Brief paper
Energy control of a pendulum with quantized feedback

Ruslan E. Seifullaev a,b,1, Alexander Fradkov a,b, Daniel Liberzon c

a Saint Petersburg State University, Russia
b Institute of Problems in Mechanical Engineering, Saint Petersburg, Russia
c Coordinate Science Laboratory, University of Illinois at Urbana-Champaign, IL, USA

A R T I C L E I N F O
Article history:
Received 9 February 2015
Received in revised form
10 November 2015
Accepted 5 December 2015
Available online 5 February 2016

A B S T R A C T
The problem of controlling a nonlinear system to an invariant manifold using quantized state feedback
is considered by the example of controlling the pendulum’s energy. A feedback control law based on
the speed gradient algorithm is chosen. The main result consisting in precisely characterizing allowed
quantization error bounds and resulting energy deviation bounds is presented.

Keywords:
Nonlinear control
Quantized signals

1. Introduction

Control theory has initially been developed under idealistic
assumptions regarding information transmission in a feedback
loop. More recently, however, researchers have been increasingly
interested in the question of how much information is really
needed to perform a desired control task, or conversely, what
control objectives can be achieved with a given amount of
information. Such considerations arise from applications where
scarce communication resources, sensor limitations, or security
concerns play a role, and are also motivated by theoretical interest
in understanding the interplay between information and control.

Among the various phenomena responsible for a limited
amount of information available in a feedback loop, quantization
is one of the most basic and widely investigated. By a quantizer
we mean a function that maps a continuous real-valued system
signal into a piecewise constant one taking a finite set of values,
thereby encoding this signal using a finite alphabet. Notable early
studies of the effect of quantization on the behavior of control
systems include (Curry, 1970; Delchamps, 1990; Kalman, 1956;
Miller, Mousa, & Michel, 1988), and a brief overview of the recent
literature can be found in Sharon and Liberzon (2012).

One approach to analysis of quantized control systems, taken
in Liberzon (2003) and elsewhere, involves modeling quantiza-
tion effects as additive errors. If the controller possesses suitable
robustness with respect to such errors, then the system perfor-
mance can be shown to degrade gracefully due to quantization.
In the context of stabilizing an equilibrium, instead of global asymp-
totic stabilization one typically obtains two nested invariant re-

regions such that all trajectories starting in the larger one converge
to the smaller one, a fact usually established by Lyapunov argu-
ments. While robustness to additive errors is automatic for lin-
ear systems and linear feedback controllers, for general nonlinear
systems the robustness requirements can be quite restrictive and
finding a controller meeting such requirements can be challeng-
ing (Liberzon, 2003).

Pendulum dynamics is a popular and important benchmark
system in control theory. The problem of stabilizing the upright

equilibrium, as well as the problem of controlling the pendulum’s
energy to a desired level, have been widely studied and call for
innovative solutions. In particular, it is known (see, e.g., Shiriaev,
Egeland, Ludvigsen, & Fradkov, 2001) that the upright equilib-
rium cannot be globally asymptotically stabilized by continuous
feedback. See Angeli (2001), Åström and Furuta (2000), Rantzer
and Ceragioli (2001), Shiriaev et al. (2001), Teel (1996) and the
references therein for some interesting contributions to pendulum
control. More generally, the problem of energy control for Hamil-
tonian systems was first considered in Fradkov (1996). In Shiriaev
and Fradkov (2000, 2001) extended conditions for control of in-
vARIANT sets were proposed with application to energy control of
the pendulum.
In this paper we consider the problem of controlling the pendulum’s energy to a desired level using quantized state feedback. As the nominal feedback law, we choose one based on the speed gradient method from Fradkov (1980) (which stabilizes any energy level without quantization). As a candidate Lyapunov function, we choose the squared difference between the current and the desired energy levels (which decreases for the closed-loop system without quantization). We show that in the presence of sufficiently small state quantization errors, even though the Lyapunov function may not always decrease, the time periods on which it may increase and the amount by which it may increase are suitably bounded and decreasing behavior still dominates. Using these properties, we are able to establish that if the initial energy level is not too far from the desired one, then it will remain not too far from it and will eventually become close to it. While this result may appear intuitively not surprising, our main contribution lies in precisely characterizing allowed quantization error bounds and resulting energy deviation bounds.

The rest of the paper is structured as follows. In Section 2 the general problem of the pendulum’s energy control using quantized state feedback is described. Our main result is presented in Section 4. Section 3 is devoted to a numerical example demonstrating the performance predicted by the main theorem.

2. Problem formulation

Consider the pendulum equations

\[
\dot{\psi}(t) = -\frac{g}{l} \sin \varphi(t) + \frac{1}{ml^2} u(t),
\]

where \(\varphi \) is a deviation angle (\(\varphi = 0 \) at the lower position), \(u \) is a controlling torque, \(g \) is a gravity acceleration, \(m \) and \(l \) are the mass and the length of the pendulum respectively.

Assume that \(H(\psi, \dot{\psi}) \) is the full energy of the pendulum, i.e.

\[
H(\psi, \dot{\psi}) = \frac{1}{2} m l^2 \dot{\psi}^2 + m g l (1 - \cos \varphi).
\]

Consider the problem of energy level stabilization of system (1). Let \(z = (\psi, \dot{\psi}), z \in \mathbb{R}^2 \). Let \(h (h < 2mgl) \) be a positive number.

\[X_h = \{ z : 0 < H(z) < h \}. \]

Let \(H_e (0 < H_e < h) \) be desired energy level and the goal function be as follows

\[V(z) = \frac{1}{2} (H(z) - H_e)^2. \]

It is required to design a feedback law

\[u = U(z), \]

providing the achievement of the control goal

\[\lim_{t \to \infty} V(z(t, z_0)) = 0, \]

where the initial energy level \(H(z_0) \) satisfies the following assumption:

\[z_0 \in X_h, \]

i.e. \(z_0 \) belongs to energy layer between 0 and \(h \).

The algorithm design is based on the speed gradient method (Fradkov, 1980, 2007; Fradkov & Andrievsky, 2011). According to the speed gradient method it is required to calculate the function \(\omega(z, u) = V(z) \), i.e. \(\omega(z, u) \) is the speed of variation of the quantity \(V \) along the trajectories of system (1)

\[\omega(z, u) = (H(z) - H_e) B^T z u, \]

where \(B = [0, 1]^T \). Let us find \(u \)-derivative of \(\omega(z, u) \) and write down the control algorithm in the finite form

\[u = U(z) = -\gamma \frac{\partial \omega}{\partial u} = -\gamma (H(z) - H_e) B^T z, \]

where \(\gamma > 0 \).

The idea of algorithm (5) can be explained as follows (Fradkov, 2005). To achieve control goal (3), it is advisable to vary \(u \) such that \(V \) decreases. But because \(V \) does not depend on \(u \), it is difficult to find the direction of such decrease. Instead, one can decrease \(V \) by ensuring that \(V < 0 \), which is the condition that \(V \) decreases. The function \(V(z) = \omega(z, u) \) explicitly depends on \(u \), which makes it possible to design algorithm (5).

The following theorem, characterizing the performance of control algorithm (5), can be directly concluded from Theorem 3.1 and Remark 3.1 in Fradkov (2007).

Theorem 1. If the initial energy layer between the levels \(H(z_0) \) and \(H_e \) does not contain an equilibrium of the unforced system, then the goal level \(H_e \) will be achieved in the controlled system (1), (5) for any \(\gamma > 0 \) from all initial conditions.

The fulfillment of the condition in Theorem 1 follows from (4).

Let the set \(Z = \{ z_i : z_i \in X_h, i \in \mathbb{N} \} \cup Z_{sat} \) be a finite subset of \(X_h \cup Z_{sat} \), where \(z_{sat} \in \mathbb{R}^2 \). Consider quantizer \(q(z) : \mathbb{R}^2 \to Z \) proposed in Liberson (2003). Assume that \(Z_i = \{ z \in \mathbb{R}^2 : q(z) = z_i \} \) are quantizer regions (Fig. 1), such that \(\bigcup Z_i = X_h \). Hence, \(q(z) = z_i \) for all \(z \in Z_i, i \in \mathbb{N} \). When \(z \) does not belong to the union of quantization regions, the quantizer saturates, i.e. \(q(z) = z_{sat} \).

Suppose that only quantized measurements \(q(z) \) of the state \(z \) are available. Then the state feedback law (5) is non-implementable. Hence, instead of continuous control (5) consider quantized feedback control law (5):

\[u = U(q(z)) = -\gamma (H(q(z)) - H_e) B^T q(z), \]

and control goal

\[\limsup_{t \to \infty} |H(z(t)) - H_e| < \kappa_1, \]

where \(\kappa_1 \) is some positive number.

Therefore, the problem is to find conditions of achievement of the goal (7) with quantized state feedback control (6). Note that assumption (4) is essential in the case of control algorithm (5) but can be omitted with using modifications of (5). In Shiriaev et al. (2001) it is shown that the global attractivity of the upright equilibrium can be achieved by a modification of the speed gradient energy method based on the idea of variable structure systems (VSS). However, an application of such a modified algorithm to the case of quantized measurements does not seem straightforward and is not pursued here.
3. Main result

Let \(e(z) = q(z) - z = [e_1(z), e_2(z)]^T \) be a quantizer error vector. Assume that quantizer is chosen such that
\[
|e_1(z)| \leq \Delta_1, \quad |e_2(z)| \leq \Delta_2 \quad \text{for all } z \in X_0.
\]
(8)
Hence, \(|e(z)| \leq \sqrt{\Delta_1^2 + \Delta_2^2} = \Delta \quad \text{for all } z \in X_0.

Law (6) can be rewritten as follows:
\[
U(q(z)) = U(z) + e_u(z),
\]
where
\[
e_u(z) = -\psi \left(\left(\frac{1}{2} m^2 e_2(z) + \phi \right)^2 + mgl \left(1 + \cos (\phi + e_1(z)) - H_\sigma \right) e_2(z) + \left(m^2 \left(\phi + \frac{1}{2} e_2(z) \right) e_2(z) + mgl \cos \phi - \cos (\phi + e_1(z)) \right) \right).
\]
Note that for all \(z \in X_0 \)
\[
mgl \left(1 - \cos (\phi + e_1(z)) \right) = H(\phi + e_1(z), 0) \leq h,
\]
and
\[
|\cos \phi - \cos (\phi + e_1(z))| = 2 \left| \frac{2\phi + e_1(z)}{2} \sin \frac{e_1(z)}{2} \right|
\leq 2 \left| \sin \frac{e_1(z)}{2} \right| \leq 2 \sin \frac{\delta}{2},
\]
(10)
\[
\Delta = \min \{\sigma, \Delta_1\}.
\]
From (8) to (10) and \(\psi \leq \frac{2m^2}{\sqrt{\Delta_1^2 + \Delta_2^2}} \), one obtains
\[
|e_u(z)| \leq \gamma \Delta e \quad \text{for all } z \in X_0,
\]
(11)
where
\[
\Delta e = \frac{1}{2} m^2 \Delta_1^2 + \frac{3\sqrt{2m} h}{2} \Delta_2^2 + (4h - h_\sigma) \Delta_2 + 2g \sqrt{2m} \sin \frac{\delta}{2}
\]
Denote for any \(b > a \geq 0 \) the set
\[
V_{b[a]} = \{ z \in X_0 : a \leq V(z) \leq b \},
\]
and for any \(d > c \geq 0 \) the set
\[
H_{c[d]} = \{ z \in X_0 : c \leq H(z) \leq d \}.
\]
It is easy to see that
\[
V_{b[a]} = H^{-1}_{[\Delta e + \sqrt{\Delta e}, \Delta e + \sqrt{\Delta e}]} \cup H^{-1}_{[-\Delta e - \sqrt{\Delta e}, -\Delta e - \sqrt{\Delta e}]}
\]
Let \(h_\sigma \) be a positive constant, satisfying the condition \(h_\sigma < \min \{H_\sigma, h - H_\sigma\} \). Consider the following functions of scalar variable \(y \):
\[
f_1(y) = H_\sigma - h_\sigma - \frac{3m^2 \Delta_2}{y^2},
\]
\[
f_2(y) = \frac{1}{1} - \left(1 - \frac{m^2}{mg} \right) - \frac{\gamma \Delta e}{m^2} \left(\frac{h_\sigma \sqrt{b}}{y} + 1 \right),
\]
where \(f_0(y) = \min \{2mgl - H_\sigma - h_\sigma, f_1(y)\} \),
\[
f_3(y) = 4h_\sigma^2 - y^2 - \frac{16\sqrt{2m} \gamma \Delta_2^2}{f_2(y) y},
\]
\[
f_4(y) = \frac{1}{12} y^2 \arccos \left(1 - \frac{f_1(y)}{mgl} \right) f_2(y) - \Delta_2.
\]
The main result is the following theorem.

Theorem 2. If the following system of inequalities
\[
0 < y < 2a, \quad f_1(y) > 0, \quad f_2(y) > 0, \quad f_3(y) > 0, \quad f_4(y) > 0
\]
(12)
is feasible with respect to \(y \), then for any solution \(y = h_1 \) of (12) and for any given initial condition \(z(0) \in H^{-1}_{[h_\sigma - \Delta_2, h_\sigma + \Delta_2]} \) trajectories of the closed-loop system (1), (6) satisfy \(z(t) \in H^{-1}_{[h_\sigma - \Delta_2, h_\sigma + \Delta_2]} \) for all \(t \geq 0 \) and there exists \(T > 0 \) such that \(z(t) \in H^{-1}_{[h_\sigma - \Delta_2, h_\sigma + \Delta_2]} \) for all \(t \geq T \),
where
\[
\begin{align*}
x_1 &= \sqrt{\frac{h_\sigma^2}{4} + \frac{2\sqrt{2m} \gamma \Delta_2^2}{h_\sigma f_2(h_1)}}, \\
x_2 &= \sqrt{\frac{h_\sigma^2}{4} + \frac{2\sqrt{2m} \gamma \Delta_2^2}{h_\sigma f_2(h_1)}},
\end{align*}
\]
i.e. the goal (7) is achieved for \(x_1 \) as above.

Corollary 1. For any \(\tilde{x}_1, \tilde{x}_2 \) satisfying \(\tilde{x}_1 < \tilde{x}_2 < h \), there exist sufficiently small \(\Delta_1, \Delta_2 \) such that for any given initial condition \(z(0) \in H^{-1}_{[h_\sigma - \Delta_2, h_\sigma + \Delta_2]} \) trajectories of the closed-loop system (1), (6) satisfy \(z(t) \in H^{-1}_{[\tilde{x}_1 - \Delta_1, \tilde{x}_1 + \Delta_1]} \) for all \(t \geq 0 \) and there exists \(T > 0 \) such that \(z(t) \in H^{-1}_{[\tilde{x}_1 - \Delta_1, \tilde{x}_1 + \Delta_1]} \) for all \(t \geq T \).

Proof of Corollary 1. Let \(h_1 = 2\tilde{x}_1 \). If \(\Delta_1 \to 0 \) and \(\Delta_2 \to 0 \), then \(\Delta_e \to 0 \). Hence, \(\tilde{x}_2 \to h_\sigma \).
Since the negative terms in \(f_1(h_1), f_2(h_1) \) and \(f_3(h_1) \) vanish and \(f_4(h_1) \to 4(h_\sigma^2 - \tilde{x}_1^2) > 0 \) if \(\Delta_e \to 0 \) and \(\tilde{x}_2 \to h_\sigma \), it is easy to see that \(y = 2\tilde{x}_1 \) is a solution of system (12).

Finally, from \(\tilde{x}_2 \to h_\sigma \) one obtains \(H^{-1}_{[\tilde{x}_1 - \Delta_2, \tilde{x}_1 + \Delta_2]} \subset H^{-1}_{[\tilde{x}_1 - \Delta_2, \tilde{x}_1 + \Delta_2]} \). Therefore, Corollary 1 directly follows from Theorem 2.

Remark 1. Since chattering on the boundaries between the quantization regions is possible, the right-hand side of the differential equation (1), (6) is discontinuous, and its solutions are to be interpreted in the sense of Filippov. At the points of discontinuity, the Filippov solutions are directed along the convex hull of initial directions that are on both sides of the discontinuity. If the vector fields (on both sides of the boundary of the quantization regions) are directed toward the boundary, then sliding modes can occur. (On the other hand, if the trajectory crosses the boundary, then the solution satisfies the differential equation almost everywhere and it is a standard Carathéodory solution.) However, this issue will not play a significant role in the subsequent stability analysis. The reason is, that according to Filippov (see Filippov, 1988, Section 15, page 155), we have that (a) after adding convex combinations at the points of discontinuity of a vector field, the upper bound on \(V \) that we will establish remains valid (does not increase), and (b) the resulting solutions are absolutely continuous and differentiable almost everywhere.

The proof of Theorem 2 is based on the following auxiliary statement that can be proved along the lines of Lemma 1 in Polushin, Fradkov, Putov, and Rogov (1999).

Lemma 1. Let there exist a constant \(\alpha > 0 \), such that \(V(z) \leq \alpha \) for all \(z \in X_0 \) for almost all \(t \geq 0 \), where \(\dot{V}(z) \) is the time derivative of \(V(z) \) along the trajectories of the closed-loop system (1), (6). Let there exist positive constants \(A, \nu_0, \nu_1 \) \((0 < \nu_0 < \nu_1 < \infty) \) and continuous functions \(\beta, \epsilon : [\nu_0, \nu_1] \to \mathbb{R}^+ \setminus \{0\} \) such that for arbitrary trajectory \(z(t) \) of system (1), (6) if \(z(t) \in V_{[\nu_0, \nu_1]} \) \(\forall t \in [t_1, t_2] \) for some \(0 < t_1 < t_2 \), then
\[
(a) \quad t_2 - t_1 \leq A, \quad \text{and}
\]
there exists $t_3 > t_2$ such that $V(z(t_3)) - V(z(t_1)) \leq -\epsilon(z(t_1))$, and for all $t \in (t_2, t_3)$ from $z(t) \in V_{\epsilon(t_2)}$ it follows $z(t) \in \mathcal{I}$.

Suppose $\alpha A < \frac{1}{2}(v_3 - v_0)$. Denote $v_1 = v_0 + \alpha A$, $v_2 = v_3 - \alpha A$. If $z(0) \in V_{\epsilon(t_0)}$, then $z(t) \in V_{\epsilon(t_1)}$ for all $t > 0$ and there exists $T > 0$ such that $z(t) \in V_{\epsilon(T)}$ for all $t > T$.

Proof of Theorem 2. Let $v_0 = \frac{1}{2}h_1^2$, $v_3 = \frac{1}{2}h_2^2$. Hence, from $0 < h_1 < 2h_2$, it follows that $0 < v_0 < v_3$. By direct calculations

\[
V(z) = (H(z) - H_s) \phi (e_z(z) - \gamma (H(z) - H_s) \phi).
\]

- **Estimate \dot{V}.**

\[
\dot{V}(z) = \frac{\dot{V}}{2}(H(z) - H_s) \phi \psi - \frac{\dot{V}}{2} e_z(z) \phi + (H(z) - H_s) \dot{\phi} e_z(z) + \frac{1}{2} \dot{\phi}^2(z).
\]

By direct calculations

\[
\dot{V}(z) < -\gamma (H(z) - H_s)^2 \phi^2 + \frac{1}{2} \gamma (H(z) - H_s)^2 \phi^2 + \frac{1}{2} \gamma \Delta^2.
\]

\[
(\text{const}) < 0.
\]

Estimate $|\dot{\phi}|$.

\[
|\dot{\phi}| = \frac{g}{m} |\sin \varphi - \frac{1}{m} [U(z) + e_z(z)]|.
\]

\[
|\dot{\phi}| \geq \frac{g}{m} |\sin \varphi - \frac{1}{m} [U(z) + e_z(z)].
\]

Since

\[
|U(z) + e_z(z)| \leq |U(z)| + |e_z(z)|
\]

\[
\leq |H(z) - H_s| + |\dot{\phi}| + \gamma \Delta e
\]

\[
\leq \gamma \dot{z} + \frac{\Delta^2}{h_1} + \gamma \Delta e = \gamma \Delta e \left(\frac{\dot{z}}{h_1} + 1\right).
\]

\[
|\dot{\phi}| \geq \frac{g}{m} |\sin \varphi - \frac{1}{m} \gamma \Delta e \left(\frac{\dot{z}}{h_1} + 1\right).
\]

Now let us estimate $|\sin \varphi|$. From (14) and $|H(z) - H_s| \in \left[\frac{1}{2}h_1, h_2\right]$ one obtains (see Fig. 2)

\[
|\sin \varphi| \geq |\sin \varphi_{\min}|,
\]

where φ_{\min} is such that

\[
P(\varphi_{\min}) = \min \left\{ 2mg1 - h_s - h_s, \frac{3mg}{h_s^2} \Delta^2 = f_1(h_1) \right\} = f_0(h_1).
\]

By definition of t_2 (time instant, when the trajectory enters $V_{\epsilon(T)} \cap IT$ from $V_{\epsilon(T)} \setminus IT$ we have $\frac{d\sin \psi(t)}{dt} > 0$, hence, sign $\psi(t_2) = sign \psi(t_0)$. From $f_3(h_1) > 0$ it follows that $|\sin \varphi(t)| > \frac{\frac{1}{2}h_1}{h_2}$. Then sign $\psi(t_2) = -sign \psi(t_2)$. Therefore, sign $\psi(t_2) = -sign \psi(t_2)$. By definition of $\psi(t_2)$ it follows that $|\dot{\psi}| > \frac{\Delta^2}{h_1}$ on the strip Γ (see Fig. 3). Thus,

\[
\dot{V}(t) \leq -\frac{\gamma}{2} (H(z) - H_s)^2 \phi^2 - \gamma \Delta^2 \frac{2}{4} = -\frac{\alpha}{2}.
\]

Now let t_3 be the first time instant $t > t_2$ when the trajectory $z(t)$ reaches the line $\psi(t) = \psi_0$, and let us estimate $V(t_3) - V(t_1)$.
From (13)
\[V(t_3) - V(t_2) \leq -\frac{\gamma}{2} \int_{t_2}^{t_3} (H(z) - H_\gamma) t^2 \, dt + \alpha (t_3 - t_2) \]
\[\leq -\frac{1}{8} \frac{\gamma h_1^2}{t_3 - t_2} \int_{t_2}^{t_3} \left(\frac{\dot{\psi}^2}{2} - \frac{4A^2}{H_1^2} \right) \, dt \]
\[\leq -\frac{1}{8} \frac{\gamma h_1^2}{t_3 - t_2} \int_{t_2}^{t_3} \left(\frac{\dot{\psi}^2}{2} - \frac{2}{3} \dot{\psi}^2 \right) \, dt = -\frac{1}{24} \frac{\gamma h_1^2}{t_3 - t_2} \int_{t_2}^{t_3} \dot{\psi}^2 \, dt, \]
where \(t_2' \) is such that \(\psi(t_2') = \psi(t_2) - \min \{ |\psi(t_2)|, \phi_0 \} \) and \(t_2 < t_2' \). From Cauchy–Schwarz inequality one has
\[\int_{t_2}^{t_3} \dot{\psi}^2 \, dt \geq \frac{1}{t_3 - t_2} \left(\int_{t_2}^{t_3} \dot{\psi} \, dt \right)^2. \]
Hence,
\[V(t_3) - V(t_2) \leq -\frac{1}{24} \frac{\gamma h_1^2}{t_3 - t_2} \left(\int_{t_2}^{t_3} \dot{\psi} \, dt \right)^2 \]
\[= -\frac{1}{24} \frac{\gamma h_1^2}{t_3 - t_2} \left(\psi(t_3) - \psi(t_2') \right)^2 = \frac{1}{6} \frac{\gamma h_1^2}{t_3 - t_2} \psi_0^2. \]
Since
\[t_3 - t_2 = \frac{\psi(t_3) - \psi(t_2')}{|\dot{\psi}|} \leq \frac{2 \psi_0 h_1}{\Delta_e \sqrt{6}}, \]
\[V(t_3) - V(t_2) \leq -\frac{1}{24} \frac{\gamma h_1^2}{t_3 - t_2} \psi_0^2. \]
Denote \(\epsilon(z) = \text{const} = \frac{1}{24} \gamma h_1 \psi_0 \Delta_e - \alpha A \). Therefore, if \(f_s(h_i) > 0 \), then
\[V(t_3) - V(t_1) \leq -\epsilon < 0. \]
Thus, all conditions of Lemma 1 are fulfilled. The statement of Theorem 1 follows. □

4. Numerical example

Consider system (1), (6) with the following parameters: \(m = 1, l = 1, g = 9.8, h = 2mgl - 0.01 = 19.59, H_e = 9.6. \)

In Theorem 2 the initial parameter \(h_i \) is such that \(z(t) \in H_{[h_i - h_e, h_i + h_e]} \) for all \(t \geq 0 \). Moreover, for small \(\Delta_e \) the value of \(x_2 \) is close to \(h_e \), i.e., one can say that \(h_e \) mainly plays the role of an initial condition parameter. Let \(\gamma = 0.1 \). The colored areas on Figs. 4 and 5 show those \(h_e \) and \(\Delta_e \) for which system of inequalities (12) is feasible. Furthermore, the color scales on Figs. 4 and 5 provide the values of minimum possible \(x_1 \) and maximum possible \(x_2 \) respectively.

From Fig. 4 one can see that with increasing \(h_e \) the attraction domain \(H_{[h_i - x_1, h_i + x_1]} \) also increases. Therefore, it is important to prioritize between the accuracy of convergence and the width of the initial area.

Let \(h_e = 8 \). We show the influence of the control gain \(\gamma \) on the initial and attraction domains. The colored areas on Figs. 6 and 7 show those \(\gamma \) and \(\Delta_e \) for which system of inequalities (12) is feasible.

Note that from Theorem 2 one obtains that \(\Delta_e < 6.5 \), however, for any large \(\gamma \) there exists a small enough \(\Delta_e \) such that system (12) is feasible.
From Fig. 6 one can see that for given \(\Delta_t \) the attraction domain \(H_{[H_0 - \Delta_t, H_0 + \Delta_t]} \) is smaller for smaller \(\gamma' \). Now consider a quantizer \(q(\varepsilon) \) such that

\[
Z_i = \{ \varepsilon_k < \varepsilon < \varepsilon_k + \tau \varepsilon, \, \varepsilon_k < \varepsilon + \tau \varepsilon \} \cap X_b
\]

and

\[
z_i = (\varepsilon_k + \frac{\tau}{2}, \, \varepsilon_k + \frac{\tau}{2}) \quad \text{(see Fig. 8)}, \quad \text{where} \quad \tau = 0.002, \, \tau = 0.004.
\]

Then \(\Delta_1 = 0.001, \, \Delta_2 = 0.002 \) (hence, \(\Delta_0 = 0.199 \)). For \(\Delta_0 = 0.199 \) system (12) is feasible for \(0 < \gamma' < 11.5 \). Fig. 9 illustrates the phase portrait for \(\gamma' = 4 \), where using Theorem 2 one obtains that \(x_1 = 1.9, \, x_2 = 7.96 \), i.e. for any given initial condition \(z(0) \in H_{[1.64, 17.56]} \), trajectories of closed-loop system (1), (6) satisfy \(z(t) \in H_{[16, 17.6]} \) for all \(t \geq 0 \) and there exists \(T > 0 \) such that \(z(t) \in H_{[7.11.5]} \) for all \(t \geq T \).

Better results can be obtained for smaller \(\gamma' \) (although the convergence time \(T \) will increase). For example \(x_1 = 0.259, \, x_2 = 7.9999 \) for \(\gamma' = 0.1 \), i.e. for any given initial condition \(z(0) \in H_{1.6001, 17.5999} \), trajectories of closed-loop system (1), (6) satisfy \(z(t) \in H_{[16, 17.6]} \) for all \(t \geq 0 \) and there exists \(T > 0 \) such that \(z(t) \in H_{[9.341, 9.859]} \) for all \(t \geq T \) (see Fig. 10).

5. Epilogue

The problem of partial nonlinear control using quantized state feedback was considered by the example of controlling the pendulum’s energy, which contains all the difficulties that are typical for nonlinear partial stable systems. As the nominal feedback law, a control based on the speed gradient method was chosen. The main contribution lies in precisely characterizing allowed quantization error bounds and resulting energy deviation bounds.

Numerical example shows that one can choose a smaller gain \(\gamma \) to decrease the attraction domain, although convergence time in this case has increased.

Next steps in this research are the extension of the results to the case of systems with more than one degree of freedom (possibly with friction or noise) and to the presence of time delays in addition to quantization. Note that we have already considered time delays in cart–pendulum systems (see Ananyevskiy, Seifullae, Nikitin, & Fradkov, 2014) and obtained some experimental results for a cart–pendulum system. Therefore, another task is to demonstrate our results by further experiments. Estimation of the convergence time is also interesting.

References

Ruslan E. Seifullaev received the Diploma degree from the Department of Theoretical Cybernetics at Saint-Petersburg State University in 2012; the Candidate of Science (Ph.D.) degree from Saint-Petersburg State University in 2015 (supervised by Prof. Alexander Fradkov).

He is currently a researcher in the Institute of Problems in Mechanical Engineering of Russian Academy of Sciences (Laboratory of Control of Complex Systems). He has been an IEEE Member since 2015. His research interests include nonlinear control systems, time-delay systems, nonlinear oscillator control, LMI theory. He has created several mechatronic set-ups for education and research: pendulum on the cart, pendulum on the rail, double pendulum (pendubot).

Alexander Fradkov received Diploma degree in mathematics from St. Petersburg State University in 1971 under supervision of V.A. Yakubovich; Candidate of Sciences (Ph.D.) degree in Technical Cybernetics in 1975 from Leningrad Mechanical Institute; Doctor of Sciences (Habilitation) degree in Control Engineering in 1986 from Leningrad Electrotechnical University. Since 1990 he has been the Head of the “Control of Complex Systems” Lab of the Institute of Problems in Mechanical Engineering of Russian Academy of Sciences. He is also a part-time Professor with Saint Petersburg State University and with ITMO University in Saint Petersburg.

He is coauthor of more than 600 journal and conference papers, 16 books and textbooks and a holder of ten patents. His research interests include nonlinear and adaptive control, control of oscillatory and chaotic systems, dynamics and control of complex physical systems and networks. In his book “Cybernetical Physics” (Nauka, 2003; Springer-Verlag, 2007) an emerging boundary field between physics and control is pioneered.

Daniel Liberzon was born in the former Soviet Union in 1973. He did his undergraduate studies in the Department of Mechanics and Mathematics at Moscow State University from 1989 to 1993. In 1993 he moved to the United States to pursue graduate studies in mathematics at Brandeis University, where he received the Ph.D. degree in 1998 (supervised by Prof. Roger W. Brockett of Harvard University). Following a postdoctoral position in the Department of Electrical Engineering at Yale University from 1998 to 2000 (with Prof. A. Stephen Morse), he joined the University of Illinois at Urbana-Champaign, where he is now a professor in the Electrical and Computer Engineering Department and the Coordinated Science Laboratory. His research interests include nonlinear and adaptive control, switched and hybrid dynamical systems, control with limited information, and uncertain and stochastic systems. He is an author of the books “Switching in Systems and Control” (Birkhauser, 2003) and “Calculus of Variations and Optimal Control Theory: A Concise Introduction” (Princeton Univ. Press, 2012).

His work has received several recognitions, including the 2002 IFAC Young Author Prize and the 2007 Donald P. Eckman Award. He delivered a plenary lecture at the 2008 American Control Conference. He has served as Associate Editor for the journals IEEE Transactions on Automatic Control and Mathematics of Control, Signals, and Systems. He is a fellow of IEEE.