the non-strict decreasing of the func-
tion v(X(t, x0, 0)) to zero with t → +∞. Next, for all
x1, x2 ∈ M \Dρ

|V (x1)− V (x2)|

=

∣∣∣∣sup
t�0

{v (X(t, x1, 0)) k(t)} − sup
t�0

{v (X(t, x2, 0)) k(t)}
∣∣∣∣

=

∣∣∣∣ sup
0�t�T

{v(X(t, x1, 0)) k(t)}− sup
0�t�T

{v(X(t, x2, 0)) k(t)}
∣∣∣∣

� sup
0�t�T

|k(t) [v (X(t, x1, 0))− v (X(t, x2, 0))]|

� κ2 sup
0�t�T

|v (X(t, x1, 0))− v (X(t, x2, 0))|

where T = max{Tx1
, Tx2

}. For all 0 < ρ < ρimax and for any
compact E ⊂ M \Dρ there exists Tρ = supx0∈E Tx0

such that
Tρ < +∞ and

|V (x1)−V (x2)| �κ2 sup
0�t�Tρ

|v(X(t, x1, 0))−v(X(t, x2, 0))|

�κ2Lδ (X(t, x1, 0), X(t, x2, 0))

�κ2LKδ(x1, x2)

for all x1, x2 ∈ E . The function V is locally Lipschitz con-
tinuous on the set M\Dρ for any 0 < ρ � ρimax and strictly
decreasing for any x0 ∈ M\{Ai ∪Dρ}

V (X(t, x0, 0)) = sup
τ�0

{v (X [τ,X(t, x0, 0), 0]) k(τ)}

= sup
τ�t

{v (X[τ, x0, 0])k(τ − t)}

< sup
τ�0

{v (X[τ, x0, 0]) k(τ)} = V (x0).

In addition, V equals zero on the set Ai. Denote by

Lf(x0,0)V (x0) := lim sup
h→0

h−1 [V (X(h, x0, 0))− V (x0)]
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then

Lf(x0,0)V (x0) < 0

for a.e. x0 ∈ M\{Ai ∪Dρ}. Define for some r ∈ R+

the set Gr = {x ∈ M : |x| ≤ r} \Dρ and the time Tr =
supx0∈Gr

Tx0
. The time Tr is well defined and finite since the

set Gr is compact, in addition

Tr ≤ ϕ0 + ϕ1(r)

for all r ∈ R+ and some ϕ0 ∈ R+, ϕ1 ∈ K. By definition

V (X(h, x0, 0))

= sup
t�0

{v (X [t,X(h, x0, 0), 0]) k(t)}

= sup
h�t�T|x0|

{v (X[t, x0, 0]) k(t− h)}

= sup
h�t�T|x0|

{
v (X[t, x0, 0]) k(t)k(t)

−1k(t− h)
}

≤ sup
h�t�T|x0|

{v (X[t, x0, 0]) k(t)} sup
h�t�T|x0|

{
k(t)−1k(t−h)

}
� V (x0) sup

h�t�T|x0|

{
k(t)−1k(t− h)

}

for a.e. x0 ∈ M\{Ai ∪Dρ}. Further

lim
h→0

h−1 [V (X(h, x0, 0))− V (x0)]

= lim
h→0

h−1

[
V (x0) sup

h�t�T|x0|

{
k(t)−1k(t− h)

}
− V (x0)

]

= V (x0) lim
h→0

h−1

[
sup

h�t�T|x0|

{
k(t)−1k(t− h)

}
− 1

]

= V (x0) lim
h→0

h−1 sup
h�t�T|x0|

k(t)−1 {k(t− h)− k(t)}

� V (x0) sup
0�t�T|x0|

k(t)−1 lim
h→0

h−1 {k(t− h)− k(t)}

= V (x0) sup
t�0

{
−k(t)−1k̇(t)

}
� −κ−1

2 κ3

(
T|x0|)V (x0

)
.

Due to properties of the function κ3 (it is a strictly de-
creasing function from a constant (κ2 − κ1) to zero), the in-
equality Lf(x,0)V (x) � −κ−1

2 κ3(ϕ0 + ϕ1[|x|])V (x) has been
approved for a.e. x ∈ M\{Ai ∪Dρ}. This inequality is addi-
tionally valid on the set Ai, then we obtain

Lf(x,0)V (x) � −β (V (x), |x|)

for all x ∈ M\Dρ for a function β ∈ KL.
Lemma 5: Let Ai, Bi be forward invariant sets, which

are asymptotically stable for forward and backward flows of
(2) in M \Bi and M \Ai respectively. Then for any 0 <
ρ < ρimax there exists a locally Lipschitz continuous func-
tion V : Dρ → R+, Dρ = {x ∈ M : |x|Bi

< ρ} (continuous
on the set Bi) such that α1(|x|Bi

) � V (x) � α2(|x|Bi
) < 1,

Lf(x,0)V (x) � β(V (x), |x|), for α1, α2 ∈ K, β ∈ KL and
a.e. x ∈ Dρ.

Proof: For any 0 < ρ < ρimax and all x0 ∈ Dρ\Bi

there exists T ρ
x0

∈ R+ such that X(t, x0, 0) /∈ Dρ for
all t � T ρ

x0
(the set Ai is asymptotically stable). Then

there exists 0 ≤ Tx0
≤ T ρ

x0
such that inft≥0 |X(t, x0, 0)|Bi

=
inf0�t�Tx0

|X(t, x0, 0)|Bi
, define

v(x0) = inf
0�t�Tx0

|X(t, x0, 0)|Bi

by construction v(x0) � |x0|Bi
< ρ and v(x) = 0 iff x ∈ Bi

To analyze continuity of the function v, consider

|v(x1)− v(x2)|

= | inf
0�t�Tx1

|X(t, x1, 0)|Bi
− inf

0�t�Tx2

|X(t, x2, 0)|Bi
|

� sup
0�t�T

||X(t, x1, 0)|Bi
− |X(t, x2, 0)|Bi

|

where T = max{Tx1
, Tx2

}. Due to Lipschitz continuity of
solutions of the system (2), for any compact set of initial
conditions E ⊂ M and time 0 � T < +∞, there exist K ∈
R+, L ∈ R+ such that

δ (X(t, x1, 0), X(t, x2, 0)) �Kδ(x1, x2)∣∣|X(t, x1, 0)|Bi
− |X(t, x2, 0)|Bi

∣∣ �Lδ(x1, x2)

for all 0 � t � T and any x1, x2 ∈ E . For any compact set
E ⊂ M define Tρ = supx0∈E∩Dρ

Tx0
, then

|v(x1)− v(x2)|

� sup
0�t�Tρ

∣∣|X(t, x1, 0)|Bi
− |X(t, x2, 0)|Bi

∣∣ � Lδ(x1, x2)

for all x1, x2 ∈ E∩Dρ, and the function v is locally Lipschitz
continuous on the set Dρ\Bi and continuous on Dρ. The
function v is not decreasing on any trajectory of the system (2),
indeed for any x0 ∈ Dρ

v (X(t, x0, 0)) = inf
0�τ�TX(t,x0,0)

|X (τ,X(t, x0, 0), 0) |Bi

= inf
t�τ�Tx0

|X(τ, x0, 0)|Bi

� inf
0�τ�Tx0

|X (τ, x0, 0)|Bi
= v(x0) .

Therefore, δ′(|x0|Bi
)�v(x0) for δ′(s)=s(1+s)−1inf |x|Bi

=s

v(x), δ′ ∈ K and all x0 ∈ Dρ.
Now, define a new function for all x0 ∈ Dρ

V (x0) = inf
0�t�Tx0

{v (X(t, x0, 0)) k(t)}

where k : R+ → R+ is a continuously differentiable func-
tion with properties 0 < κ1 � k(t) � κ2 < +∞ and k̇(t) �
−κ3(t) < 0 for all t � 0, where κ3 is a monotonically decreas-
ing function. An example of such a function is

k(t) = κ1 + (κ2 − κ1)e
−t, k̇(t) = (κ1 − κ2)e

−t.
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The function V has bounds κ1δ
′(|x0|Bi

)�V (x0)�κ2|x0|Bi

and V (x) = 0 for all x ∈ Bi. Next, for all x1, x2 ∈ Dρ

|V (x1)− V (x2)|

=

∣∣∣∣ inf
0�t�Tx1

{v(X(t, x1, 0))k(t)}

− inf
0�t�Tx2

{v(X(t, x2, 0))k(t)}
∣∣∣∣

=

∣∣∣∣ inf
0�t�T

{v (X(t, x1, 0))k(t)}− inf
0�t�T

{v(X(t, x2, 0))k(t)}
∣∣∣∣

� sup
0�t�T

|k(t) [v (X(t, x1, 0))− v (X(t, x2, 0))]|

� κ2 sup
0�t�T

|v (X(t, x1, 0))− v (X(t, x2, 0))|

where T = max{Tx1
, Tx2

}. For any compact set E ⊂ M define
Tρ = supx0∈E∩Dρ

Tx0
as before and

|V (x1)− V (x2)|

� κ2 sup
0�t�Tρ

|v (X(t, x1, 0))− v (X(t, x2, 0))|

� κ2Lδ (X(t, x1, 0), X(t, x2, 0)) � κ2LKδ(x1, x2)

for all x1, x2 ∈ E∩Dρ. Then the function V is locally Lipschitz
continuous on the set Dρ\Bi and continuous on Dρ. This
function is strictly increasing for any x0 ∈ Dρ\Bi

V (X(t, x0, 0))

= inf
0�τ�TX(t,x0,0)

{v (X [τ,X(t, x0, 0), 0]) k(τ)}

� inf
t�τ�Tx0

{v (X[τ, x0, 0]) k(τ − t)}

> inf
0�τ�Tx0

{v (X[τ, x0, 0]) k(τ)} = V (x0)

V (t) equals zero on any trajectories into the set Bi, then

Lf(x0,0)V (x0) = lim
h→0

h−1 [V (X(h, x0, 0))− V (x0)] > 0

for a.e. x0 ∈ Dρ\Bi. Define for some r ∈ R+ the set Gr =
{x ∈ M : |x| ≤ r} ∩Dρ and the time Tr = supx0∈Gr

Tx0
. The

time Tr is well defined and finite since the set Gr is compact,
in addition

Tr ≤ ϕ0 + ϕ1(r)

for all r ∈ R+ and some ϕ0 ∈ R+, ϕ1 ∈ K. By definition

V (X(h, x0, 0))

= inf
0�t�TX(h,x0,0)

{v (X [t,X(h, x0, 0), 0]) k(t)}

= inf
h�t�T|x0|

{v (X[t, x0, 0]) k(t− h)}

= inf
h�t�T|x0|

{
v (X[t, x0, 0]) k(t)k(t)

−1k(t− h)
}

� inf
h�t�T|x0|

{v(X[t, x0, 0]) k(t)} inf
h�t�T|x0|

{
k(t)−1k(t−h)

}
� V (x0) inf

h�t�T|x0|

{
k(t)−1k(t− h)

}
.

Finally

lim
h→0

h−1 [V (X(h, x0, 0))− V (x0)]

� lim
h→0

h−1

[
V (x0) inf

h�t�T|x0|

{
k(t)−1k(t− h)

}
− V (x0)

]

= V (x0) lim
h→0

h−1

[
inf

h�t�T|x0|

{
k(t)−1k(t− h)

}
− 1

]

= V (x0) lim
h→0

h−1 inf
h�t�T|x0|

k(t)−1 {k(t− h)− k(t)}

� V (x0) inf
0�t�T|x0|

k(t)−1 lim
h→0

h−1 {k(t− h)− k(t)}

= V (x0) inf
0�t�T|x0|

{
−k(t)−1k̇(t)

}
� κ−1

2 κ3(T|x0|)V (x0).

for a.e. x ∈ Dρ (the inequality is additionally valid on the
set Bi). Since κ3 is a monotonically decreasing function, the
following inequality has been substantiated:

Lf(x,0)V (x) � κ−1
2 κ3 (ϕ0 + ϕ1(|x|))V (x) ≥ β (V (x), |x|)

for a.e. x ∈ Dρ for some β ∈ KL.
Remark 4: Note that if the set Ai (or Bi) is compact, then

there exists constant mAi
> 0 (mBi

> 0) such that for any
x ∈ M it holds |x| ≤ |x|Ai

+mAi
(|x| ≤ |x|Bi

+mBi
) and

therefore

DV (x)f(x, 0) � −β (V (x), |x|) ≤ −β (V (x), |x|Ai
+mAi

)

(DV (x)f(x, 0) � β (V (x), |x|) ≥ β (V (x), |x|Bi
+mBi

)) .

Therefore, we can introduce a function Ṽ (x) =
∫ V (x)

0 σ̃(r)dr
for a suitably defined σ̃ ∈ K∞ such that

α̃1 (|x|Ai
) � Ṽ (x), DṼ (x)f(x, 0) � −β̃

(
Ṽ (x)

)
(
α̃1 (|x|Bi

) � Ṽ (x) � α̃2 (|x|Bi
) , DṼ (x)f(x, 0) � β̃(Ṽ (x))

)
for a.e. x ∈ M\Dρ (x ∈ Dρ) and some α̃1, α̃2, β̃ ∈ K∞,
see also Lemma 3 in [7].

C. Proof of Proposition 2

In the following assume, without loss of generality, that
the unperturbed system ẋ = f(x, 0) is backwards and forward
complete, viz. its solutions are globally defined in R. If this is
not the case just replace it by the system

ẋ = f̃(x, 0) = f(x, 0)/ (1 + |f(x, 0)|x) .

The dissipation inequality proved for f̃ will a fortiori hold
for f .

Consider the following sets for any 1 ≤ i ≤ k:

Ai =
⋃
j≤i

R(Wj), Bi =
⋃
i<l

A(Wl).

We have the following properties for these sets:
A) Since the sets Wi, 1 ≤ i ≤ k create a filtration ordering

of W , then the set Ai represents the initial conditions
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attracted in the backward time by Wi and all its sinks
Wj (Wj ≺ Wi for j < i). The set Ai is a union of
“repulsion” sets R(Wj) of Wj with j ≤ i; if Wi is a
purely attracting set, that is always the case for i = 1
under conditions of the proposition, then Ai = Wi. The
set Bi corresponds to the initial conditions attracted by
Wi+1 and all its sources Wl (Wi+1 ≺ Wl for i+ 1 < l)
in the forward time.

B) The sets Ai and Bi are forward invariant for (2) and Ai ⊂
Ci, where

Ci =
⋃
j≤i

A(Wj)

is a forward invariant set. Indeed, if a set Wi is purely
attracting then R(Wi) = Wi ⊂ A(Wi) ⊂ Ci. If a set Wi

is not purely attracting, then by the definition of filtration
ordering (see Definition 4) all its sinks Wj have j < i,
therefore R(Wi) ⊂

⋃
j<i A(Wj) ⊂ Ci.

C) Take an x ∈ clos[R(Wi)], then X(t, x, 0) has its α-limit
set inside some Wj with j ≤ i by the filtration ordering
definition, therefore clos[R(Wi)] ⊂ Ai for any i ≥ 1.
Now let us apply these arguments to the reverse flow
X(−t, x, 0). We see that

clos

⎡
⎣⋃
j>i

A(Wj)

⎤
⎦ =

⋃
j>i

clos [A(Wj)]

⊆
⋃
j>i

⋃
l≥j

A(Wl) =
⋃
j>i

A(Wj).

Then the set
⋃

j>i A(Wj) is closed and the set Ci = M \⋃
j>i A(Wj) is open.

D) The set Ai is attractive for all initial conditions in an open
and forward invariant set Ci. Indeed, the set Ci \Ai ⊂⋃

j≤i A(Wj) \Wj and it does not contain limit invariant
solutions of the system (2), therefore all trajectories
initiated at Ci \Ai go to Ai, which contains all Wj

for j ≤ i. Thus for any ε > 0 and all x0 ∈ Ci there is
a 0 ≤ Tx0,ε < +∞ such that |X(t, x0, 0)|Ai

≤ ε for all
t ≥ Tx0,ε (note that X(t, x0, 0) ∈ Ci for all t ≥ 0 since
Ci is invariant).

E) The set Ai is locally Lagrange stable, i.e. for any δ > 0
there is an ε > 0 such that |X(t, x0, 0)|Ai

≤ ε for all
t ≥ 0 and for all x0 ∈ Ci with |x0|Ai

≤ δ. Indeed, take a
set Dρ = {x ∈ Ci : |x|Ai

≤ ρ} for some ρ > 0 and con-
sider ν(ρ) = supx0∈Dρ

supt≥0 |X(t, x0, 0)|Ai
. Remark

that ν(ρ) is a monotone function. Assume that ν(ρ) <
+∞ for any such ρ > 0, then the set Ai is stable with
δ = ρ and ε = ν(ρ). On the contrary, assume that there is
a ρ′ > 0 such that ν(ρ′) = +∞, then it means that there
exists a sequence of points x′

q ∈ Dρ′ , q ∈ N+ such that
supq≥0 supt≥0 |X(t, x′

q, 0)|Ai
= +∞. Take an ε < ρ′,

then by attractiveness of Ai there are 0 ≤ Tx′
q,ε < +∞

such that |X(t, x′
q, 0)|Ai

≤ ε for all t ≥ Tx′
q,ε. Define

T ′ = supq≥0 Tx′
q,ε, let T ′ < +∞, then the trajectories

X(t, x′
q, 0) leave to infinity and approach a vicinity of

the set Ai in a finite time T ′, that is a contradiction due
to the system continuity and its forward completeness.
Finally, assume that T ′ = +∞, then it means that there

is a point x∞ ∈ Ci such that x′
q → x∞ when q → +∞

such that Tx∞,ε/2 = +∞, which contradicts the set Ai

attractiveness in Ci. Therefore, ν(ρ) < +∞ for any such
ρ > 0 and the set Ai is locally Lagrange stable in Ci.

F) The set Ai is locally Lyapunov stable, i.e. for any ε > 0
there is a δ > 0 such that |X(t, x0, 0)|Ai

≤ ε for all
t ≥ 0 and for all x0 ∈ Ci with |x0|Ai

≤ δ. Indeed, by the
definition above, ν(ρ1) ≤ ν(ρ2) for ρ1 ≤ ρ2. In addition
limρ→0 ν(ρ) = 0, assume it is not, then it means that
there exists an υ > 0 such that for any ι > 0 there is
x0 ∈ Ci with |x0|Ai

≤ ι such that |X(t′, x0, 0)|Ai
≥

υ for some t′ ≥ 0. Since ι > 0 can be chosen ar-
bitrary, it implies that there exist some trajectories,
which exit from Ai into Ci and return back to Ai (the
set Ai is attractive in Ci). Therefore, the set Ai has
1-cycle, that is a contradiction and limρ→0 ν(ρ) = 0.
Thus there is a function ν̃ ∈ K∞ such that ν(ρ) ≤
ν̃(ρ), then the set Ai is locally Lyapunov stable in Ci:
for any ε > 0 if x0 ∈ Dν̃−1(ε) then |X(t, x0, 0)|Ai

≤ ε.
Since Ai is also attractive by the consideration above,
the set Ai is asymptotically stable with the domain of
attraction Ci [10].

Note that M =
⋃k

i=1 A(Wi) and Ci = M \Bi, therefore
the set Ai is uniformly asymptotically stable with the
domain of attraction M \Bi. Applying the above ar-
guments for the flow of (2) in the backward time
(i.e. X(−t, ·, 0)) we can prove that Bi is asymptotically stable
for the backward flow with the domain of attraction M \Ai.

Now we need to recall Lemma 4 and Lemma 5, applying
these lemmas to the sets Ai and Bi, and using the smoothing
arguments from [10] (Theorem B1) or [19] for 0 < ρ1 < ρ2 <
ρimax we may obtain two smooth functions V1 : M\Bρ1

→ R+,
V2 : Bρ2

→ R+ such that:
• α1(|x|Ai

) � V1(x) for all x ∈ M\Bρ1
for α1 ∈ K∞;

• α2(|x|Bi
) � V2(x) � α3(|x|Bi

) < 1 for all x ∈ Bρ2
for

α2, α3 ∈ K∞;
• DV1(x)f(x, 0) � −β1(V1(x), |x|), β1 ∈ KL for all
|x|Bi

� ρ1;
• DV2(x)f(x, 0) � β2(V2(x), |x|), β2 ∈ KL for all
|x|Bi

≤ ρ2.
Note that

DV1(x)f(x, 0) � −β1(α1 (|x|Ai
) , |x|) , D[1−V2(x)] f(x, 0)

� −β2(α2 (|x|Bi
) , |x|) .

Next, it is necessary to unite the functions V1 and V2 using
the covering property of these functions into the set Υ = {x ∈
M : ρ1 < |x|Bi

< ρ2}. The obstacle there is that Bi can be
non-compact in a general case, and the function V1 may take
unbounded values on Υ (recall that V1(x) ≤ α4(|x|+m) for
some m > 0). To avoid this issue let us introduce a semi-proper
function V3(x) = θ(V1(x)), where θ(s) =

∫ s

0 (1 + χ(r))−1dr
is a bounded function for a suitable selected χ ∈ K∞, then for
all |x|Bi

� ρ1

α5 (|x|Ai
) � V3(x), DV3(x)f(x, 0) � −β3(|x|Ai

, |x|)

for α5(s) = θ ◦ α1(s) ∈ K and β3(s, r) = β1(α1(s), r)/(1 +
χ(α4(r +m))) ∈ KL. There exist v1, v2 ∈ R+ (under an
appropriate rescalingof V2) such that Υ′ = {x ∈ M : v1 <
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V2(x) < v2 < 0.5} ⊂ Υ, define v3 = sup x∈ΥV3(x) (by con-
struction v3 < +∞) and take a smooth function φ : R+ → R+

such that φ(s) = 0 for s ≤ v1, φ(s) = 1 for s ≥ v2 and
dφ(s)/ds > 0 for s∈(v1, v2) then Li(x)=v4φ(V2(x))V3(x)+
(1− φ(V2(x)))(1− V2(x)) with v4 = (0.5− v2)v

−1
3 > 0 is a

smooth Lyapunov function for the system. Indeed, Li(x) =
v4V3(x) for V2(x) ≥ v2 and Li(x) = 1− V2(x) for V2(x) ≤
v1, while on the set Υ′ we have

DLi(x)f(x, 0)

= v4
dφ(s)

ds

∣∣∣∣
s=V2(x)

V3(x)DV2(x)f(x, 0)

+ v4φ (V2(x))DV3(x)f(x, 0)

− dφ(s)

ds

∣∣∣∣
s=V2(x)

(1− V2(x))DV2(x)f(x, 0)

− (1− φ (V2(x)))DV2(x)f(x, 0)

=
dφ(s)

ds

∣∣∣∣
s=V2(x)

[v4V3(x)− 1 + V2(x)]DV2(x)f(x, 0)

+ v4φ(V2(x))DV3(x)f(x, 0)

− (1− φ (V2(x)))DV2(x)f(x, 0)

and all terms are negative in the last expression since v4V3(x)−
1 + V2(x) ≤ v4v3 − 1 + v2 = −0.5. Thus we have proven the
following auxiliary result.

Lemma 6: Let Ai, Bi be forward invariant sets asymptoti-
cally stable for forward and backward flows of (2) in M \Bi

and M \Ai respectively. Then there exists a smooth function
Li : M → R+ such that

• α′(|x|Ai
) ≤ Li(x) for all x ∈ M and some α′ ∈ K;

• L−1
i [0] = Ai, Bi ⊂ L−1

i [1], DLi(x)f(x, 0) = 0 for all
x ∈ Gi = Ai ∪Bi;

• DLi(x)f(x, 0) ≤ −β′(|x|Gi
, |x|) for all x ∈ M and some

β′ ∈ KL.

Finally to prove Proposition 2 select L(x) = Σk−1
i=1Li(x),

which fulfils all our requirements. Indeed,
⋂k

i=1 Ai ⊂ W and
W =

⋂k
i=1 Ai ∪

⋂k
i=1 Bi, then there are functions υ ∈ K and


 ∈ KL such that

υ (|x|W) ≤ L(x), DL(x)f(x, 0) ≤ −
 (|x|W , |x|)

for all x ∈ M , while the sets Wi contain critical points of
L and belong to different constant levels of L. Since the
set W is compact there is y ∈ R+ such that |x| ≤ |x|W +
y, then $DL(x)f(x,0)\leq-\varpi^{\prime}(\vert x\vert_{\cal
W})$?> for all x ∈ M and some positive definite function 
′.
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