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Feedback Stabilization Using 
Two-Hidden-Layer Nets 

Eduardo D. Sontag, Senior Member, IEEE 

Abstract- This paper compares the representational capabil- 
ities of one hidden layer and two hidden layer nets consisting 
of feedforward interconnections of linear threshold units. It 
is remarked that for certain problems two hidden layers are 
required, contrary to what might be in principle expected from 
the known approximation theorems. The differences are not 
based on numerical accuracy or number of units needed, nor on 
capabilities for feature extraction, but rather on a much more 
basic classification into “direct” and “inverse” problems. The 
former correspond to the approximation of continuous functions, 
while the latter are concerned with approximating one-sided 
inverses of continuous functions-and are often encountered in 
the context of inverse kinematics determination or in control 
questions. A general result is given showing that nonlinear control 
systems can be stabilized using two hidden layers, but not in 
general using just one. 

Zndex Terms-Neural nets, nonlinear control systems, feedback 

I. INTRODUCTION 
HIS paper concerns itself with the global stabilization of T nonlinear systems 

z( t  + 1) = P(z( t ) .  u ( t ) )  (1) 

by means of state feedback laws u(t)  = K ( z ( t ) )  which can 
be implemented using neural networks. Such control laws 
have attracted some interest lately (see e.g., [7] and references 
there). Our objective here is not to provide a practical stabiliza- 
tion technique, but rather to explore the capabilities and the 
ultimate limitations of alternative network architectures. We 
do so by showing that, contrary to what might be expected 
from the well-known representation theorems [4], [3],  [6], 
single hidden layer nets are not sufficient for stabilization, but 
two hidden layer nets are enough-assuming that threshold 
processors are used. 

The basic reason underlying the lack of sufficiency of one 
hidden layer is that, often, control laws for nonlinear systems 
require the use of discontinuous mappings, and sometimes 
these cannot be well-approximated as superpositions of maps 
which are constant on halfspaces. 

In fact, the same phenomenon appears in a more general 
class of nonlinear questions, not necessarily in control theory, 
questions that deal with inverse or indirect problems. In 
these, one is interested in obtaining a one-sided inverse to a 
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continuous map. For instance, inverse kinematics calculations 
in robotics are of this type. Other authors, most notably [2] 
and [l], had previously noted the need for two hidden layers; 
while they stated their results mostly in terms of numerical 
accuracy and numbers of neurons, the underlying reasons also 
had to do with limitations of superpositions. This difference in 
capabilities was also implicit-but expressed in the language 
of piecewise linear maps-in the algebraic reference [8]. 

The remarks in this paper suggest that one could roughly 
classify learning problems into “direct” and “indirect” ones, 
the former being more suitable for solution by one hidden 
layer nets, and the latter by two hidden layer nets. Of course, 
a particular inverse or indirect problem may well be solvable 
using one hidden layer nets; certainly linear problems are 
like that. But our rough classification might be still helpful 
in dealing with the difficult issue of selection of architectures. 

Mathematically, the main results are quite simple, and they 
are to be expected in view of the older work by the author 
which dealt with piecewise linear sets and systems. The only 
difficulties are in generalizing the arguments in [9] to deal 
with a slightly more restrictive class of feedback laws than in 
[9], and in proving the negative result. The exposition here 
is self-contained, however, and no use is made of the results 
in [9] and [8]. Moreover, we organized the paper in such a 
manner that readers not familiar with the control application 
will still be able to read the sections on direct and indirect 
problems independently of the rest. 

See [14] for other recent related work on control using nets. 

A .  Summary of Results on Representability 

We will deal with functions that can be computed by nets 
consisting of feedforward interconnections, via additive links, 
of processors (“neurons”) each of which has a scalar response 
8. In our positive results we take this processing element to 
be the standard “hardlimiter” function from the neural net and 
perceptron literature: 0 = ‘FI, where X ( z )  = 0 for z 5 0 
and ‘FI(z) = 1 for z > 0. In negative results, more general 
functions 0 can be used. The ouput is not passed through a 
final neuron, as done in some studies of feedforward nets, as 
this would limit the range of values that can be computed. 

It is by now well-known-see e.g., [4], [3], [6]-that 
functions computable by nets with a single hidden layer can 
approximate continuous functions, uniformly on compacts, un- 
der only weak assumptions on 0. Consider now the following 
inversion problem: Given a continuous function f : lR“ --f 

Etp, a compact subset C C Etp included in the image of 
f ,  and an E > 0, find a function 4 : IR? -+ IR” so that 
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1 1  f (4(z)) - 511 < E for all 2 E C. It is trivial to see that 
in general discontinuous functions 4 are needed. We show 
later that nets with just one hidden layer are not enough to 
guarantee the solution of all such problems, but nets with two 
hidden layers are. The basic obstruction is due, in essence, to 
the impossibility of approximating by single-hidden-layer nets 
the characteristic function of any bounded polytope, while for 
some (non one-to-one) f the only possible one-sided inverses 
4 must be close to such a characteristic function. On the other 
hand, it is fairly trivial to get these approximations with two 
hidden layers. 

B. Summary of Control Results 

We assume that system (1) is so that states z ( t )  evolve in 
R”, controls u(t)  take values in R”, and P : Rn+” + R” 
is continuous and has P(0,O) = 0. 

The system (1) is asymptotically controllable if for each 
state zo there is some infinite control sequence u(0),  u(1). . . . 
such that the corresponding solution with z(0) = 20 satisfies 
that z ( t )  .+ 0 as t --t m. This condition is obviously the 
weakest possible one if any type of controller is to stabilize 
the system; see [12, ch. 41, for a discussion of such issues. 

The main objective is to find a map (feedback law) 

K :Rn-+Rm 

computable by a net, which stabilizes any given compact 
subset of the state space C R” to z = 0, that is, so that 
the closed-loop system 

z( t  + 1) = P ( z ( t ) ,  K ( z ( t ) )  ( 2 )  

(denoted also x+ = P ( x ,  K ( z ) ) )  is asymptotically stable 
and contains C in the domain of attraction. (In general, for 
different C ,  a different K may be needed; this is due to the 
limitations imposed by having only a finite number of simple 
processing elements in the net.) As we are interested in global 
behavior, we make the simplifying assumption that the system 
can be locally stabilized with linear feedback, i.e., there is 
some matrix F so that the closed loop system with right-hand 
side P ( z ( t ) ,  F z ( t ) )  is locally asymptotically stable. 

We will show that asymptotic controllability is then not only 
necessary but also sufficient in order to guarantee the existence 
of a two-hidden-layer net that stabilizes any given compact. 
On the other hand, we will construct an example of a system 
which satisfies all the assumptions-in fact, it is so that F = 0 
locally stabilizes and so that every state can be driven in two 
time steps to the origin-but for which every one-layer net 
results in some nontrivial periodic orbit. 

The discussion is entirely in terms of discrete-time systems 
(1). However, just as in [9], one may immediately apply all 
results to continuous-time systems 

i =  f ( z ,u )  (3)  

through the use of sample-and-hold control. Thus given an 
asymptotic controllable system (3) which satisfies the first- 
order stability condition, and given any compact subset C of 
the state space, there is a sampling period S > 0 and a two- 
hidden-layer net K so that the controls u(t) = constant value 

K ( z ( k 6 ) )  on each sampling interval t E [kS, ( k + 1 ) 6 )  stabilize 
states in C. See for instance [12, sect. 4.81 or [13] for more 
on the topic of nonlinear stabilizability for continuous-time 
systems. 

Also, only the full state feedback problem is treated in detail, 
but [9] shows how to deal with partial observations in the 
analogous case of piecewise linear feedback (in fact, the main 
results in that reference are for the partially observed case). 

11. DEFINITIONS AND RESULTS 

In this section we give the basic definitions, discuss ele- 
mentary properties, and provide precise statements of results. 
Proofs are deferred to Section 111, which deals with properties 
of certain sets of functions, including those associated to nets, 
and Section IV, which develops the material on stabilization. 

A.  Feedforward Nets 

We will find it more convenient not to define a “net” but 
rather a “function computed by a net,” because different sets 
of net parameters (weights, thresholds) may give rise to the 
same behavior-for instance, permuting the neurons and all 
incoming and outgoing weights results in the same map. The 
functions so defined will correspond to the nets discussed in 
the Introduction. 

A function 0 : R .+ R is assumed given. In neural 
net practice, one often takes 0 to be the standard sigmoid 
B(z) = a(z) = 1/(1+ e - l )  or equivalently, up to translations 
and change of coordinates, the hyperbolic tangent O(z) = 
tanh(z). Another usual choice is the hardlimiter, Heaviside, 
or threshold function 

0 i f z 5 0  
1 i f z > O  

O(z) = %(2) = { 
which can be approximated well by ~(yz) when the “gain” 
y is large. The main results given will be for 0 = 8. 

Definition 2.1: A function f : Rp -+ R is computable by 
a strict zero-hidden-layer net if it is an affine function, that 
is, there exist a vector U E IRp and a scalar 7 E R such that 
f(u) = w.u + 7, where the dot indicates inner product. For 
any integer d 2 1, the function f : RP + R is computable by 
a strict d-hidden-layer net (with processsors of type 0) if there 
exist an integer 1, constants w1,. . . , w1 E R, and functions 
f l , .  . . , f i  so that 

1 

(4) 
a = l  

and each f; is computable by a strict (d- 1)-hidden-layer net. 
In other words, the functions computable by nets with no 

hidden layers are those in the span of the coordinate functions 
and the constants, and those computable by d layers constitute 
the span of the functions O( f (z)), for f computable with one 
less layer. Note that constant terms (or “biases” in neural net 
terminology) can always be included in the sum in (4), as one 
could take one of the fi’s to be constant. A d-hidden-layer 
net is sometimes called a “(d + 2)-layer net” if one counts 
the inputs and outputs as a layer. We prefer the hidden-layer 
terminology, as less ambiguous. 
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In particular, a function f is computable by a strict one- 
hidden-layer net if there are real numbers w1, . . . , wl, 7 1 ,  . . . , ~ l  

and vectors V I , .  . . ,OZ E Rp such that, for all U E Rp, 
1 

f(u) = w; O(7Ji.U + T;).  ( 5 )  
i=l  

See [ll] for several results for one-hidden-layer nets. Most 
results mentioned here will deal with d = 1 or d = 2. For 
fixed 8, and under mild assumptions on 0, nets with one 
hidden layer can be used to approximate arbitrary continuous 
functions uniformly on compacts sets; see for instance [3] ,  [6] .  
For other problems, as discussed below, two hidden layers are 
needed. 

Definition 2.2: A function computable by a strict net with 
possible direct input to output connections (and d hidden 
layers) is by definition a function g : Rp -+ IR of the form 
Fu + f ( u ) ,  where F is linear and f is computable by a strict 
d-hidden-layer net as above. 

For multivariable maps f : Rp -+ IR”, “computable by a 
d-hidden-layer net” means by definition that each coordinate 
function fi : Rp -+ IR, i = 1,. . . , p  is so computable, and 
similarly when direct connections are allowed. 

Remark 2.3: We use the terminology “strict” to differenti- 
ate from the case in which one would also allow in the sum (4) 
terms of the form w i f L ( u ) ,  where f; is computable with d - 1 
layers. In graph-theoretic terms, such more general functions 
are computable by nets in which forward connections are 
allowed between arbitrary intermediate nodes (not necessarily 
in adjacent layers). With the possible exception of direct 
connections from inputs to outputs, however, we will not need 
such “nonstrict” nets. The positive results will hold already 
for strict nets, while the negative result, for d = 1, will show 
that certain problems cannot be solved by one-layer nets with 
possible 1/0 conections, which in that case (d = 1) are the 
same as nonstrict nets. For simplicity, from now on we drop 
the word “strict.” 

B. Certain Properties of Classes of Functions 

To explain the different approximation capabilities of one- 
and two-hidden layer nets, we first consider, in general, the 
following properties on classes of functions. 

Suppose given, for each positive integer p ,  an R-linear 
space of functions Fp from Rp into R, so that for each 
f E 3p, each constant c E R, and every lc = 1,. . . , p ,  the 
function 

g ( U l . . . . , U p - l )  := f ( U l  ,...,uk-l,C,Uk.....up-l) 

obtained by setting the lcth coordinate to c belongs to Fp-l. 
For each positive integers p and m, we denote 3r := 

(Fp)”, thought of as a linear space of maps IRp + R“. 
Thus by definition, if f = ( f l . .  . . , fm)’ : IRp -+ IR” is any 
map, then f E 3p” if and only if each coordinate function f ;  
is in 3p. We call any 3 = {3r}p,m obtained in this fashion a 
compatible class of functions. Consider the following possible 
properties of such an 3: 

(INV) For any m,p, any continuous function f : IR” -+ 

Rp, any compact subset C 2 Rp included in the 

image of f, and any E > 0, there exists some 
$ E -Tp” so that /If($(.)) - 211 < E for all z E C. 

(SEC) For any open subset U C Rp x R“ and every 
compact subset C 5 Rp included in the projection 
~~(1.1)  of U on the first p coordinates, there exists 
some $ E 3; so that (2, $(z)) E U for all z E C. 

(SECo) For any open subset U & Rp x R” and every 
compact subsets C C T~(U) and CO so that 
CO x (0) C U there exists some q5 E Fp” so that 
( x , $ ( x ) )  E U for all z E C and also $(z) = 0 
for all z E CO. 

The first of these corresponds to approximations of (one- 
sided) inverses of continuous maps, the second to findiilg 
sections of projections, and the last to finding sections of such 
projections which are guaranteed to vanish in a prescribed 
compact. It turns out that the last property is sufficient for 
solving stabilization problems for nonlinear control systems, 
while the first is necessary if such problems are to be solved. 

Clearly (SECo) implies (SEC). It is also true that (SEC) 
implies (INV): indeed, assume given any continuous f : 
IR” -+ Rp, E > 0, and C C f ( I R p )  as in the statement 
of (SEC), and let U be defined as the subset of IRp x R” 
consisting of all pairs (2, y) such that Ilf(y) - zIJ < E .  This 
is open, by continuity of f ,  and a section of provides an 
&-approximation to the inverse of f .  

C. Results for Nets 

From Lemma 3.6 and Proposition 3.5 (see Section III), we 
will derive the following fact: 

Proposition 2.4: Let 3 = {3r}p,nl be the set of maps 
computable by two-hidden-layer nets with processsors of type 
3-1. Then, 3 satisfies (SEC’) (and hence also (SEC) and 

The proof will be based on the identification of maps 
computable by such two-hidden-layer nets with maps that are 
piecewise constant on each element of a finite polyhedral 
partition, and the proof that the latter type of maps form 
what we will call a “complete” compatible class of functions, 
therefore satisfying (SEC’). 

(INV)). 

On the other hand, we will have the following: 
Proposition 2.5: The set of functions computable by one- 

hidden-layer nets with B = 3-1, even with possible direct input 
to output connections, does not satisfy (INV) (nor, therefore, 
(SEC) or (SEC’)). 

The same negative result holds with any continuous 0 such 
as the standard sigmoid. The proof of Proposition 2.5 is based 
on a more general argument that shows that solving (INV) 
implies being able to find a certain type of approximation to 
a characteristic function of a bounded polyhedron, and these 
approximations cannot be formed out of “ridge” functions, 
those obtained as linear combinations of scalar functions of 
linear combinations. 

D. Results for Feedback 

We say that a subset C C IR” is asymptotically stable for 
the closed-loop system (2)  if (2 )  is locally asymptotically stable 
about 2 = 0 and C is included in the domain of attraction. 
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Let F = {3p"}p,m be a compatible class of functions. The 
system (1) is 3-stabilizable on compacts if for each compact 
subset C C_ Rn there exists some K E Fz so that G is 
asymptotically stable for the closed-loop system (2). 

The two main technical results on stabilization, proved in 
Section IV, are as follows. 

Theorem I :  Assume that (1) is an asymptotically control- 
lable system so that the origin z = 0 is locally asymptotically 
stable for the zero-input equation 

z ( t  + 1) = P ( z ( t ) ,  0). 

Let F = {FF}p,m be a class of functions satisfying (SEC'). 
Then (1) is F-stabilizable on compacts. 

If 3 = {FF}p,m is a compatible class of functions, we 
denote 3 + C = (3; + L}p,m the new compatible class of 
functions obtained by taking as 3F + C the set of all the 
maps of the form f + L,  with f E 37 and L : IRp --f R" 
a linear map. 

Theorem 2: Assume that (1) is an asymptotically control- 
lable system, and that P is differentiable about z = 0, U = 0. 
Let P(x ,  U )  = Ax + Bu + o(z, U ) .  Assume further that the 
pair ( A ,  B )  is stabilizable in the linear systems sense: 

rank [d - A ,  B] = n for all z E c, 121 2 1. 

Let 3 = { 3 F } p , m  be a compatible class of functions 
satisfying (SEC'). Then (1) is F+ C-stabilizable on compacts. 

Because of Proposition 2.4, from these follow the main 
positive results for nets: 

Corollary 2.6: If (1) is asymptotically controllable and IC = 
0 is locally asymptotically stable for the zero-input equation 
z+ = P(z,O),  then (1) is stabilizable on compacts using 
two-hidden-layer nets with processors of type 'H. 

Corollary 2.7: If (1) is asymptotically controllable and its 
linearization zf = Az  + Bu at the origin is stabilizable, then 
(1) is stabilizable on compacts using two-hidden-layer nets 
with processors of type 'H and possible direct input to output 
connections. 

While these Corollaries could also be proved directly, it 
is far more interesting to see them as consequences of the 
possibility of constructing sections of maps. In particular, it 
is then not hard to see that the stabilization property is robust 
under small perturbations in the feedback law. 

In Section IV we also prove that the conclusions of these 
Corollaries cannot hold for single-hidden-layer nets, as well 
as many other sets of functions. This follows from: 

Theorem 3: Assume that 3 is a compatible class of func- 
tions which does not satisfy property (SEC). Then there exists 
a system (1) which: 

is asymptotically controllable, and 
is so that the origin is locally asymptotically stable for 
the zero-input dynamics x+ = P(x ,  0) 

but is not F-stabilizable on compacts. 
From Proposition 2.5 we are then able to conclude: 

Proposition 2.8: There exists a system (1) which is asymp- 
totically controllable, and is so that the origin is locally 
asymptotically stable for the zero-input dynamics, but which is 
not stabilizable on compacts using nets with one hidden layer, 
B = 'H, and possible direct input to output connections. 

The rest of the paper will develop the technical details and 
provide proofs. 

111. THE PROPERTY (SEC') 

One way of generating classes of functions satisfying prop- 
erty (SEC') is through certain types of piecewise constant 
functions. 

Definition 3.1: Let p be a positive integer. A class of 
subsets B of Rp will be said to be a Boolean basis if is 
a Boolean algebra ( B  is closed under finite intersections and 
complements) and it contains a basis of open sets (every open 
subset of R? is a union of open sets belonging to B). 

Definition 3.2: Let F = {FF}p,m be a compatible class of 
functions. The class .F will be said to be complete if for each 
p there exists a Boolean basis Bp such that 3p contains the 
characteristic functions of all the elements of B p .  

Note that if v = ( ~ 1 , .  . . , vm)' is any element in IR" and x 
is the characteristic function of any set W E Bp, then x v, seen 
as the map Rp .--) IR" : z H x(z)v, is in Fr, because each 
of its coordinates z H vix(x) belongs to 3p, which is closed 
under scalar multiplications. More generally, if 211, . . . , vk are 
elements in R", and X I , .  . . , x k  are characteristic functions 
of disjoint sets Wi E Bp,  the map 

k 

vi xi(.) 
i=l 

which takes the constant value v; on Wi, is in 3F. 
As an illustration of the above concepts, the class of all 

those subsets of Rp which can be written as a finite union of 
intersections of closed and open sets forms a Boolean basis 
in our sense, and the same is true for the Boolean algebra 
generated by all the open spheres -related to the "radial basis 
functions" used in some neural network applications. Another, 
more relevant, example, is as follows. 

Consider, for each fixed p ,  the open halfspaces in I R p ,  i.e., 
the sets defined by inequalities of the type v.u > I-, for some 
T E R and E RP. Now take the Boolean algebra generated 
by all such halfspaces. This defines a class of subsets Bp each 
of which is a finite union of intersections of finitely many open 
and closed subspaces (v.u 2 I-). Since every open cube is an 
intersection of open halfspaces, and cubes form a basis for the 
topology of Rp, Bp is a Boolean basis. 

As each closed halfspace can be written as the union of a 
hyperplane and an open halfspace, every element of Bp can 
also be written as a finite disjoint union of sets of the form 

where W is an affine manifold (possibly the whole space) and 
P is an open polyhedron, that is, a set defined by finitely many 
affine inequalities of the type 'u.u > T .  Sets of the form (6) are 
called relatively open polyhedra. As in [SI and [9], we define: 
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Definition 3.3: Elements of B, are called piecewise linear 
sets. The linear span of the characteristic functions of such 
piecewise linear sets is the set of (polyhedrally) piecewise 
constant functions from lRp into R. More generally, a map 
f : RP --+ IR" is said to be piecewise constant if each 
coordinate function f i  is. 

It follows from the preceding discussion that the piecewise 
constant functions are also spanned by the characteristic func- 
tions of the relatively open polyhedra. The set of piecewise 
constant maps is complete, because each t?, is a Boolean 
algebra by definition. 

Remark 3.4: In [8] and [9], one also defines more generally 
piecewise linear maps, as those whose graphs are piecewise 
linear sets, or equivalently, maps that are affine (rather than 
constant) on each element of a finite polyhedral partition. 
For such maps one may develop a fairly elegant algebraic 
theory, and various computational complexity issues have been 
studied too (see [lo]). Their study is conveniently carried out 
by introducing the first-order logical theory of real numbers 
with addition, and studying elimination of quantifier issues for 
it. Of course, piecewise linear maps also constitute a Boolean 
complete set. It is easy to see that in order to represent general 
piecewise linear maps one will need richer structures than 
feedforward nets. Essentially, what are needed are pairs of 
nets, one for partitioning the state space and the other for 
implementing an affine function in each; the two nets interact 
multiplicatively. Such pairs of nets may be more useful in 
practice-in particular, they are better suited for modeling 
gain-scheduling approaches to control; see [9]. On the other 
hand, the subset of piecewise constant maps, and the maps 
obtained by adding to them a fixed linear map, are enough for 
establishing a general existence result, and hence we restrict 

The main property of complete sets of functions that we 
need is the following trivial observation: 

Proposition 3.5: If 3 is complete, then it satisfies property 
(SEC'). 

Proof Let U ,  C, and CO be as in the statement of the 
property, and let Bp be as in the definition of completeness. 
Consider the open set 

attention to them in this paper. 

v := {x E IR"1(2,0) E U } .  

For each x E CO, we pick a neighborhood 0, of x contained 
in V. Since B, is a Boolean basis, we may take 0, E B, for 
all such x. We write U ,  := 0 for each x E Co. 

Now consider any x E C\Co. As C 5 r l (U) ,  there is some 
U ,  E Rp so that (z,u,) E U ,  and thus we may pick some 
neighborhood 0, E Bp of z with the property that ( z ,  U,) E U 
for all z E Ox. Moreover, as CO is closed, we may take Ox 
to be disjoint from Co. 

The sets 0, cover the compact C; choose a finite subcover, 
say corresponding to points x1, . . . ,Xk, and write Oi instead 
of U,, and ui instead of U,%. Without loss of generality, we 
assume that 21,. . . ,z1 are in CO and z1+1,. . . ,xk are in C\Co. 
Note that by construction, none of Ol+l,. . . , Ok intersect CO, 
so the union of 01,. . . ,O1 must cover CO, and that ui = 0 for 

i = 1,. . . , 1 .  Define Wl := 01 and for each i = 1,. . . , I C  - 1: 

so that the Wj's are disjoint and still cover C. Since B, 
is a Boolean algebra, each Wj belongs again to it, and 
thus the linear combination of characteristic functions 4 := 
E,"=, ui xi(.) is in 3;. This combination 4 satisfies 4(x) = 0 
for all x E CO because CO is included in the union of 
W1.. . . , W1, and also (x, 4(x)) E U for all x E C by 
construction. 

The next remark relates Definitions 2.1 and 3.3. 
Lemma 3.6: A function f : R"' + IR is piecewise constant 

if and only if it is computable by a two-hidden-layer net with 
processsors of type 'FI. 

Proof: Let f be piecewise constant. By definition, f 
is a linear combination of characteristic functions of open 
polyhedra (6). Thus in order to show that f is computable 
by a two-hidden-layer net it is sufficient to prove that such 
characteristic functions are. Let H be the set of solutions 
of  pi.^ = c i ,  i = 1:. . . , IC, and let P be defined by the 
inequalities v;.u > di ,  i = 1,. . . ,1 .  Then 

/ k  

Ci) + X( -pi .U + Ci)] 
1 

2 7 - [1 - 'FI(v;.u - di)] + - 
i=l 

is the characteristic function of H n P. 
Conversely, assume that f is computable by a d-hidden- 

layer net, for any d > 0. We prove by induction on d that f 
is piecewise constant. As f is a linear combination of terms 
of the form 'FI(g(x)), with g computable with d - 1 hidden 
layers, it is sufficient to show the result for one such term. If 
d = 1 then f (x) = 'Fl(v.u+r) is the characteristic function of 
the half-space v.u+r > 0. Now let d 2 2, so by induction we 
may assume that g is constant on each of the relatively open 
polyhedra P I , .  . . , P k .  It follows that f is constant on each of 

From Lemma 3.6 and Proposition 2.5 applied to the (poly- 
hedrally) piecewise constant functions, we have the desired 
conclusion, Proposition 2.4. 

the same polyhedra. w 

A. A Necessary Condition 
We show here that property (1NV)-and therefore also 

(SEC) and ( S E C o ) d o e s  not hold for certain classes of 
functions 3, including those computed by single-layer nets. 

Lemma 3.7: Assume that 3 satisfies (INV). Then, there 
exists some E 3; such that 

$(x) E (-1,O) U (2,4) for all z with 11x11 < 3/2. 
$(x) > 2 for 11x11 < 1/2. 
-1 < $(z) < 0 for 5/4 < 11x11 < 3/2. 
Proof: Let S be the open unit ball in IR3 centered at 

(0,0,  3)', that is the set where x: + x; + ("3 - 3)2 < 1, and 
let T be the solid torus in IR3 obtaining by rotating about 
the xs-axis the disk in the xz,x3-plane with x1 = 0 and 
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( 2 2  - 5/4)’ + ( 2 3  + 1/2)’ < 1/4. Observe that S projects 
along the 23 axis onto the unit disk 

D = {x E R21 11x11 < 1) 

and that T projects onto the annulus 

A = {X E R2 I 3/4 < IIxlI < 7/4}. 

Let CO be the closed disk in R2 of radius 3 / 2  centered at 
zero, which is included in A U D .  

As S U T  is open, there exists some continuous map p : 
R3 + R so that p(x )  E (0.1/4) if z E S U T ,  and 
which is identically = 1/4 outside S UT. (For instance, one 
may take p = (4 + 4d2)-l, where d ( z )  is the distance to 
the complement of S O T .  One may even take an infinitely 
differentiable function d whose zero set is this complement; 
see [5, Exercise 2.2.11.) 

Finally, let rn = p = 3 in property (INV), applied with 
E = 1/4, 

f(21.223z3) := (z1.22.P(21r22.23)) 

and the set C := CO x (0). Thus there is some 4 = 
(41.421 43)’ E 3: so that 

Ilf(4(.)) - zll < 1/4 

whenever z E C. From this inequality, it holds then that 
p ( 4 ( x ) )  < 1/4 for such 2,  so necessarily 

4(x) E S U T  (7) 

for all 2 E C. Let $(x1.22) := ($3(21)22.0). Then, (7) 
implies that $ J ( z I . ~ ~ )  E (2,4) when 4 ( 2 1 , ~ 2 ~ 0 )  E S ,  and 
$~(21,52) E (-110) when 4 ( ~ ~ . 2 ~ ~ 0 )  E T ,  so always 
y l i ( z 1 , ~ 2 )  E (-1,O)U(2,4) for ( ~ 1 ~ ~ 2 )  E Co. 

It also follows that 

11(41(z)> 42(.)) - (-7h>X2)Il < 1/4 (8 )  

1 1 ( ~ l 1 ~ 2 ) 1 1  < 1/42 (8) implies that ll(($l(~).42(z))ll < 1/27 
for all z = (.r1,z2.23) E C. In the particular case in which 

which together with (7) implies that 4 ( ~ )  E S, and therefore 
that Q ( X ~ , X ~ )  > 2. Similarly, if ()(x1,z2)II > 5/4 then (8) 
implies that Il($l(x). 42(z))11 > 1, and this together with (7) 
gives that 4(2) E T ,  and hence that -1 < $(21,22) < 0. 

We next prove that single-layer nets cannot satisfy the 
above properties. In order to do so, it is convenient to prove 
something a bit more general. Let Q be any class of functions 
from R2 into R which satisfies the following three properties, 
where S, := {ulq(u) = 0}: 

Each q E Q is continuous, and if q is not constant then it 
satisfies the following openness condition: If u E S, for 
some u E R2, and if {E,}  is any sequence converging 
to zero, then there is some sequence uk + u and a 
subsequence { E ~ ~ }  such that q ( u k )  = E,, for all k .  
(Note that if Vq(u) # 0 for each u for which q(u) = 0, 
then the openness condition is satisfied.) 
If q and 4 are any two nonconstant elements in Q then 
either S, n .F;; is finite (possibly empty) or there is some 
X E IR such that ?(U) = Xq(u) for all u (and in particular 
s, = s-). 

3) Each set S, is either empty or connected and unbounded. 
For instance, the set Q consisting of all affine functions 

If Q is as above, we will say that f : R2 --+ IR is a 
q(u) = v.u + T satisfies the above properties. 

Q-superposition if it can be written in the form 
k 

f(.) = a,(q,(u)) + g(’lL) (9) 
z = 1  

where the functions q, are in Q, k is some positive integer, 
each function Q, : R + R is continuous except possibly at 
x = 0, and g is continuous. 

As an example, any f : R2 + IR computable by a 
single-hidden layer net with processors of type ‘H is such a 
superposition, with Q being the set of affine functions. When 
possible direct input to output connections are allowed, the 
function is still a superposition: one may include the linear 
term Fu,  either by taking an extra a, equal to the identity, 
or taking g ( u )  = Fu. Note also that functions computable by 
nets with any number of hidden layers but 0 continuous are 
also superpositions (just use the “g” term). 

Together with Lemma 3.7, the following implies Proposition 
2.5. 

Proposition 3.8: Let Q be as above, and let f : R2 + R 
and R > 0 be so that: 

(a) f ( u )  E (-1,O) U(2, +x) for all llull < R. 
(b) f ( u )  > 2 on some disk llull < E .  

(c) f ( u )  E (-1,O) on some annulus R - E < llull < R. 
Then, f cannot be a &-superposition. 

Proof: Assume that f would be a superposition, as in (9). 
The functions q2 may be taken to be all nonconstant; otherwise 
a constant term can be added to g. Let S, := Sqt, i = 1, . . . k 
(it may be the case that S, = S, for some z # j). The only 
possible discontinuities of f are on the St’s. 

Let F be the set of points that are in the intersection of two 
or more distinct sets of the type S,. By the second property 
of Q, F is known to be finite. We claim now that there exists 
some point u1 with l(ull( < R which is not in F and is such 
that there exist two sequences 

gk + u1 and z; 4 u1 (10) 

with f(yA) > 2 and f ( x A )  < 0 for all n. 
Indeed, consider for each uo of norm R the function s ( p )  := 

puo, p E (Oil). For small p, s ( p )  > 2, by part (b) in the 
statement, and for large p part (c) implies that s(p)  < 0. On 
the other hand, s ( k )  is always either > 2 or < 0, by part (a). 
Let po be the supremum of the values p for which s(p)  > 2. 
Then, u1 = pouo is so that two sequences as above exist. As 
a different point is obtained for each different uo, and we only 
need to avoid the finite set F ,  one can take u1 6 F ,  as claimed. 

Note that f is discontinuous at ul, so u1 E S, for at least 
one i. After reordering terms if necessary, assume that 

u1 E s =SI = . . . = s, 
and u1 9 S, for j = 1 + 1,. . . , k .  As the sets S, are closed 

(each qz is continuous), there is a neighborhood of u1 disjoint 
from all such S,’s. We write 

f(.) = f1(u) + fz(u) 
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1 where fl(u) := Cy,(q,(u)). Then, f2 is continuous at 
u = U ' ,  and therefore the last term in 

Ifl(Y3 - f l ( 4 ) I  2 If(Y3 - f(zh)l  - lf2(Y3 - f 2 ( 4 ) l  

> 2 - IfdY3 - f 2 ( 4 ) l  

tends to zero, which implies that Ifl(y;) - fl(zA)l > 3/2 for 
all large n. 

The set S is connected and unbounded, and it contains some 
point in the interior of the disk I ( u ( (  < R. Therefore it contains 
points of the form llull = R - E,  for every E small. Together 
with the fact that F is finite, this means that there must exist 
some u2 E S such that f(u) E ( - 1 , O )  for all U near u2 and 
so that f2 is continuous at u2. 

By the second property of Q, there are a fixed q E Q 
and real numbers A, so that q2 = A,q for all i = 1, . . . ,1 .  
Now we use the openness property for the function q: after 
choosing if necessary a subsequence of (y;}, as q(u2) = 0 
and y(yA) + 0, there exists some sequence 9: - u2 so that 
q(y2) = q(yA) for all n. Using now that also q(zA)  + 0, 
and picking yet another subsequence if necessary, there also 
exists some sequence 2: + u2 so that q(z:) = q(zA).  Thus 
also X,q(y:) = X,q(yA) and X 2 q ( z z )  = A,q(zA) for all n, so 
fl(y;) = f~(y:) and f~(zA) = fl(z;) for all n and each 
z = 1, . . . . l .  We conclude that 

I f ( Y 3  - f ( a  2 Ifl(Yh) - fl(4)l  - lf'(Y3 - f2(& 
> 3 / 2  - If2(Yh) - f2 (4 ) I .  

the fact that f(u) E ( - 1 , O )  for all U near U'. 

Since the last term tends to zero, by continuity of f2 at U', it 
follows that If(y:) - f ( z i ) l  > 1 for all large n, contradicting 

H 

IV. STABILIZATION 
Given any system (1) and an input sequence w = 

( ~ 1 . .  . . ,U')  E (E")', we use the notation P ( x ,  w )  to denote 
the state reached after applying w,  that is, 

P(x .  w )  := P ( P ( .  . . ( P ( P ( x .  u1),u2), . . . ) , U k - l ) . U k )  

The notation includes the empty sequence w ,  for which 
P ( x , w )  = x. For any subset S g R", we denote by 

c ~ ( s )  := (x E RnJp(x ,u )  E S for some u E R"} (11) 

the set of states which can be controlled to S in one step. 
The notation ((x1( is used for Euclidean norm in the state 

space R" or in control-value space IR", B ( ~ . E )  denotes 
the open ball of radius E centered at x, and E(.)(€) is the 
closure of B(z,E). More generally, B(S .E)  is the open E- 

neighborhood of a set S, that is, the set of points x so that 
115 - S I /  < E for some s E S. 

We start with a simple consequence of local stability. 
Lemma 4.1: Assume given a control system (1) for which 

the origin z = 0 is a locally asymptotically stable state for 
the zero-input equation 

x ( t  + 1) = Q(x( t ) ) .  (12) 

where Q(z) := P(xl 0). Then, there exist: 
a compact set A0 included in the domain of attraction of 
the origin in (12) and invariant under Q, 

bounded open sets Bo and LO so that 

Ao Lo C CloSLo Bo 

and 
a real number E > 0 and an integer s > 0, 

(i) If x E Bo and u E R" has norm llull < E then 

(ii) If x E Bo and ( ~ 1 , .  . . , U , )  E (R")" is a sequence 
that satisfies Ilu;ll < E for all i = 1,.  . . , s, then there is 
some i E (1,. . . , s} so that P ( x ,  (ul ,  . . . , ui ) )  E Ao. 

Proof: Pick any bounded open set V which contains 0 
and whose closure F is contained in the domain of attraction of 
0 in (12). By asymptotic stability, there is then some integer s 
so that & " ( F )  V .  (This is a well-known consequence of sta- 
bility, and can be proved first locally as in [12], Lemma 4.8.10, 
and then following by a standard compactness argument.) Let 

such that the following two properties hold: 

P ( x , u )  E Lo. 

A,, := F U Q ( F )  U.. . U Q"-~(F) .  

Note that A0 is invariant under Q, and it is compact because 
each Q i ( F )  is. Moreover, as Q(Q"'(F))  C V by the choice 
of s, it is also true that for each xo E A0 there is some i 5 s 
so that Q i ( x o )  E V .  In particular, this implies that A0 is in 
domain of attraction of the origin, because V is in the domain 
of attraction. 

We now claim that there are positive real numbers ~ i ,  

i = 0 , .  . . , s - 1 and bounded open sets N O , .  . . . N ,  and 
MO, .  . . , Ms with the properties that: 

Qz((F) C Mi C C l O s M i  C Ni 

P(Ni x B ( 0 , ~ i ) )  C Mi+i 

(13) 

and 

(14) 

for each ,z = 0, .  . . , s - 1. Let M6 = N ,  := V ,  and define 
the Ni, hl,, ~i recursively for decreasing i = s - 1, . . . , 0 
as follows. Assume that N2+1, Mi+l have been defined, and 
.i 2 0. Then, since 

P ( Q ~ ( F )  x (0)) = Q ~ + ' ( F )  c M , + ~  

it follows by continuity of P and openness of M;+l that there 
is a bounded open set N; and an E;  > 0 so that (14) holds 
and Qi ( F )  C Ni . As Qi ( F )  is a compact set and Ni is open, 
there is some open set M, so that (13) holds. This completes 
the recursive construction. 

Let E > 0 be the smallest of the E ~ ' s ,  and denote 

and 

Lo : = MO U Ml U . . . U Ms- 1. 

These are bounded sets and, because of (13), they satisfy 
A0 2 Lo C closLo C Bo. Note also that 

M, = V F C MO Lo. (15) 

Let x E Bo and llull < E .  By definition of Bo, x E Ni 
for some i = 0 , .  . . , s - 1. Then (14) implies that P ( z ,  U )  E 
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Mt+l C_ LO, the last inclusion by definition of LO and by (15) 
when z = s - 1. Thus conclusion (i) holds. 

Pick now any x E Bo and any control sequence ( ~ 1 ,  . . . . U,) 
with ( ( ~ ~ ( 1  < E for all 2 .  Assume that x E N3, where 
g E (0. .  . . , s - l}. Then applying repeatedly (14) there results 
that P ( x ,  ( ~ 1 . .  . . , us - ] ) )  E M, C_ F C_ Ao, and this proves 

Lemma 4.2: Assume that the compact C 2 R" is in the 
domain of null-asycontrollability for the system (l), and let A0 
be a compact neighborhood of the origin. Then, there exists 
an integer r 2 1 and a sequence of compact sets 

(ii). rn 

Ao.Al, .. . .A, 

so that C C A0 U.. .U A,  and A, 2 C1(Az-l) for each 
L = l , . .  . . r .  

Proof: Pick any state x E C. By definition of null- 
asycontrollability, there must exist some input sequence w 
so that P(x.w) E int Ao, and hence so that also some 
neighborhood V, of x is controlled into int A0 by w. Covering 
C by such Vz's, and using compactness, we conclude that there 
is some integer r 2 1 and some finite subset U C IR" so that 
every element of C can be controlled to int Ao, and hence also 
into Ao, using inputs with values in U and of length at most T .  

Without loss of generality, we may assume that 0 E U .  We let 

Ai := (X E C(P(.Z. (211,. . . , 2 1 1 ) )  E A0 
for some ( ~ 1 . .  . . . ul) E U ' }  

for each 1 = 1,.  . . . r .  Note that C is covered by the Al's, by 
choice of r and U .  Moreover, if 1 2 1 then, for each x E Ai 
and each (111,. . . . U , )  as in the definition of Al, it holds that 
P ( J . u ~ )  E Ai-1. 

It only remains to prove that each Al is compact. For this, 
note that 

Cl := {( .Z .U1 , .  . . . U l ) l .  E c. (211,. . . . U l )  E Ul .  

P(xc ,  ( ~ 1 , .  . . , U [ ) )  E Ao} 

is compact for each I ,  since C ,  AO.  U are all compact and 
P is continuous, and Al is the projection of Cl on the x 
coordinates. rn 

Lemma 4.3: Assume that (1) is a given system, and 
Ao, . . . , A, is a sequence of nonempty compact sets so that 
A, g C1(AZ-l) for each z = 1.. . . , T .  Let Bo and LO be 
bounded open sets with A,-, C Lo E closL0 C BO. Then, 
there exist two sequences of bounded open sets B1.. . . , B, 
and L1, . . . , L, so that the following properties hold for each 
2.3 E (0 , .  . . . r } :  

1) A,  c L, c clos L, g Bo U. . . U B,. 
2) L , n B ,  = 0 i fz  < g. 
3) B, C C1(L,) i fg  = z + 1. 

Proof: We assume that Bo,. . . , B, and LO. .  . . , Ll have 
been already obtained, so that the desired properties hold for 
all 2 ,  g E (0 , .  . . , 1 ) .  (Note that when 1 = 0, property 1 holds 
by hypothesis, and 2 and 3 are vacuous.) We need to construct 
Bl+1 and Ll+1 so that the following are verified: 

( 4  Al+1 E Ll+l G ClOS Ll+1 c Bo U. ' . U &+I. 

( 4  &+l c_ C1(L1). 
(b) L, n Bl+l = @ for each z = 0 , .  . . .1 .  

Let 

G := (Bo u..  . 
(superscript denotes complement), a closed set, and introduce 

the compact set 

F := clos (LO u.. . 

Note that by property 1, F is contained in the union of 
BO, .  . . , Bl, so F G = 0. Thus there exists some S > 0 
so that 

d(F,G)  > 6, (16) 

where d denotes distance between sets 

d ( D , E )  = inf((lz - y1l.x E D,y E E}d = +m 

if either of D or E is empty. Now pick any x in the compact 
set 

E := Al+1 n G. 

Since x E Al+1 and by hypothesis Al+l 2 C1(Al), there 
is some U ,  E R" so that P(x,u,) E Al 2 LI .  Therefore 
by continuity of P(.,u,) there is some E(.) > 0 so that 
P(z,u,)  E Ll whenever 112 - zll < ~(x), and we may take 
E(.) < S. Take the open set 

&+1 := U W Z , E ( Z ) )  
xEE 

and observe that 

E c &+1 c B(E,S) (17) 

so in particular Bl+1 is bounded. By construction (inputs U ,  

above), property (c) holds. Furthermore, 

the last inclusion by (17). Since the complement of 
Bo U . . . U Bl U B1+1 is closed and disjoint from the compact 
Al+l (by (18)), there is some open set L,+1 which contains 
Al+1 and so that (a) holds. 

We still need to establish (b). For this, it is sufficient to 
show that B I + ~  does not intersect F .  Assume otherwise that 
would be some x E n F.  Hence II: E B(E, 6) (by (17)), 
so there is some y E E C G with 1111: - y1J < 6, but together 

rn with x E F this would contradict the inequality (16). 
Proof of Theorem 1:  First apply Lemma 4.1, to obtain 

Ao, Bo, E ,  s as there. Now let C be any compact set in R" 
which is to be stabilized, and apply Lemma 4.2 to this C 
and the A0 just obtained. Let r and A1 > .  . . , A,  be as in this 
second lemma. Next apply Lemma 4.3, with these data, to 
obtain B1,. . . , B, as well as L1,. . . , L,. Observe that 

U B7 
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by property 1 in Lemma 4.3. We now define a set U C 
IR" x R", to be used when applying the definition of property 
(SEC'), as follows: 

U :=lAou ...U U,, 

where 

U0 := {(xl .)I. E Bo, IIUII < €1 

Ui := ( ( 2 ,  u)Ix E Bi; U E IR", P ( z ,  U )  E Li-l} 

and 

for all i = 1, . . . , T .  By property 3 in Lemma 4.3, Bi is 
included in the projection ~ l ( U i )  for each i = 1.. . . , T ,  and 
the same is true obviously for i = 0. Note that each Ui, and 
hence also U ,  is open, because the sets Bi and Li are open. 

We will take CO in the definition of property (SEC') to 
be equal to Ao. Note that then CO G Bo, which means that 
CO x (0) C U, C U ,  as needed in applying (SEC') with this 
CO. As C is included in the union of the B,'s, it is a subset 
of T ~ ( U ) .  So we can apply the property, to obtain the desired 
feedback K E 3F. 

We now prove that this feedback law provides stability. For 
each z E Rn define 

p(z) := max(i1z E B;} 

with p(z) := +x if z # Bo U.. . U B,. Note that p(z)  5 T 

for all z E C. 
Claim: Pick any 5 E Bo U . . . U B,, and let U := K ( z )  

and y := P(x .u) .  Then: 

P(Y) I max{&) - L O >  

Indeed, let k := I (%) ,  so z is in none of the Bj,  j > k ,  
and thus necessarily (2, U )  E U, U . .  . UUk.  Let (z. U )  E Uj,  
where j 5 k. 

If j = 0 then 2 E BO and JJuJJ < E ,  so conclusion (i) in 
Lemma 4.1 implies that y E Lt,  where t = 0. If j > 0 then the 
definition of Uj implies that y E Lt, where t = j - 1 5 k - 1. 
In either case, property 2 in Lemma 4.3 implies that y # Bh 
for all h > t ,  so p(y) 5 t. This proves the claim. 

Pick now any initial state zo in C and consider the trajectory 
xi+' := P ( z i , K ( x i ) ) , i  = 1 , 2 , .  . .. From the above claim, 
we conclude that the sequence ~ ( 2 2 )  becomes identically zero 
after at most T steps. At that point zi is in LO, so after at most s 
more steps it enters Ao, by conclusion (ii) in Lemma 4.1, after 
which, since K ( z )  = 0 on CO = ,40, the dynamics is that of 
z+ = P(z ,  O), which is asymptotically stable by hypothesis. 
This proves that C is in the domain of attraction. Local 
asymptotic stability also follows from the fact that K ( x )  0 
about z = 0. This completes the proof of Theorem 1. 

Proof of Theorem 2: This is an immediate consequence 
of Theorem 1: it is only necessary to first apply a linear 
stabilizing feedback U = Fx, and then apply the previous 
result to the new system 

is the equivalent to saying that K + F stabilizes the original 
system. 

A. One Hidden Layer is Not Enough 

Theorem 3 is an immediate consequence of the following 
more precise result: 

Proposition 4.4: Let 3 be a compatible class of functions 
that does not satisfy property (SEC). Then, there exists a 
system (1), for which the origin is locally asymptotically stable 
for the zero-input dynamics, and for which every state can be 
controlled to zero in at most two steps (hence asymptotically 
controllable), and there is a compact subset C of the state 
space, so that the following happens: 

For every feedback law K E 3:, the closed-loop system 
(2) has a nontrivial periodic orbit that intersects C. 

R" be a 
compact subset included in the projection T ~ ( U )  of U on the 
first n coordinates, for which there exists no 4 E 3 2  so that 
(z,qh(z)) E U for all z E C. 

We first claim that we can assume 0 @ C' This is because 
one may always consider the compact set C := ((1.x)Ix E 
C }  C Etn+' and the open set c := R x U C x Rq, 
for which 2 is included in the projection of i? in the first 
n + 1 coordinates. If there would be a ?I, E 3i+1 so that 
(_I1. z), +(1, z)) E and 
U )  then (x. $(x)) E U for all z E C, where 4(.) := $(l. .) E 
3:, contradicting the above. Thus we assume from now on 
that 0 $2 C.  

Let X > 0 be a real number chosen in such a manner that 
the set 

Proof: Let U C IR" x Rq be open and let C 

for all z E C (property (SEC) for 

does not intersect C. Such a X exists because 0 # C and C is 
compact. Consider the following two disjoint closed subsets 
of R" x Rq: 

FI := { ( z , u ) ( z  E C and ( z , ~ )  #U} 
and 

Fz := { ( z , u ) J ~  E D}. 
Now let y and $ be continuous functions R" x IRq -+ R 

chosen as follows (if desired, they can also picked infinitely 
differentiable, see e.g. [5, Exercise 2.2.11): 

if ( $ , U )  E FI 
? I , ( Z , U )  = 0 if (z,~) E F2 

and y(x, U )  = 0 on Fl U Fz and > 0 otherwise. Finally, let 

r E (0.1) otherwise 

for any z E Rn,u l  E RR4,u2 E IR. Observe that, for all 

which is now locally asymptotically stable for U = 0. There 
results a feedback K E 3," stabilizing this new system, which 
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and 

Q ( X .  u1, .2) =a(? % ) U 2  + b(x. U I ) ,  a ( z ,  u1) # 0. 
(21) 

if (2 ,  u1) @ Fl U F2. 

As (0.0) @ F1 U F2 (because 5 = 0 is in neither C nor D),  
we may pick, because of (21), some 11; so that ( ~ ( 0 . 0 ,  U ; )  = 0. 

Consider now the system with input space R” = R q + l ,  

state space IR”, and equations 

.E+ = P(x.  (Ulr u2)) := Q(5, Ul, up + U ; )  T 

Note that P(0, (0.0)) = 0, as needed for the definition 
of system. Moreover, the Jacobian of P with respect to x, 
evaluated at z = 0, u1 = 0.112 = 0 is zero, so the linearization 
of this system at the origin has asymptotically stable dynamics 
.r+ = 0. It follows that the origin is locally asymptotically 
stable for the zero-input dynamics. 

We claim that every state can be controlled to zero in at 
most two steps. Take any state z E IR“. If z $Z C U D  
then for any u1 E IR4 one may find, by (21), an u2 so that 
a ( z .  u1> u2 + U ; )  = 0, and any such pair (u l .  u2) drives the 
state to zero in one step. If 2 E C then by the assumption 
C g 7rl(U) there is some u1 so that ( z . u l )  E U. It follows 
that (x. u1) $Z F1 u F 2 ,  so again it  is possible to control to 
0 in one step. Finally, assume that x E D. Pick any u1.u2. 
Then (20) gives that z := P ( J .  ( u l l  u z ) )  = Xz E C. Thus in 
one more step z can be controlled to zero, as wanted. 

Take any K E 32, and write K ( . )  = ($(.). p ( . ) ) ,  with q5 E 
Fz. Then there must exist some z E C so that (x. +(x)) U 
(by the choice of C. U contradicting property (SEC)). Consider 
this J, and take u1 := $(z).up := p(z) .  As ( s .u l )  U, it 
follows that ( x . u l )  E F1, so by (19) it follows that 

1 P(Z.K(.E)) = 2 .  
A 

Now z := (l/X)x E D, so as in the previous paragraph it 
follows that P ( z .  K ( z ) )  = Xz = 2 .  In conclusion, the closed- 
loop system ( 2 )  has a periodic orbit 2 ,  z .  5 ,  z . ,  . . with T # z 
and x E C. This completes the proof of the Proposition, and 
hence also of Theorem 3. 
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