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Abstract. A switched system is a hybrid system whose discrete mech-
anisms are abstracted away in terms of an exogenous switching signal
which brings about the mode switches. For switched systems, the Av-
erage Dwell time (ADT) property defines restricted classes of switching
signals which can be used for proving stability. In this paper, we develop
optimization-based methods for automatically verifying ADT properties
of hybrid systems. This enables us to prove stability of hybrid systems,
provided the individual modes of the system are stable. For two special
classes of hybrid systems, we show that the resulting optimization prob-
lems can indeed be solved efficiently using standard mathematical pro-
gramming techniques. We also present simulation relation-based proof
methods for establishing equivalence of hybrid systems with respect to
ADT. The proposed methods are applied to verify ADT properties of a
linear hysteresis switch and a nondeterministic thermostat.

1 Introduction

In order to accurately represent hybrid phenomena that arise in typical applica-
tions, hybrid system models must provide discrete and continuous valued state
variables and must have mechanisms to capture both instantaneous state transi-
tions and state trajectories spanning time intervals. The standard approach for
describing hybrid behavior is to assume that every state of the system belongs
to one of P modes , where P is a finite index set. When the state is in mode
p, for some p ∈ P , the continuous variables x evolve according to ẋ = fp(x)
and the discrete variables remain constant. Discrete transitions alter both con-
tinuous and discrete variables, which may lead to mode change. Analyzing the
stability of hybrid systems is challenging because the stability of the continuous
dynamics of each individual mode does not necessarily imply the stability of
the whole system (see [1] for an example). The basic tool for studying stabil-
ity of hybrid systems relies on the existence of a Common Lyapunov function,
whose derivative along the trajectories of all the modes must satisfy suitable
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inequalities. When such a function is not known or does not exist, Multiple Lya-
punov functions [1] are useful for proving stability of a chosen execution. These
and many other stability results are based on the switched system [2, 3] view of
hybrid systems. Switched systems may be seen as higher-level abstractions of
hybrid systems. A switched system model neglects the details of the discrete be-
havior of a hybrid system and instead relies on an exogenous switching signal to
bring about the mode switches. If the individual modes of the system are stable,
then the Dwell Time [4] and the more general Average Dwell Time (ADT) crite-
ria, introduced by Morse and Hespanha [5], define restricted classes of switching
signals that guarantee stability of the whole system. In this paper, we present
techniques for automatically verifying ADT properties using a model for hybrid
systems that captures both their discrete and continuous mechanisms. Thus we
provide a missing piece in the toolbox for analysis of stability of hybrid systems.

We use the Hybrid Input/Output Automaton (HIOA) framework of Lynch,
Segala, and Vaandrager [6] to develop methods for checking ADT properties. A
hybrid system A has ADT τa if, in every execution fragment of A, any τa interval
of time, on an average, has at most one mode switch. A large ADT means that the
system spends enough time in each mode to dissipate the transient energy gained
through mode switches. Having a large ADT itself is not sufficient for stability;
in addition, the individual modes of the automaton must also be stable. In fact,
the problem of testing the stability of a hybrid system can be broken down
into (a) finding Lyapunov functions for the individual modes and (b) checking
the ADT property. We assume that a solution to part (a)—a set of Lyapunov
functions for the individual modes—is known from existing techniques, and we
present automatic methods for part (b).

Our approach for checking if a given automaton A has ADT τa, is to formulate
an optimization problem OPT(τa). From the solution of OPT(τa) we can either
get a counterexample execution fragment of A that violates the ADT property
τa, or else we can conclude that no such counterexample exists and that A has
ADT τa. We show that for certain useful classes of HIOA, OPT(τa) can indeed be
formulated and solved using standard mathematical programming techniques.
We also present a simulation relation-based proof technique for showing that
ADT of a given HIOA is no less than (or equal to) that of another HIOA. This
proof technique enables us to verify ADT of automata for which OPT(τa) may
not be solvable directly. For example, we can abstract such an automaton A in
terms of another automaton B for which OPT(τa) can be solved efficiently, such
that ADT of A is no less than that of B. Then, by verifying that B has ADT τa

we can conclude that the ADT of A is at least τa. We do not address the problem
of constructing such an abstract automaton B in this paper; this direction will
be pursued in the future.

In [7], an invariant-based method for proving ADT is proposed. This method
transforms the given automaton A to a new automaton Aτa , so that A has ADT
τa if and only if Aτa has a particular invariant property Iτa . This method is
applicable to any HIOA; however, for general HIOA, the invariant Iτa cannot
be checked automatically. The optimization-based approach presented here is
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automatic and complements the invariant method of [7] because the two can be
used in combination to find the ADT of hybrid systems. We can start with some
candidate value of τa > 0 and search for a counterexample execution fragment
for it, using the optimization-based approach. If such an execution fragment is
found, then we decrease τa (say, by a factor of 2) and try again. If eventually
the optimization approach fails to find a counterexample execution fragment for
a particular value of τa, then we use the invariant approach to prove that this
value of τa is an ADT for the given system.

Contributions and overview. In Section 2 we introduce a specialization of
HIOA called Structured Hybrid Automaton (SHA) and define the Average Dwell
Time (ADT) property in terms of this model. In Section 3 we introduce the opti-
mization problem OPT(τa). We formally define what it means for two SHA to be
ADT-equivalent and present a new type of simulation relation, called switching
simulation, that provides sufficient conditions for establishing the ADT equiva-
lence. In Section 4 we explore the class of One-clock initialized SHA, and we show
that solving OPT(τa) for this class reduces to detecting a negative cost cycle in a
weighted graph. We verify the ADT property of a linear, scale-independent hys-
teresis switch taken from [8] by first finding a SHA B that is ADT-equivalent to
it and then showing how OPT(τa) for B can be solved efficiently using standard
graph algorithms, like Karp’s algorithm for minimum mean-weight cycle [9]. In
Section 5, we study the more general class of Initialized SHA and show that
OPT(τa) can be solved by detecting a cyclic execution fragment with “extra”
mode switches. We show that for rectangular initialized SHA, OPT(τa) can be
formulated as a Mixed Integer Linear Program. We use this formulation along
with switching simulations to verify the ADT property of a nondeterministic
thermostat.

2 Hybrid System Model and Stability Definitions

The Hybrid Input/Output Automaton (HIOA) model [6] with its invariant and
simulation based proof methods has been used to verify the safety properties of
several hybrid systems (see, e.g., [10, 11, 12]). In this paper, we are concerned
with internal stability of hybrid systems, so we use a specialization of the HIOA
model called Structured Hybrid Automata (SHA), that does not have input/out-
put variables and does not distinguish among input, output, and internal actions.
On the other hand, SHA have extra structure called “state models” for describing
the trajectories using differential and algebraic equations.

2.1 Structured Hybrid Automaton Model

We denote the domain of a function f by f.dom. For a set S ⊆ f.dom, we
write f � S for the restriction of f to S. If f is a function whose range is a
set of functions containing Y , then we write f ↓ Y for the function g with
g.dom = f.dom such that for each c ∈ g.dom, g(c) = f(c) � Y . For a tuple or an
array b with n elements, we refer to its ith element by b[i].
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We fix the time axis T to be R≥0. Let X be a set of state variables; X is
partitioned into Xd, the set of discrete variables, and Xc, the set of continuous
variables. Each variable x ∈ X is associated with a type, which is the set of
values that x can assume. Each x ∈ Xd (respectively, Xc) has dynamic type,
which is the pasting closure of the set of constant (resp. continuous) functions1

from left-closed intervals in T to the type of x. A valuation x for the set of
variables X is a function that associates each x ∈ X to a value in its type. The
set of all valuations of X is denoted by val(X). A trajectory τ : J → val(X)
specifies the values of all variables X on a time interval J with left endpoint of J
equal to 0, with the constraint that evolution of each x ∈ X over the trajectory
should be consistent with its dynamic type. A trajectory with domain [0, 0] is
called a point trajectory. If τ.dom is right closed then τ is closed and its limit
time is the supremum of τ.dom and is written as τ.ltime. The first valuation
of τ , τ.fval is τ(0), and if τ is closed, then the last valuation of τ , τ.lval, is
τ(τ.ltime).

Definition 1. A state model F for a set of variables X is a set of differential
equations for Xc of the form ẋc = f(xc), such that: (1) For every x ∈ val(X),
there exists a trajectory τ with τ.fval = x, with the property that τ ↓ Xc satisfies
F , and (2) for all t ∈ τ.dom, (τ ↓ Xd)(t) = (τ ↓ Xd)(0). The prefix and suffix
closure of the set of trajectories of X that satisfy the above conditions is denoted
by traj(X, F ).

Definition 2. A Structured Hybrid Automaton (SHA) is a tuple A=(X, Q, Θ,-
A, D, P ), where (1) X is a set of variables, including a special discrete variable
called mode. (2) Q ⊆ val(X) is the set of states, (3) Θ ⊆ Q is a nonempty set
of start states, (4) A is a set of actions, (5) D ⊆ Q × A × Q is a set of discrete
transitions, and (6) P is an indexed family Fi, i ∈ P, of state models, where P
is an index set.

A transition (x, a,x′) ∈ D is written in short as x a→A x′ or as x a→ x′ when A
is clear from the context. A transition x a→ x′ is a mode switch if x � mode �=
x′ � mode. The set of mode switching transitions is denoted by M . The guard
predicate of action a is Ga

∆= {x ∈ Q | ∃x′,x a→ x′ ∈ D}. In this paper,
we assume that the right hand sides of the differential equations in the state
models are well behaved (locally Lipschitz), and the differential equations have
solutions defined globally in time. Therefore, for each Fi, i ∈ P and x ∈ Q with
x � mode = i, there exists a trajectory τ starting from x that satisfies Fi and
if, τ.dom is finite then τ.lval ∈ Ga for some a ∈ A. The set T of trajectories of
SHA A is defined as T ∆=

⋃
i∈P traj(X, Fi). An execution fragment of an SHA A

is an alternating sequence of actions and trajectories α = τ0a1τ1a2 . . ., where (1)
each τi ∈ T , and (2) if τi is not the last trajectory then τi.lstate

ai+1→ τi+1.fstate.
The first state of an execution fragment α, α.fstate, is τ0.fstate. An execution
fragment α is an execution of A if α.fstate ∈ Θ. The length of a finite execution
1 This set of functions must be closed under time-shift, restriction to subintervals, and

pasting. See [13] for formal definition of these closure properties.
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fragment α is the number of actions in α. An execution fragment is closed if
it is a finite sequence, and the domain of the last trajectory is closed. Given a
closed execution fragment α = τ0, a1, . . . , τn, its last state, α.lstate, is τn.lstate
and its limit time, α.ltime, is defined as

∑n
i τi.ltime. We define the following

shorthand notation for the valuation of the variables of A at t ∈ [0, α.ltime]:
α(t) = α′.lstate, where α′ is the longest prefix of α with α′.ltime = t. A state
x ∈ Q is reachable if it is the last state of some execution of A. An execution
fragment α is reachable if α.fstate is reachable. A closed execution fragment α
of SHA A is a cycle if α.fstate = α.lstate.

2.2 Stability and Average Dwell Time

Stability is a property of the continuous variables of SHA A with respect to the
standard Euclidean norm in R

n. At a given state x ∈ Q, we write the norm of
the continuous variables |x � Xc| in short as |x|. We assume that for each i ∈ P ,
the origin is an equilibrium point for the state model ẋc = fi(xc) of A.

SHA A is stable (also called stable in the sense of Lyapunov), if for every
ε > 0, there exists a δ > 0, such that for every closed execution α of A, for all
t ∈ [0, α.ltime], |α(0)| ≤ δ implies |α(t)| ≤ ε. A is asymptotically stable if it is
stable and δ can be chosen so that, |α(0)| ≤ δ implies α(t) → 0 as t → ∞. If the
above condition holds for all δ then A is globally asymptotically stable.

Uniform stability guarantees that the stability property in question holds
for execution fragments and not only for executions. A is uniformly stable if
for every ε > 0 there exists a constant δ > 0, such that for any execution
fragment α, |α.fstate| ≤ δ implies |α.lstate| ≤ ε. An SHA A is said to be
uniformly asymptotically stable if it is uniformly stable and there exists a δ > 0,
such that for every ε > 0 there exists a T , such that for any execution fragment
α with α.ltime ≥ T , ∀t ≥ T , |α.fstate| ≤ δ implies |α(t)| ≤ ε. It is said
to be globally uniformly asymptotically stable if the above holds for all δ, with
T = T (δ, ε).

It is well known that a hybrid system is stable if all the individual modes
of the system are stable and the switching is sufficiently slow, so as to allow
the dissipation of the transient effects after each switch. The dwell time [4] and
the average dwell time [5] criteria define restricted classes of switching patterns,
based on switching speeds, and one can conclude the stability of a system with
respect to these restricted classes.

Definition 3. Given a duration of time τa > 0, SHA A has Average Dwell Time
(ADT) τa if there exists a positive constant N0, such that for every reachable
execution fragment α, N(α) ≤ N0 + α.ltime/τa, where N(α) is the number of
mode switches in α. The number of extra switches of α with respect to τa is
Sτa(α) ∆= N(α) − α.ltime/τa.

Theorem 1 from [5], adapted to SHA, gives a sufficient condition for stability
based on ADT. Roughly, it states that a hybrid system is stable if the modes are
individually stable and the switches do not occur too frequently on the average.
See Section 3.2 of [2] for a proof.
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Theorem 1. If there exist positive definite, radially unbounded, and continu-
ously differentiable functions Vi : R

n → R
n, for each i ∈ P, and positive numbers

λ0 and µ such that:

∂Vi

∂xc
fi(xc) ≤ −λ0Vi(xc), ∀xc, ∀i ∈ P , and

Vi(x′
c) ≤ µVj(xc), ∀x a→A x′, where i = x′ � mode and j = x � mode.

Then, A is globally uniformly asymptotically stable if it has an ADT τa > log µ
λ0

.

This stability condition effectively allows us to decouple the construction of
Lyapunov functions—the Vi’s for each i ∈ P , which we assume are known from
available methods of system theory—from the problem of checking that the
automaton has a certain ADT, which we discuss in the rest of the paper.

3 ADT: Optimization and Equivalence

From Definition 3 it follows that a given τa > 0 is not an ADT of a given SHA A
if and only if, for every N0 > 0 there exists a reachable execution fragment α of
A such that Sτa(α) > N0. Thus, if we solve the following optimization problem:

OPT(τa) : α∗ ∈ argmaxSτa(α)

over all the execution fragments of A, and the optimal value Sτa(α∗) turns out to
be bounded, then we can conclude that A has ADT τa. Otherwise, if Sτa(α∗) is
unbounded and α∗ is reachable then we can conclude that τa is not an ADT for
A. However, the optimization problem OPT(τa) may not be solvable because,
among other things, the executions of A may not have finite descriptions. In
Sections 4 and 5 we study particular classes of SHA for which OPT(τa) can
be solved efficiently. In the remainder of this section we develop a simulation
relation-based method for proving that any given SHA A is equivalent to another
SHA B, with respect to ADT properties. As we shall see in Sections 4 and 5,
this simulation method enables us to use the optimization based technique to
verify ADT of even those SHA for which OPT(τa) cannot be solved directly.

Definition 4. A switching simulation relation from A to B is a relation R ⊂
QA × QB satisfying the following conditions:

1. If x ∈ ΘA then there exists y ∈ ΘB such that x R y.
2. If x R y and α is an execution fragment of A consisting of a single action

surrounded by two point trajectories with α.fstate = x, then B has a closed
execution fragment β, such that β.fstate = y, N(β) ≥ N(α), β.ltime = 0,
and α.lstate R β.lstate. Here N(β) is the number of mode switches in β.

3. If x R y and α is an execution fragment of A consisting of a single closed
trajectory with α.fstate = x, then B has a closed execution fragment β, such
that β.fstate = y, β.ltime ≤ α.ltime, and α.lstate R β.lstate.
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Lemma 1. Let R be a switching simulation relation from SHA A to B. Then,
for all τa > 0 and for every reachable execution fragment α of A, there exists a
reachable execution fragment β of B, such that Sτa(β) ≥ Sτa(α).

Owing to space limitations most of the proofs are omitted from this paper;
complete proofs for all the results are available in the full version [14]. The
above lemma is proved by inductively defining a sequence β0β1β2 . . . of closed
execution fragments of B for a given an execution fragment α = τ0a1τ1a2τ2 . . .
of A, such that for all i, βi.lstate = βi+1.fstate, αi.lstate R βi.lstate, and
Sτa(β) ≥ Sτa(α). We use Property 3 of the definition of switching simulation
for the construction of the βi’s with i even. This gives us βi.ltime ≤ αi.ltime
for every even i. We use Property 2 of the definition of switching simulation for
the construction of the βi’s with i odd. This gives us βi.ltime = αi.ltime and
N(βi) ≥ N(αi) for every odd i.

Suppose for every τa > 0, if B has ADT τa then A also has ADT τa; we write
this as A ≥ADT B. If A ≥ADT B and B ≥ADT A, then we write A =ADT B.
Intuitively, A ≥ADT B means that B switches faster than A on an average, and
A =ADT B means that A and B have the same average switching speeds. We
use Theorem 2for proving B ≥ADT A.

Theorem 2. If R is a switching simulation relation from A to B, then B ≥ADT A.

Corollary 1. If R1 be a switching simulation from A to B and R2 is a switching
simulation from B to A, then, A =ADT B.

4 One-Clock Initialized SHA

In this section we study a special class of SHA, called one-clock initialized SHA,
for which OPT(τa) (see Section 3) can be solved using classical graph algorithms.
Consider a graph G defined by: a set of vertices V , a set of directed edges
E ⊆ V × V , a cost function w : E → R≥0 for the edges, and a special start edge
e0 ∈ E . The cost of a path in G is the sum of the costs of the edges in the path.
Given G = (V , E , w, e0), the corresponding one-clock initialized SHA Aut(G) is
specified by the code in Figure 1. The source and the target vertices of an edge
e are denoted by e[1] and e[2], respectively.

The discrete transitions are written using the standard precondition-effect
style. Each trajdef d defines a set of trajectories Td in terms of the invariant
inv(d), the stopping condition stop(d), and the state model written as an evolve
clause evolve(d). A trajectory τ is in Td, if an only if (1) τ satisfies evolve(d), (2)
∀ t ∈ τ.dom, τ(t) ∈ inv(d), and (3) ∃ t ∈ τ.dom, τ(t) ∈ stop(d) → t = τ.ltime.
The set of trajectories of Aut(G) is the union of the sets of trajectories defined
by each trajdef.

Intuitively, the state of Aut(G) captures the motion of a particle moving with
unit speed along the edges of the graph G. The position of the particle is given by
the mode, which is the edge it resides on, and the value of x, which is its distance
from the source vertex of the edge G. Thus, a switch from mode e to mode e′

of Aut(G) corresponds to the particle arriving at vertex e[2] via edge e, and



Verifying ADT by Solving Optimization Problems 483

Variables:
mode ∈ E ⊂ V × V, initialy e0
x ∈ R, initially 0

Actions:
switch(e,e′), e,e′ ∈ E

Transitions:
switch(e,e′)

Precondition
mode = e ∧ e[2 ] = e′[1 ] ∧ x = w(e)

Effect
mode ← e′, x ← 0

Trajectories:
Trajdef edge(mode)
Evolve d(x) = 1
Invariant x ≤ w(mode)
Stop when x = w(mode)

Fig. 1. Automaton Aut(G), where G = (V, E ⊆ V × V, w : E → R≥0, and e0)

departing on edge e′. Within edge e the particle moves at unit speed from e[1],
where x = 0 to e[2], where x = w(e). The next theorem implies that to search
for an execution of Aut(G) that violates a ADT property τa, it is necessary and
sufficient to search over the space of the cycles of G. See [14] for a proof.

Theorem 3. Consider τa > 0 and a one-clock initialized SHA Aut(G). A has
average dwell time τa if and only if for all m > 1, the cost of any reachable cycle
of G with m segments is at least mτa.

Thus, the problem of solving OPT(τa) for Aut(G) reduces to checking whether
G contains a cycle of length m, for some m > 1, with cost less than mτa. This
is a standard problem for directed graphs and can be solved efficiently using
Bellman-Ford algorithm or Karp’s minimum mean-weight cycle algorithm [9].

Example 1: Linear hysteresis switch. We verify the ADT properties of a
linear, scale-independent hysteresis switch which is a subsystem of an adaptive
supervisory control system taken from [8] (also Chapter 6 of [2]). An adaptive
supervisory controller consists of a family of candidate controllers ui, i ∈ P ,
which correspond to the parametric uncertainty range of the plant in a suitable
way. The controller operates in conjunction with a set of on-line estimators
that provide monitoring signals µi, i ∈ P ; intuitively, smallness of µi indicates
high likelihood that i is the actual parameter value. Based on these signals,
the switching logic unit changes the variable mode, which in turn determines
the controller to be applied to the plant. Average dwell time property of this
switching logic guarantees stability of the overall supervisory control system.

In building the linear SHA model A (shown in Figure 2), we consider moni-
toring signals generated by linear differential equations, such that for each i ∈ P ,
if mode = i, then d(µi) = ciµi, otherwise d(µi) = 0. The switching logic unit im-
plements scale independent hysteresis switching as follows: at an instant of time
when controller k is operating, that is, mode = k for some k ∈ P , if there exists
an i ∈ P such that µi(1 + h) ≤ µk for some fixed hysteresis constant h, then the
switching logic sets mode = i and applies output of controller i to the plant.

As A is not a one-clock initialized SHA, we cannot apply Theorem 3 to verify
its ADT directly. However, we notice that the switching behavior of A, does not
depend on the value of the µi’s, but on the ratio of µi

µmin
, which is always within
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Variables:
mode ∈ P, initially p0
µp ∈ R, p ∈ P,

initialy µp0 = (1+h)C0

for all i 
= p0, µi = C0
derived

µmin = Mini∈P µi

Actions:
switch(p,q), p,q ∈ P

Transitions:
switch(p,q)
Precondition

mode = p ∧ (1+h)µq ≤ µp

Effect mode ← q

Trajectories:
Trajdef mode(p)
Evolve for all i ∈ P,

if i = p then d(µp) = cpµp else d(µi) = 0
Stop when
∃ q ∈ P such that (1 + h)µq ≤ µp

Fig. 2. Linear hysteresis switch with parameters P , C0, h and ci for each i ∈ P

[1, (1 + h)]. When A is in mode p ∈ P , all the ratios remain constant, except
µp

µmin
which increases monotonically from 1 to either (1 + h) or to (1 + h)2, in

time 1
cp

ln(1+h) or 2
cp

ln(1+h), respectively. Thus, we will first show that there
exists a one-clock initialized automaton B, that is equivalent to A with respect
to ADT, and then we will solve OPT(τa) for B.

Consider a graph G = (V , E , w, e0), where:

1. V ⊂ {1, (1 + h)}n, such that for any v ∈ V , all the n-components are not equal.
We denote the ith component of v ∈ V , by v[i].

2. An edge (u, v) ∈ E if and only if, one of the following conditions hold:
(a) There exists j ∈ {1, . . . , n}, such that, u[j] �= v[j] and for all i ∈ {1, . . . , n},
i �= j, u[i] = v[i]. The cost of the edge w(u, v) ∆= 1

cj
ln(1 + h) and we define

ζ(u, v) ∆= j.
(b) There exists j ∈ {1, . . . , n} such that u[j] = 1, v[j] = (1 + h) and for all
i ∈ {1, . . . , n}, i �= j implies u[i] = (1 + h) and v[i] = 1. The cost of the edge
w(u, v) ∆= 2

cj
ln(1 + h) and we define ζ(u, v) ∆= j.

3. e0 ∈ E , such that e0[1][p0] = (1 + h) and for all i �= p0, e0[1][i] = 1.

As an example, the graph for n = 3 is shown in Figure 3. Let B be the automaton
Aut(G). Each edge of G corresponds to a mode of A. In fact, mode of A equals
ζ(e), where e is the edge corresponding to the mode of B.

We define a relation R on the state spaces on A and B. Each vertex of G is
an n-tuple; the ith component of the source vertex of e is denoted by e[1][i].

Definition 5. For any x ∈ QA and y ∈ QB, x R y if and only if:

1. ζ(y � mode) = x � mode

2. For all j ∈ {1, . . . , n}, if j = ζ(y � mode) then (a) x�µj

x�µmin
= ecj(y�x) else (b)

x�µj

x�µmin
= (y � mode)[1][j] and x�µj

x�µmin
= (y � mode)[2][j].

Part 1 of Definition 5 states that if A is in mode j and B is in mode e, then
ζ(e) = j. Part 2 states that for all j �= ζ(e), the jth component of e[1] and e[2]
are the same, and are equal to µj/µmin, and for j = ζ(e), µj = µminecjx. The
next lemma states that R is a switching simulation relation from A and B and
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1
c2

ln(1 + h)

1
c 2

ln(
1 +

h)

2
c
2 ln(1 +

h)

1
c1

ln(1 + h)2
c1

ln(1 + h)

2
c1

ln(1 + h)

1
c
3 ln(1 +

h)

1
c3 ln(1 + h)

2
c 3

ln(
1 +

h)

[(1 + h), 1, 1]

[1, (1 + h), 1][1, 1, (1 + h)]

[1 + h, 1 + h, 1]

[1, 1 + h, 1 + h]

[1 + h, 1, 1 + h]

Fig. 3. Graph G with 3 modes. Here h and ci’s are the parameters from the hysteresis
switch automaton A.

from B to A. The first part is proved by showing that every start state of A
is related to some state of B and that every action and trajectory of A can be
emulated by an execution fragment of B with more extra switches. The second
part is proved using identical steps by interchanging A and B.

Lemma 2. R is a switching simulation relation from A to B and from B to A.

Remark 1. From Corollary 1 it follows that SHA A and B are ADT-equivalent.
As B is one-clock initialize, its ADT properties can be verified using Karp’s
algorithm.

5 Initialized SHA and Mixed Integer Linear
Programming

In this section we study ADT properties of Initialized SHA. A SHA A is ini-
tialized if every a ∈ A is associated with a set Ra ⊆ Q, such that x a→ x′ is
a mode switching transition if and only if x ∈ Ga and x′ ∈ Ra. The set Ra is
called the initialization predicate of a. A SHA is rectangular if the differential
equations in the state models have constant right hand sides, and the guard and
the initialization predicates (restricted to the set of continuous variables) are
polyhedra.

Our next theorem implies that for an initialized SHA A, it is necessary and
sufficient to solve OPT(τa) over the space of the cyclic fragments of A instead
of the larger space of all execution fragments.

Theorem 4. Given τa > 0 and initialized SHA A, τa is an ADT for A if and
only if A does not have any cycles with extra switches with respect to τa.

Here we sketch a proof of this theorem and refer the reader to [14] for the
complete proof. Existence of a cycle α of A with Sτa(α) > 0 implies that τa is
not an ADT, because by concatenating many α’s we can construct an execution
fragment α � α � α . . . with an arbitrarily large Sτa . To prove that the existence
of a cycle with extra switches is also necessary for violating the ADT property,
we assume that τa is not an ADT for A and that A does not have any cycles
with extra switches. We choose N0 > |P|3; from the definition of ADT we
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know that there exists an execution fragment γ, such that Sτa(γ) > N0. Let
α = τ0a1τ1 . . . τn be the shortest such execution fragment. Since N(α ≥ |P|3
mode switches and A is initialized, α must contain a cycle. As A does not have
any cycles with extra switches, we get a contradiction to the assumption that α
is the shortest execution fragment with more than N0 extra switches.

Lemma 3 allows us to limit the search for cycles with extra switches to cycles
with at most |P|3 mode switches. It is proved by showing that any cycle with
extra switches that has more than |P|3 mode switches, can be decomposed into
two smaller cycles, one of which must also have extra switches.

Lemma 3. If initialized SHA A has a cycle with extra switches, then it has a
cycle with extra switches that has fewer than |P|3 mode switches.

MILP formulation of OPT(τa). We use the above results to solve the ADT
verification problem for rectangular initialized SHA with Mixed Integer Linear
Programming (MILP). Figure 4 shows the specification of a generic Initialized
rectangular SHA A. The automaton A has a single discrete variable called mode
which takes values in the index set P = {1, . . . , N}, and a continuous variable
vector x ∈ R

n. For any p, q ∈ P , the action that changes the mode from p to q
is called switch(p, q). The guard and the initialization predicates of this action
are given by sets of linear inequalities on the continuous variables, represented
in the matrix notation by: G[p, q]x ≤ g[p, q] and R[p, q]x ≤ r[p, q], respectively,
where G[p, q] and R[p, q] are constant matrices with n columns and g[p, q], r[p, q]
are constant vectors.

For each mode p ∈ P of automaton A, the invariant is stated in terms of linear
inequalities of the continuous variables A[p]x ≤ a[p], where A[p] is a constant
matrix with n columns and a[p] is a constant vector. The evolve clause is given
by a single differential equation d(x) = c[p], where the right hand side c[p] is a
constant vector.

We describe a MILP formulation MOPT(K, τa) for finding a cyclic execution
with K mode switches that maximizes the number of extra switches with respect
to τa. If the optimal value is positive, then the optimal solution represents a cycle
with extra switches with respect to τa, and we conclude that τa is not an ADT
for A. On the other hand, if the optimal value is not positive, then we conclude
that there are no cycles with extra switches of length K. To verify ADT of

Variables:
mode ∈ P, initially p
x ∈ Rn, initially x0

Actions
switch(p,q), p,q ∈ P

Transitions:
switch(p,q)

Precondition
mode = p ∧G[p,q ]x ≤ g[p, q]

Effect
mode ← q
x ← x′ such that R[p,q ]x′ ≤ r[p, q]

Trajectories:
Trajdef mode(p)
Invariant A[p ]x ≤ a[p]
Evolve d(x) = c[p ]

Fig. 4. Generic rectangular initialized SHA with parameters P , G, A, R, q, a, r, c
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Objective function: Sτa :
K

2
− 1

τa

K�
i=0,2,...

ti

Mode: ∀ i ∈ {0, 2, . . . , K},
N�

j=1

mij = 1 and ∀ i ∈ {1, 3, . . . , K − 1},
N�

j=1

N�
k=1

pijk = 1

(1)

Cycle: x0 = xK and ∀ j ∈ {1, . . . , N}, m0j = mKj (2)

Preconds: ∀ i ∈ {1, 3, . . . , K − 1},
N�

j=1

N�
k=1

G[j, k].pijk.xi ≤
N�

j=1

N�
k=1

pijk.g[j, k] (3)

Initialize: ∀ i ∈ {1, 3, . . . , K − 1},
N�

j=1

N�
k=1

R[j, k].pijk.xi+1 ≤
N�

j=1

N�
k=1

pijk.r[j, k] (4)

Invariants: ∀ i ∈ {0, 2, . . . , K},
N�

j=1

A[j].mij .xi ≤
N�

j=1

mij .a[j] (5)

Evolve: ∀ i ∈ {0, 2 . . . , K}, xi+1 = xi +
N�

j=1

c[j].mij .ti (6)

Fig. 5. The objective function and the linear and integral constraints for MOPT(K, τa)

A, we solve a sequence of MOPT(K, τa)’s with K = 2, . . . , |P|3. If the optimal
values are not positive for any of these, then we conclude that τa is an ADT for
A. By adding extra variables and constraints we are able to formulate a single
MILP that maximizes the extra switches over all cycles with K or less mode
switches, but for simplicity of presentation, we discuss sf MOPT(τa) instead of
this latter formulation. The following are the decision variables for MOPT(K, τa);
the objective function and the constraints are shown in Figure 5.

– xi ∈ R
n, i ∈ {0 . . . , K}, value of continuous variables

– ti ∈ R, i ∈ {0, 2, 4, . . . , K}, length of ith trajectory

– mij =
�

1, if mode over ith trajectory is j
0, otherwise. for each i ∈ {0, 2, . . . , K}, j ∈ {1, . . . , N}

– pijk =
�

1, if mode over (i − 1)st trajectory is j and over (i + 1)st trajectory is k
0, otherwise. for each i ∈ {0, 2, 4, . . . , K}, j, k ∈ {1, . . . , N}

In MOPT(K, τa), an execution fragment with K mode switches is represented
as a sequence x0,x1, . . . ,xK of K valuations for the continuous variables. For
each even i, xi goes to xi+1 by a trajectory of length ti. If this trajectory is in
mode j, for some j ∈ {1, . . . , N}, then mij = 1, else mij = 0. For each odd i, xi

goes to xi+1 by a discrete transition. If this transition is from mode j to mode
k, for some j, k ∈ {1, . . . , N}, then pijk = 1, else pijk = 0. These constraints are
specified by Equation (1) in Figure 5. For each odd i, Constraints (3) and (4)
ensure that (xi, switch(j, k),xi+1) is a valid mode switching transition. These
constraints reduce to the inequalities G[j, k]xi ≤ g[j, k] and R[j, k]xi+1 ≤ r[j, k]
which correspond to the guard and the initialization conditions on the pre- and
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the post-state of the transition. For each even i, xi evolves to xi+1 through a tra-
jectory in some mode, say j. Constraint (5) ensures that xi satisfies the invariant
of mode j described by the inequality A[j]xi ≤ a[j]. An identical constraint for
xi+1 is written by replacing xi with xi+1 in (5). Since the differential equations
have constant right hand sides and the invariants describe pohyhedra in R

n, the
above conditions ensure that all the intermediate states in the trajectory satisfy
the mode invariant. Equation (6) ensures that, for each even i, xi evolves to xi+1
in ti time according to the differential equation d(x) = c[j].

Some of these constrains involve nonlinear terms. For example, mijxi in (5)
is the product of real variable xi and boolean variable mij . Using the “big M”
method [15] we can linearize this equation by replacing mijxi with yi, and adding
the following linear inequalities: yi ≥ mijδ, yi ≤ mij∆, yi ≤ xi − (1 − mij)δ,
and yi ≥ xi − (1 − mij)∆, where δ and ∆ are the lower and upper bounds on
the values of xi.

Example 2: Thermostat. We use the MILP technique together with switching
simulation relations to verify the ADT of a thermostat with nondeterministic
switches. The thermostat SHA A (see Figure 6 Left) has two modes l0, l1, two
continuous variables x and z, and real parameters h, K, θ1, θ2,
θ3, θ4, where 0 < θ1 < θ2 < θ3 < θ4 < h. In l0 mode the heater is off and
the temperature x decreases according to the differential equation d(x) = −Kx.
While the temperature x is between θ2 and θ1, the on action must occur. As a
result of which the mode changes to l1. In mode l1, the heater is on and the x
rises according to the d(x) = K(h − x), and while x is between θ3 and θ4, the
offaction must occur. The continuous variable z measures the total time spent
in mode l1.

The thermostat SHA A is neither initialized nor rectangular; however, there
is a rectangular initialized SHA B, such that B ≥ADT A. Consider the SHA B
of Figure 6 (Right) with parameters L0 and L1. Automaton B has a clock t and
two modes l0 and l1, in each of which t increases at a unit rate. When t reaches
Li in mode li, a switch to the other mode may occur and if it does then t is
set to zero. We define a relation R on the state spaces of A an B such that
with appropriately chosen values of L0 and L1, B captures the fastest switching
behavior of A.

Definition 6. For any x ∈ QA and y ∈ QB, x R y if and only if: (1) x � mode =
y � mode, and (2) if x � mode = l0 then y � t ≥ 1

k
ln θ3

x�x
else y � t ≥ 1

k
ln
�

h−θ2
h−x�x

�
.

Lemma 4. If we set L0 = 1
k ln θ3

θ2
and L1 = 1

k ln h−θ2
h−θ3

, then the relation R is a
switching simulation from A to B.

The proof of this lemma is like that of Lemma 2 ; we show that every state of
A is related to some state of B and that every action and trajectory of A can
be emulated by an execution fragment of B with more extra switches. Lemma 4
implies that A ≥ADT B, that is, for any τa > 0 if τa is an ADT for B then τa is
also an ADT for A. Since B is rectangular and initialized, we can use Theorem 4
and the MILP technique to check any ADT property of B.
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Variables:
mode ∈ {l0, l1}, initially l0
x, z ∈ R, initially x = θ4, z = 0

Actions
on, off

Transitions:
on Precondition

mode = l0 ∧ x ≤ θ2
Effect mode ← l1

off Precondition
mode = l1 ∧ x ≥ θ3

Effect mode ← l0

Trajectories:
Trajdef l0
Evolve d(x) = -Cx; d(z) = 0
Invariant x ≥ θ1 Stop when x = θ1

Trajdef l1
Evolve d(x) = C(h-x); d(z) = 1
Invariant x ≤ θ4 Stop when x = θ4

Variables:
mode ∈ {l0, l1}, initially l0
r ∈ R, initially r = L1

Actions
switchtoi, i ∈ {0,1}

Transitions:
switchto1
Precondition

mode = l0 ∧ r ≥ L0
Effect mode ← l1, r ← 0

switchto0
Precondition

mode = l1 ∧ r ≥ L1
Effect mode ← l0, r ← 0

Trajectories:
Trajdef l0
Evolve d(r) = 1

Trajdef l1
Evolve d(r) = 1

Fig. 6. Left:Thermostat SHA A with parameters θ1, θ2, θ3, θ4, K, and h. Right:
Rectangular SHA B with parameters L0, L1.

We formulated the MOPT(K, τa) for automaton B and used the GNU Linear
Programming Kit [16] to solve it. Solving for K = 4, L0 = 40, L1 = 15, and τa =
25, 27, 28, we get optimal costs −0.4, −4.358E−13(≈ 0) and 0.071, respectively.
We conclude that the ADT of B is ≥ 25, ≥ 27, and < 28. Since B ≥ADT A, we
conclude that the ADT of the thermostat is no less than 27.

Remark 2. For finding counterexample execution fragments of proposed ADT
properties, the MILP approach can be applied to non-initialized rectangular
SHA as well. In such applications, however, the necessity part of Theorem 4 will
not hold and from the failure to find a counterexample alone we cannot conclude
that the automaton satisfies the ADT property in question.

6 Conclusions

We have presented optimization-based methods for automatically verifying Av-
erage Dwell Time (ADT) properties of certain classes of hybrid systems, which
provides a tool for proving (uniform) stability. We have also defined equivalence
of hybrid systems with respect to ADT and have presented a simulation relation-
based method for proving these equivalence relationships. The proposed methods
have been applied to verify ADT of a linear, scale-independent hysteresis switch
and a nondeterministic thermostat.

In this paper we examined internal stability only; however, the input and
output variables of HIOA make the framework suitable for studying input-output
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properties of hybrid systems. Another direction of future research is to extend
the ADT verification technique to probabilistic hybrid systems.

Acknowledgments. We thank Debasish Chatterjee and the anonymous re-
viewers for making several constructive suggestions which helped us improved
the paper. In particular we thank the reviewer for suggesting Karp’s algorithm
as an alternative to the Bellman-Ford for solving the optimization problem of
Section 4.
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