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V. CONCLUSION

In this note, an explicit parametric solution to the generalized
Sylvester matrix equation AX + BY = EXF with the matrix F be-
ing an arbitrary square matrix has been provided in terms of the R-
controllability matrix associated with the matrix triple (E, A, B) and
an observability matrix associated with the matrix F and a free param-
eter matrix. The proposed solution offers all the degrees of freedom.
The proposed results may bring new convenience in many applications
related to the generalized matrix equation.
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L1 Adaptive Output Feedback Controller for Systems
of Unknown Dimension

Chengyu Cao and Naira Hovakimyan

Abstract—This note presents novel adaptive output feedback control
methodology for systems of unknown dimension in the presence of un-
modeled dynamics and time-varying uncertainties. The adaptive output
feedback controller ensures uniformly bounded transient and asymptotic
tracking for the system’s both signals, input and output, simultaneously.
The performance bounds can be systematically improved by increasing
the adaptation rate. Simulations of an unstable nonminimum phase system
verify the theoretical findings.

Index Terms—Adaptive output feedback, guaranteed transient perfor-
mance, nonminimum phase systems.

I. INTRODUCTION

This note extends the results of [1]–[3] to an output feedback frame-
work for a single-input signal-output (SISO) system of unknown di-
mension in the presence of time-varying disturbances. The method-
ology ensures uniformly bounded transient response for the system’s
both signals, input and output, simultaneously, in addition to asymp-
totic tracking. The L∞ norm bounds for the error signals between the
closed-loop adaptive system and the closed-loop reference system can
be systematically reduced by increasing the adaptation gain.

Adaptive algorithms achieving arbitrarily improved transient perfor-
mance in the case of constant unknown parameters are given in [4]–[14],
and for unknown time-varying parameters have been given in [15].
While the results in [15] improved upon [16]–[18], by extending the
class of systems beyond the slow time-variation of the unknown pa-
rameters and guaranteeing performance improvement to an arbitrary
degree, they still did not provide means for regulating the frequency
spectrum of the control signal during the transient. In [19] and [20], we
developed a new architecture for control of uncertain systems, named
L1 adaptive controller, which permits fast adaptation and yields the
desired transient response for the system’s both signals, input and out-
put, simultaneously, in addition to asymptotic tracking. In this note,
we extend the methodology to systems of unknown dimension in the
presence of time-varying bounded disturbances without limiting the
rate of their variation. By modifying the architecture correspondingly,
we prove that the L1 adaptive controller ensures uniformly bounded
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transient response for the system’s both signals, input and output, si-
multaneously, in addition to stable tracking. A closed-loop reference
system is considered by introducing the filtered version of an ideal
nominal controller. The L∞ norm bounds for the error signals between
the closed-loop adaptive system and the closed-loop reference system
can be systematically reduced by increasing the adaptation rate.

The note is organized as follows. Section II states some prelim-
inary definitions, and Section III gives the problem formulation. In
Section IV, the closed-loop reference system is defined. In Section V,
the novel L1 adaptive control architecture is presented. Stability and
uniform transient tracking bounds of the L1 adaptive controller are
presented in Section VI. Section VII provides a discussion on class
of systems for which the proposed methodology can be implemented.
In Section VIII, simulation results are presented, while Section IX
concludes the note.

II. PRELIMINARIES

In this Section, we recall basic definitions and facts from linear
systems theory.

Definition 1: For a signal ξ(t), t ≥ 0, ξ ∈ R
n , its truncated L∞

andL∞ norms are ‖ξt‖L∞ = maxi=1 , .. ,n (sup0≤τ ≤t |ξi (τ )|), ‖ξ‖L∞ =
maxi=1 , .. ,n (supτ ≥0 |ξi (τ )|), where ξi is the ith component of ξ.

Definition 2: The L1 gain of a bounded-input bounded-output
(BIBO) stable proper SISO system is defined by ||H(s)||L1 =∫ ∞

0 |h(t)|dt, where h(t) is the impulse response of H(s).
We note that a transfer function is BIBO stable if and only if every

pole has a negative real part.
Lemma 1: For a BIBO stable proper SISO system H(s) with input

r(t) and output x(t), we have ‖xt‖L∞ ≤ ‖H(s)‖L1 ‖rt‖L∞ ∀t ≥ 0.

III. PROBLEM FORMULATION

Consider the following SISO system:

y(s) = A(s)(u(s) + d(s)), y(0) = 0, (1)

where u(t) ∈ R is the system’s input, y(t) ∈ R is the system’s out-
put, A(s) is a strictly proper unknown transfer function, d(s) is the
Laplace transform of the time-varying uncertainties and disturbances
d(t) = f (t, y(t)), while f is an unknown map, subject to the following
assumptions.

Assumption 1: There exist constants L < 0 and L0 < 0 such that the
following inequalities |f (t, y1 ) − f (t, y2 )| ≤ L|y1 − y2 |, |f (t, y)| ≤
L|y| + L0 hold uniformly in t ≥ 0.

Assumption 2: There exist constants L1 < 0, L2 < 0, and L3 < 0
such that for all t ≥ 0

|ḋ(t)| ≤ L1 |ẏ(t)| + L2 |y(t)| + L3 . (2)

We note that the numbers L, L0 , L1 , L2 , and L3 can be arbitrarily
large. Let r(t) be a given bounded continuous reference input signal.
The control objective is to design an adaptive output feedback con-
troller u(t) such that the system output y(t) tracks the reference input
following a desired reference model, i.e., y(s) ≈ M (s)r(s). In this
note, we consider a first-order system, i.e.

M (s) = m/(s + m), m > 0. (3)

We note that the system in (1) can be rewritten as

y(s) = M (s) (u(s) + σ(s)) (4)

σ(s) = ((A(s) − M (s))u(s) + A(s)d(s))/M (s). (5)

IV. CLOSED-LOOP REFERENCE SYSTEM

Consider the following closed-loop reference system:

yref (s) = M (s)(uref (s) + σref (s)) (6)

σref (s) =
(A(s) − M (s))uref (s) + A(s)dref (s)

M (s)
(7)

uref (s) = C(s)(r(s) − σref (s)) (8)

where dref (t) = f (t, yref (t)), and C(s) is a strictly proper system with
C(0) = 1. One simple choice would be

C(s) = ω/(s + ω). (9)

We note that there is no algebraic loop involved in the definition of
σ(s), u(s) and σref (s), uref (s).

We will further restrict the choice of C(s) and M (s) to ensure that

H(s) =
A(s)M (s)

(C(s)A(s) + (1 − C(s))M (s))
is BIBO stable, (10)

and
‖G(s)‖L1 L < 1, G(s) = H(s)(1 − C(s)). (11)

The condition in (11) restricts the class of systems A(s) in (1) that
can be stabilized by the controller architecture in this note. However,
as discussed in Section VII, the class of such systems is not empty.
Letting

A(s) =
An (s)
Ad (s)

, C(s) =
Cn (s)
Cd (s)

, M (s) =
Mn (s)
Md (s)

(12)

it follows from (10) that

H(s) =
Cd (s)Mn (s)An (s)

Md (s)Cn (s)An (s) + (Cd (s) − Cn (s))Mn (s)Ad (s)
.

(13)
We note that a strictly proper C(s) implies that the order of Cd (s) −
Cn (s) and Cd (s) is the same. Since the order of Ad (s) is higher than
that of An (s), we note that the transfer function H(s) is strictly proper.
The next Lemma establishes the stability of the closed-loop system in
(6)–(8).

Lemma 2: If C(s) and M (s) verify the conditions in (10) and (11),
the closed-loop reference system in (6)–(8) is BIBO stable.

Proof: It follows from (7) and (8) that

uref (s) =
C(s)M (s)r(s) − C(s)A(s)dref (s)

C(s)A(s) + (1 − C(s))M (s)
. (14)

It follows from (6) and (7) that

yref (s) = A(s)(uref (s) + dref (s)). (15)

Substituting (14) into (15), it follows from (10) that

yref (s) = H(s) (C(s)r(s) + (1 − C(s))dref (s)) . (16)

Since H(s) is strictly proper and BIBO stable, G(s) is also strictly
proper and BIBO stable, and therefore

‖yref ‖L∞ ≤ ‖H(s)C(s)‖L1 ‖r‖L∞ + ‖G(s)‖L1 (L‖yref ‖L∞ + L0 ).

It follows from (11) and (17) that

‖yref ‖L∞ ≤ ρ, ρ =
‖H(s)C(s)‖L1 ‖r‖L∞ + ‖G(s)‖L1 L0

1 − ‖G(s)‖L1 L
. (18)

Hence ‖yref ‖L∞ is finite, which implies that the closed-loop reference
system in (6)–(8) is BIBO stable.
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Remark 1: We notice that the reference system in (6) is written in
terms of the desired system behavior, defined by M (s). The uncer-
tainties due to A(s) and f (t, yref (t)) are lumped in the signal σref (s).
The control signal defined via (8) cancels the uncertainties within the
bandwidth of C(s), which eventually defines the tradeoff between per-
formance and robustness.

V. L1 ADAPTIVE CONTROLLER

A. Notations

Choose arbitrary P < 0 and let Q = 2mP . Define

H0 (s) =
A(s)

C(s)A(s) + (1 − C(s))M (s)
,

H1 (s) =
(A(s) − M (s))C(s)

C(s)A(s) + (1 − C(s))M (s)
. (19)

Using (12) in (19), we have H0 (s) = C d (s)A n (s)M d (s)
H d (s) , and

H1 (s) =
Cn (s)An (s)Md (s) − Cn (s)Ad (s)Mn (s)

Hd (s)
(20)

where Hd (s) = Cn (s)An (s)Md (s) + Mn (s)Ad (s)(Cd (s) −
Cn (s)). Since the relative order between Cd (s) − Cn (s) and Cn (s)
is greater than zero, the order of Mn (s)Ad (s)(Cd (s) − Cn (s))
is higher than Cn (s)Ad (s)Mn (s). Similarly, since the relative
order between Ad (s) and An (s) is greater than zero, while the
relative order between Mn (s) and Md (s) is −1, we note that
the order of Mn (s)Ad (s)(Cd (s) − Cn (s)) is higher than that of
Cn (s)An (s)Md (s). Therefore, H1 (s) is strictly proper. We note from
(13) and (20) that H1 (s) has the same denominator as H(s), and it
follows from (10) that H1 (s) is BIBO stable. Using similar arguments,
it can be verified that H0 (s) is proper and BIBO stable.

Let

∆ = ‖H1 (s)‖L1 ‖r‖L∞ + ‖H0 (s)‖L1 (Lρ + L0 )

+
(∥∥∥H1 (s)

M (s)

∥∥∥
L1

+ L‖H0 (s)‖L1

‖C(s)H(s)/M (s)‖L1

1 − ‖G(s)‖L1 L

)
γ̄

where γ̄ < 0 is an arbitrary constant. Since H1 (s) is BIBO stable and
strictly proper, ‖H1 (s)/M (s)‖L1 is finite, and hence, ∆ is a finite
number. Let

β1 = 4∆‖H0 (s)‖L1

(
L1β01 + L2

‖C(s)H(s)/M (s)‖L1

1 − ‖G(s)‖L1 L

)
β2 = 4∆‖sH1 (s)‖L1 (‖r‖L∞ + 2∆)

+ 4∆‖H0 (s)‖L1

(
L1β02 + L3 + ρL2

)
(21)

where ρ is defined in (18), and

β01 = ‖sH(s)(1 − C(s))‖L1

L ‖C(s)H(s)/M (s)‖L1

1 − ‖G(s)‖L1 L

β02 = ‖sH(s)C(s)‖L1 (‖r‖L∞ + 2∆)

+ ‖sH(s)(1 − C(s))‖L1 (Lρ + L0 ). (22)

Since H(s) and H1 (s) are strictly proper and BIBO stable,
‖sH1 (s)‖L1 , ‖sH(s)C(s)‖L1 and ‖sH(s)(1 − C(s))‖L1 are finite.
We further define

β3 = Pβ1/Q = β1/(2m),

β4 = 4∆2 + Pβ2/Q = 4∆2 + β2/(2m). (23)

Fig. 1. Closed-loop system with L1 adaptive controller.

B. L1 Adaptive Controller

We consider the following output predictor:

˙̂y(t) = −mŷ(t) + m (u(t) + σ̂(t)) , ŷ(0) = 0 (24)

where the adaptive estimate σ̂(t) is governed by the following adapta-
tion law:

˙̂σ(t) = Γc Proj(σ̂(t),−mP ỹ(t)), ỹ(t) = ŷ(t) − y(t),

σ̂(0) = 0 (25)

with Γc ∈ R
+ being the adaptation rate subject to the following lower

bound:

Γc > max
{

αβ2
3

(α − 1)2β4P
,
αβ4

P γ̄2

}
(26)

in which α > 1 is an arbitrary constant, while projection is confined to
the following bound:

|σ̂(t)| ≤ ∆. (27)

Letting
γ0 =

√
αβ4/(Γc P ), (28)

it follows from (26) that γ̄ ≥ γ0 , and hence

∆ ≥ ‖H1 (s)‖L1 ‖r‖L∞ + ‖H0 (s)‖L1 (Lρ + L0 )

+
(∥∥∥H1 (s)

M (s)

∥∥∥
L1

+ L‖H0 (s)‖L1

‖C(s)H(s)/M (s)‖L1

1 − ‖G(s)‖L1 L

)
γ0 .

The control signal is generated by

u(s) = C(s)(r(s) − σ̂(s)). (29)

The complete L1 adaptive controller consists of (24), (25), and (29)
subject to the L1 -gain condition in (11). The closed-loop system is
illustrated in Fig. 1.

VI. ANALYSIS OF L1 ADAPTIVE CONTROLLER

In this section, we analyze the stability and the performance of
L1 adaptive controller. Let H2 (s) = −M (s)C(s)/(C(s)A(s) + (1 −
C(s))M (s)). Using the definitions from (12), we have

H2 (s) =
−Cn (s)Ad (s)Mn (s)

Cn (s)An (s)Md (s) + Mn (s)Ad (s)(Cd (s) − Cn (s))
.

(30)
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Since the relative order between Cd (s) − Cn (s) and Cn (s) is greater
than zero, it can be verified straightforwardly that H2 (s) is strictly
proper. We note from (13) and (30) that H2 (s) has the same de-
nominator as H(s), and it follows from (10) that H2 (s) is BIBO
stable. Since H2 (s) is strictly proper and BIBO stable, H2 (s)/M (s)
is BIBO stable and proper, and hence, its L1 gain is finite. It can
be verified that C(s)H(s)/M (s) is also strictly proper and BIBO
stable, and hence, ‖C(s)H(s)/M (s)‖L1 exists and is finite. Let
H3 (s) = H(s)C(s)/M (s).

Theorem 1: Given the system in (1) and the L1 adaptive controller
in (24), (25), and (29) subject to (11), we have

‖ỹ‖L∞ < γ0 (31)

‖y − yref ‖L∞ ≤ γ1 (32)

‖u − uref ‖L∞ ≤ γ2 (33)

where ỹ(t) = ŷ(t) − y(t), γ0 is defined in (28), and

γ1 = ‖C(s)H(s)/M (s)‖L1
γ0/(1 − ‖G(s)‖L1 L),

γ2 = L‖H3 (s)‖L1 γ1 + ‖H2 (s)/M (s)‖L1
γ0 . (34)

Proof: Let σ̃(t) = σ̂(t) − σ(t), where σ(t) is defined in (5). It fol-
lows from (29) that

u(s) = C(s)r(s) − C(s)(σ(s) + σ̃(s)) (35)

and the system in (4) consequently takes the form

y(s) = M (s)
(
C(s)r(s) + (1 − C(s))σ(s) − C(s)σ̃(s)

)
. (36)

Substituting (35) into (5), it follows from the definition of H(s), H0 (s),
and H1 (s) in (10) and (19) that

σ(s) = H1 (s)(r(s) − σ̃(s)) + H0 (s)d(s). (37)

Substituting (37) into (36), we have

y(s) = M (s)(C(s) + H1 (s)(1 − C(s)))(r(s) − σ̃(s))

+ H0 (s)M (s)(1 − C(s))d(s). (38)

It can be verified from (10) and (19) that M (s)(C(s) + H1 (s)(1 −
C(s))) = H(s)C(s), H(s) = H0 (s)M (s), and hence, (38) can be
rewritten as

y(s) = H(s)(C(s)r(s) − C(s)σ̃(s)) + H(s)(1 − C(s))d(s).
(39)

Let e(t) = y(t) − yref (t). From (16) and (39), one has e(s) =
H(s)((1 − C(s))de (s) − C(s)σ̃(s)), where de (s) is introduced to
denote the Laplace transform of de (t) = f (t, y(t)) − f (t, yref (t)).
Lemma 1 and Assumption 1 give the following upper bound:

‖et‖L∞ ≤ L‖H(s)(1 − C(s))‖L1 ‖et‖L∞ + ‖r1 t ‖L∞ (40)

where r1 (t) is the signal with its Laplace transformation r1 (s) =
C(s)H(s)σ̃(s). It follows from (4) and (24) that

ỹ(s) = M (s)σ̃(s). (41)

Therefore r1 (s) = (C(s)H(s)/M (s))M (s)σ̃(s) = (C(s)H(s)/
M (s))ỹ(s), and ‖r1 t ‖L∞ ≤ ‖C(s)H(s)/M (s)‖L1 ‖ỹt‖L∞ . From (40)
we have ‖et‖L∞ ≤ L‖H(s)(1 − C(s))‖L1 ‖et‖L∞ + ‖C(s)H(s)/
M (s)‖L1 ‖ỹt‖L∞ , and hence

‖et‖L∞ ≤
‖C(s)H(s)/M (s)‖L1

1 − ‖G(s)‖L1 L
‖ỹt‖L∞ .

First, we prove the bound in (31) by contradiction. Since ỹ(0) = 0 and
ỹ(t) is continuous, then assuming the opposite implies that there exists
t′ such that

‖ỹ(t)‖ < γ0 , ∀ 0 ≤ t < t′ (43)

‖ỹ(t′)‖ = γ0 (44)

which leads to
‖ỹt ′ ‖L∞ = γ0 . (45)

Since y(t) = yref (t) + e(t), it follows from (18) and (45) that

‖yt ′ ‖L∞ ≤ ‖yr eft ′ ‖L∞ + ‖et ′ ‖L∞ ≤ ρ

+ ‖C(s)H(s)/M (s)‖L1
γ0/(1 − ‖G(s)‖L1 L). (46)

It follows from (37) and (41) that σ(s) = H1 (s)r(s) −
H1 (s)ỹ(s)/M (s) + H0 (s)d(s), and hence, (45) implies
that ‖σt ′ ‖L∞ ≤ ‖H1 (s)‖L1 ‖r‖L∞ + ‖H1 (s)/M (s)‖L1 γ0 +
‖H0 (s)‖L1 (L‖yt ′ ‖L∞ + L0 ), which along with (46) leads to

‖σt ′ ‖L∞ ≤ ∆. (47)

Consider the following candidate Lyapunov function:

V (ỹ(t), σ̃(t)) = P ỹ2 (t) + Γ−1
c σ̃2 (t). (48)

The adaptive law in (25) ensures that for all 0 ≤ t ≤ t′

V̇ (t) ≤ −Qỹ2 (t) + 2Γ−1
c |σ̃(t)σ̇(t)|. (49)

It follows from (37) that

σd (s) = sH1 (s)(r(s) − σ̃(s)) + H0 (s)dd (s) (50)

where σd (s) and dd (s) are the Laplace transformations of σ̇(t) and
ḋ(t), respectively. From (27) and (47), we have

‖σ̃t ′ ‖L∞ ≤ 2∆. (51)

It follows from (46) that

‖dt ′ ‖L∞ ≤ Lρ +
L ‖C(s)H(s)/M (s)‖L1

1 − ‖G(s)‖L1 L
γ0 + L0 . (52)

From the definitions of β01 and β02 in (22), (39), and (52), we have
‖ẏt ′ ‖L∞ ≤ β01γ0 + β02 . It follows from Assumption 2 that

‖ḋt ′ ‖L∞ ≤ L2‖yt ′ ‖L∞ + L1 (β01γ0 + β02 ) + L3 . (53)

From (46), (50), and (53) and the definitions of β1 and β2 in (21), it
follows that

‖σ̇t ′ ‖L∞ ≤ (β1γ0 + β2 )/(4∆). (54)

Therefore, from (49), (51), and (54), we have

V̇ (t) ≤ −Qỹ2 (t) + Γ−1
c

(
β1γ0 + β2

)
, ∀ 0 ≤ t ≤ t′. (55)

The projection algorithm ensures that |σ̂(t)| ≤ ∆ for all t ≥ 0, and
therefore

max
t ′≥t≥0

Γ−1
c σ̃2 (t) ≤ 4∆2/Γc . (56)

Let θm ax
∆=β3γ0 + β4 , where β3 and β4 are defined in (23). If at any

t ∈ [0, t′], V (t) > θm ax/Γc , then it follows from (48) and (56) that
P ỹ2 (t) > P (β1γ0 + β2 )/(Γc Q), and hence

Qỹ2 = (Q/P )P ỹ2 > (β1γ0 + β2 )/Γc . (57)
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Fig. 2. Performance for r(t) = 1 and d(t) = 0. (a) y(t) (solid) and r(t) (dashed). (b) Time-history of u(t).

From (55) and (57), it follows that if for some t ∈ [0, t′] V (t) >
θm ax/Γc , then

V̇ (t) < 0. (58)

Since ỹ(0) = 0, we can verify that V (0) ≤ (β3γ0 + β4 )/Γc . It follows
from (58) that

V (t) ≤ θm ax/Γc , 0 ≤ t ≤ t′. (59)

Since P |ỹ(t)|2 ≤ V (t), then it follows from (59) that

|ỹ(t)|2 ≤ (β3γ0 + β4 )/(Γc P ), 0 ≤ t ≤ t′. (60)

It follows from (45) and (60) that γ2
0 ≤ (β3γ0 + β4 )/(Γc P ), which

along with (28) leads to αβ4 ≤ β3γ0 + β4 , and further implies

(α − 1)2β4 ≤ αβ2
3 /(Γc P ). (61)

Equation (61) limits the adaptive gain

Γc ≤ αβ2
3 /((α − 1)2β4P ) (62)

which contradicts (26). Hence, (62) is not true which further implies
that (44) does not hold. Therefore, (31) is true. It follows from (11), (31),
and (42) that ‖et‖L∞ ≤ ‖(C(s)H(s)/M (s)‖L1

/1 − ‖G(s)‖L1 L)γ0 ,
which holds uniformly for all t ≥ 0, and therefore, leads to (32).

It follows from (5) and (35) that

u(s) =
M (s)(C(s)r(s) − C(s)σ̃(s)) − C(s)A(s)d(s)

C(s)A(s) + (1 − C(s))M (s)
.

To prove the bound in (33), we notice that from (14) one can derive

u(s) − uref (s) = −H3 (s)r2 (s) + H2 (s)σ̃(s)

= −H3 (s)r2 (s) + (H2 (s)/M (s))M (s)σ̃(s) (63)

where r2 (t) = f (t, y(t)) − f (t, yref (t)). It follows from (41)
and (63) that ‖u − uref ‖L∞ ≤ L‖H3 (s)‖L1 ‖y − yref ‖L∞ +
‖H2 (s)/M (s)‖L1

‖ỹ‖L∞ , which leads to (33). �
Thus, the tracking error between y(t) and yref (t), as well as between

u(t) and uref (t), is uniformly bounded by a constant inverse propor-
tional to Γc . This implies that during the transient, one can achieve
arbitrarily close tracking performance for both signals simultaneously
by increasing Γc .

We note that the control law uref (t) in the closed-loop reference
system, which is used in the analysis of L∞ norm bounds, is not
implementable since its definition involves the unknown parameters.
Theorem 1 ensures that theL1 adaptive controller approximates uref (t)
both in transient and steady state. So, it is important to understand how

these bounds can be used for ensuring uniform transient response with
desired specifications. We notice that the following ideal control signal
uidea l (t) = r(t) − σ(t) is the one that leads to desired system response

yidea l (s) = M (s)r(s) (64)

by cancelling the uncertainties exactly. Thus, the reference system in
(6)–(8) has a different response as compared to (64). In [20], specific
design guidelines are suggested for selection of C(s) that lead to de-
sired system response. Similar thinking can be applied in the case of
this architecture as well.

VII. DISCUSSION

In this section, we discuss the classes of systems that can satisfy (11)
via the choice of M (s) and C(s). For simplicity, we consider the first-
order C(s) and M (s) as pointed in (3) and (9). It follows from (3) and
(9) that H(s) = m(s + ω)An (s)/(ω(s + m)An (s) + msAd (s)).
Stability of H(s) is equivalent to stabilization of A(s) by a PI con-
troller, say, of the following structure (ω/m)((s + m)/s), where m
and ω are the same as in (3) and (9). The open loop transfer func-
tion of the cascaded A(s) with the PI controller will be HP I (s) =
(ω/m)((s + m)/s)A(s), leading to the following closed-loop system:

ω(s + m)An (s)/(ω(s + m)An (s) + msAd (s)). (65)

Hence, the stability of H(s) is equivalent to that of (65), and the
problem can be reduced to identifying the class of A(s) that can
be stabilized by a PI controller. It also permits the use of root locus
methods for checking the stability of H(s) via the open loop transfer
function HPI(s). We note that the PI controller adds an open loop
pole at the origin and an open loop zero at −m, while ω/m plays the
role of the open-loop gain.

A. Minimum Phase Systems With Relative Degree 1 or 2

Consider a minimum phase system H(s) with relative degree 1 or
2. Notice that the zeros of HPI are located in the open left-half plane.
By appropriate choice of the open-loop zero −m and open-loop gain
ω/m, it follows from the classical control theory that the closed-loop
poles can be moved into the left-half plane. Hence, the transfer function
in (65) is BIBO stable, and such is H(s). We notice that the aforesaid
discussions hold for any A(s) with relative degree 1 or 2.

B. Other Systems

We note that nonminimum phase systems can also be stabilized by a
PI controller. However, the choice of m and ω is not straightforward. In
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Fig. 3. Performance for r(t) = 1 and d(t) = sin(0.1t)y(t) + 2 sin(0.1t). (a) y(t) (solid) and r(t) (dashed). (b) Time-history of u(t).

Fig. 4. Performance for r(t) = 0.5 sin(0.3t) and d(t) = sin(0.1t)y(t) + 2 sin(0.1t). (a) y(t) (solid) and r(t) (dashed). (b) Time-history of u(t).

Fig. 5. Performance for r(t) = 0.5 sin(0.3t) and d(t) = sin(0.1t)y(t) + 2 sin(0.4t). (a) y(t) (solid) and r(t) (dashed). (b) Time-history of u(t).

the simulation example presented next, we demonstrate application of
the L1 adaptive controller to an unknown nonminimum phase system
in the presence of unknown nonlinear disturbances.

Remark 2: Finally, we notice that, in the light of the aforesaid discus-
sion, a PI controller stabilizing A(s), might also stabilize the system
in the presence of the nonlinear disturbance f (t, y(t)). However, the
transient performance cannot be quantified in the presence of unknown
A(s). The L1 adaptive controller will generate different low-pass con-
trol signals u(t) for different unknown systems to ensure uniform
transient performance for y(t).

VIII. SIMULATION

As an illustrative example, consider the system in (1) with A(s) =
(s2 − 0.5s + 0.5)/(s3 − s2 − 2s + 8). We note that A(s) has both
poles and zeros in the right-half plane, and hence, it is an unsta-
ble nonminimum phase system. We consider L1 adaptive controller
defined via (24), (25), and (29), where m = 3, ω = 10, Γc = 500.
We set ∆ = 100. First, we consider the step response by assum-
ing d(t) = 0. The simulation results of L1 adaptive controller are
shown in Fig. 2(a) and (b). Next, we consider d(t) = f (t, y(t)) =
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sin(0.1t)y(t) + 2 sin(0.1t), and apply the same controller without
retuning. The control signal and the system response are plotted in
Fig. 3(a) and (b). Further, we consider a time-varying reference input
r(t) = 0.5 sin(0.3t) and notice that, without any retuning of the con-
troller, the system response and the control signal behave as expected
[see Fig. 4(a) and (b)]. Fig. 5(a) and (b) plot the system response
and the control signal for a different uncertainty d(t) = f (t, y(t)) =
sin(0.1t)y(t) + 2 sin(0.4t) without any retuning of the controller.

We notice that in the case of minimum-phase systems, theoretically
we can increase the bandwidth of C(s) arbitrarily and cancel time-
varying disturbances of arbitrary frequency. However, the bandwidth
of C(s) cannot be set arbitrarily large due to the bandwidth limitations
in the control channels of the system. Also, a larger bandwidth of C(s)
can reduce the time-delay margin of the closed-loop system and imply
that a higher adaptive gain is needed [19], [20].

IX. CONCLUSION

A novel L1 adaptive output feedback control architecture is pre-
sented in this note for systems of unknown dimension. It has guaran-
teed transient response for the system’s both signals, input and output,
simultaneously, in addition to stable tracking. The methodology has
been used to augment a commercial autopilot for an unmanned aerial
vehicle (UAV) to achieve an accurate path following for aggressive tra-
jectories that the autopilot was not otherwise designed to follow [21].
It has been further used to support time-critical cooperation of UAVs
under strict spatial constraints [22], [23].
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A Dissipation Inequality for the Minimum Phase Property

Christian Ebenbauer and Frank Allgöwer

Abstract—The minimum phase property is an important notion in sys-
tems and control theory. In this paper, a characterization of the minimum
phase property of nonlinear control systems in terms of a dissipation in-
equality is derived. It is shown that this dissipation inequality is equivalent
to the classical definition of the minimum phase property in the sense of
Byrnes and Isidori, if the control system is affine in the input and the
so-called input–output normal form exists.

Index Terms—Dissipation inequality, minimum phase property, nonlin-
ear systems.

I. INTRODUCTION

Bode introduced the notion of minimum phase property in his sem-
inal paper [3] more than 60 years ago. Today, the minimum phase
property plays an important role in systems analysis and control de-
sign [9]–[11], [24]. For example, the notion of the minimum phase
property can be used to describe fundamental performance limitations
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