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Nonlinear observers robust to measurement

disturbances in an ISS sense
Hyungbo Shim and Daniel Liberzon

Abstract

This paper formulates and studies the concept of quasi-Disturbance-to-Error Stability (qDES) which

characterizes robustness of a nonlinear observer to an output measurement disturbance. In essence, an

observer is qDES if its error dynamics are input-to-state stable (ISS) with respect to the disturbance as

long as the plant’s input and state remain bounded. We develop Lyapunov-based sufficient conditions for

checking the qDES property for both full-order and reduced-order observers. We use these conditions

to show that several well-known observer designs yield qDES observers, while some others do not.

Our results also enable the design of novel qDES observers, as we demonstrate with examples. When

combined with a state feedback law robust to state estimation errors in the ISS sense, a qDES observer

can be used to achieve output feedback control design with robustness to measurement disturbances.

As an application of this idea, we treat a problem of stabilization by quantized output feedback.

Index Terms

Input-to-State Stability, Nonlinear Observer, Measurement Disturbance, Robustness, Quantization

I. INTRODUCTION

Nonlinear control theory has long been trying to cope with situations where state measure-

ments available for feedback are incomplete or imprecise. By “incomplete measurements” we

mean measured outputs of lower dimension than the state; by “imprecise,” state measurements

corrupted by disturbances. A common way to deal with incomplete measurements is to build an

observer that generates an asymptotically convergent estimate of the full state. Many different

nonlinear observer designs are available in the literature, and several of them will be discussed
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later in the paper. When the full state is measured but is subject to a measurement disturbance,

one tries to design a feedback law that possesses some kind of robustness to the disturbance.

It has become standard practice in the nonlinear control literature to take input-to-state stability

(ISS), introduced by Sontag in [27], as a benchmark robustness notion. Design of control laws

guaranteeing ISS with respect to measurement disturbances is a difficult problem that has received

considerable attention; again, we postpone an overview of the relevant results until later (see

Remark 5 in Section VI).

The above discussion naturally leads to the following important question: how should one

proceed in the face of both of the indicated challenges, i.e., when only output measurements are

available and, moreover, they are affected by a measurement disturbance? As noted in [20], one

can envision a solution in the form of a robust state feedback controller and a robust observer,

where the observer’s robustness is interpreted as ISS from the output measurement disturbance to

the state estimation error while the controller’s robustness is understood as ISS with respect to the

state estimation error. Since a cascade connection of two ISS systems is ISS, the resulting closed-

loop system will then be ISS with respect to the measurement disturbance. While some results

on designing ISS controllers are available as already mentioned, surprisingly little is known

about the second component of the approach just described, namely, constructing observers with

robustness to measurement disturbances in an ISS sense. This is the gap that the present work is

intended to fill. Our goals are actually three-fold: first, to formulate a suitable ISS-type robustness

property of the observer; second, to derive conditions for checking this robustness property; and

third, to identify observer designs (both known and new ones) satisfying these conditions.

Before we can describe in more detail our approach and results and their relationships to the

existing nonlinear observer literature, we need to fix some basic terminology and notation. We

consider a general nonlinear system (“plant”)

ẋ = f(x, u), y = h(x, d) (1)

where x ∈ Rn is the plant state, u ∈ U ⊂ Rk is the control input taking values in a set U
of admissible input vectors, y ∈ Rp is the measured output, and d ∈ Rq is the measurement

disturbance. We call d an additive measurement disturbance if h(x, d) = h0(x) + d for some

function h0. It is assumed that f is locally Lipschitz and h is continuous, and the two signals u(·)
and d(·) are assumed to be locally essentially bounded throughout the paper. A state observer

for the plant (1) is a pair consisting of a dynamical system and a static map

ż = F (z, y, u), x̂ = H(z, y) (2)
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where z ∈ Rm is the observer state, x̂ ∈ Rn is the estimate of the plant state, F is locally

Lipschitz, and H is continuous. The quality of state estimation is measured in terms of the state

estimation error e defined as

e := x̂− x = H(z, h(x, d))− x. (3)

Moreover, we call the observer (2) a full-order observer when H(z, y) = z (so that x̂ = z, and

thus, m = n), and a reduced-order observer when m < n.1

Unlike in the linear case, a nonlinear observer that makes the state estimation error e converge

to 0 when d ≡ 0 does not automatically guarantee a graceful degradation of the quality of state

estimation for nonzero d. An example has already been given in [25, Sec. 5], where a nonlinear

full-order observer for a stable linear plant provides global asymptotic convergence of e to 0

when d ≡ 0, yet e can become unbounded in the presence of an arbitrarily small additive

measurement disturbance. Therefore, robustness of the observer to measurement disturbances

needs to be explicitly formulated and studied. The first obvious candidate for such a robustness

property is ISS from d to e; for example, for a full-order observer this ISS property takes the

form

|z(t)− x(t)| ≤ β(|z(0)− x(0)|, t) ∨ γ(‖d‖[0,t]) ∀t ≥ 0 (4)

with a class KL function2 β and a class K function γ, where ‖d‖[0,t] := ess.sup0≤s≤t|d(s)| and

∨ is the binary operator taking the maximum, i.e., a ∨ b := max{a, b}.3 Since in this context

d is the disturbance and e = z − x is the estimation error, it seems more appropriate to rename

the above property of ISS from d to e as disturbance-to-error stability (DES), which is what we

will do from now on.

While DES is certainly a desirable feature for an observer, unfortunately it is quite a strong

condition; this will be illustrated in Examples 1 and 2 in the next section. Also, the DES property

is not invariant under coordinate transformations (see Section II-A). A necessary condition for

the existence of a full-order DES observer, under additive measurement disturbances, has already

1In this paper we do not study observers with m = n but H(z, y) 6= z (such observers are rarely studied in the literature) or

observers with m > n.
2A function α: R≥0 → R≥0 is of class K if α is continuous, strictly increasing, and α(0) = 0. If α is also unbounded, it

is of class K∞. A function β : R≥0 × R≥0 → R≥0 is of class KL if β(·, t) is of class K for each fixed t ≥ 0 and β(r, t) is

decreasing to zero as t→∞ for each fixed r ≥ 0.
3Alternatively, the sum could be used instead of the maximum to arrive at an equivalent property, but the formulation in terms

of the maximum is more convenient in this paper.
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been presented by Sontag and Wang [29, Prop. 23]: it is the incremental output-to-state stability

(denoted by iOSS in [29]) of the plant (1). In addition, a sufficient condition for the existence

of a full-order DES observer was given in [3, Prop. 6.1], which is that for some output injection

term L(·, ·, ·) with L(·, ·, 0) ≡ 0 the system ẋ = f(x, u) + L(x, u, y∗ − h(x)) is incrementally

input-to-state stable for any u(·) with y∗ being regarded as the input. In this case, a full-order

DES observer is given simply by ż = f(z, u) + L(z, u, y − h(z)) and x̂ = z. The necessary

condition that the plant be incrementally OSS is already rather strong.4 Design of DES observers

has been studied only for limited cases; for example, a globally Lipschitz nonlinear system admits

a full-order DES observer if a certain LMI is satisfied [1].

In an effort to identify a robustness property that is more reasonable than DES, in this paper

we propose to work with the relaxed notion of a quasi-DES (qDES, in short) observer; its earlier

variation was introduced in [26] under the name “quasi-ISS observer.” The relaxation consists in

the fact that an ISS bound is imposed only as long as both the control input and the plant state

remain bounded. We will present a formal definition of qDES observer in Section II, followed

by a few motivating examples and a discussion of its advantage over the DES observer—the

coordinate invariant property. It is not uncommon to utilize boundedness of the plant’s state and

input for observer synthesis and analysis. For example, a nonlinear observer was designed in

[23] based on a priori knowledge of bounds for the plant’s state and input. In [25], robustness of

a specific observer to measurement disturbances in the ISS sense for a special class of systems

was verified whenever the plant’s input and output are bounded a posteriori (i.e., the bounds

were not used in the design of the observer). Following a similar line of thinking, a construction

of a reduced-order qDES observer was presented in [26], and it was later extended to quasi-ISDS

(input-to-state dynamical stability) and to large-scale systems in [5]. Full-order qDES observers,

on the other hand, remain to be investigated.

In this paper we develop a general framework for studying qDES observers, which encom-

passes both the full-order and the reduced-order case. In Section III we present a characterization

of qDES observers in terms of Lyapunov functions. A basis for this characterization is provided

by the notion of “state-independent IOS (input-to-output stability)” and its variations studied

in [30], [31], owing to the fact that the measurement disturbance d and the state estimation

error e can be viewed as the input and the output, respectively, of the overall system with state

4For example, the system ẋ1 = 0, ẋ2 = x1x3, ẋ3 = −x1x2, and y = x3 on {(x1, x2, x3) : x1 > 0} is not OSS (and

therefore, not iOSS either) but is observable and admits a convergent state observer. Another example is ẋ = u and y = x2

which is not iOSS while it is OSS, and is instantaneously observable when u 6= 0.
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(x, z). While our analysis is inspired by that in [30], [31], it incorporates several novel elements;

most notably, the proposed characterization uses a lim sup-type condition which turns out to be

convenient for qDES observer validation compared with more usual ISS-Lyapunov differential

inequalities. The resulting qDES observer framework also represents a significant departure from

the previously cited results on robust observers. All these aspects of our formulation will be

further discussed and supported with examples in Section III.

Since the qDES property is significantly less restrictive than the DES property, it is not

surprising that many known nonlinear observer designs from the literature actually yield qDES

observers. In Section IV we derive, as corollaries of our main framework, some readily verifiable

sufficient conditions for qDES in the case of full-order observers, and then use these conditions

to demonstrate that three well-known observer designs—the linearized error dynamics observer

from [18], the high-gain observer from [13], and the circle criterion observer from [4]—indeed

have the qDES property. Of course, some of the other known observers are not qDES, as we

illustrate with a reduced-order observer example in Section V. We then proceed to show how

the construction of a reduced-order qDES observer from [26] is recovered within the proposed

general framework.

Returning to our original motivation of using a robust observer in conjunction with an ISS

controller to achieve robustness to output measurement disturbances, we expect that there will

be a price to pay for the fact that the observer is just qDES and not DES. Indeed, additional

analysis and possibly extra assumptions will be needed to verify that the control input and the

plant state remain bounded, as otherwise the qDES property is not useful. In Section VI, we

consider the quantized output feedback stabilization problem which served as the initial impetus

for discussing ISS observers in [20]. In this problem, the output quantization error plays the

role of the measurement disturbance, and it is bounded as long as the plant’s output is bounded.

This provides a very natural setting for using an ISS controller together with a qDES observer.

If the plant’s initial condition lies in a suitable compact set and if we have sufficiently many

quantization regions so that the quantization error is small enough, we are able to show that

the plant’s state and input remain bounded and the system is practically stabilized. After this

application example, we conclude the paper in Section VII.

II. QUASI-DES OBSERVER

To define the notion of quasi-DES observer, we introduce the notation

e0 := e|d≡0 = H(z, h(x, 0))− x.
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For full-order observers we have e0 = e = z − x, but for reduced-order observers typically

e0 6= e.

Definition 1 (Quasi-DES Observer): We say that the system (2) is a quasi-Disturbance-to-

Error-Stable (qDES) observer for the plant (1) if, for each K > 0, there exist a class KL
function βK and a class K function γK such that

|e(t)| ≤ βK(|e0(0)|, t) ∨ γK(‖d‖[0,t]) for almost all t ≥ 0 (5)

whenever ‖u‖[0,t] ≤ K and ‖x‖[0,t] ≤ K.

It is noted that the first argument of the function βK on the right-hand side of (5) is the initial

value not of e but of the disturbance-free error variable e0. This is because, if e(0) were used

in βK instead of e0(0), then there might exist a particular disturbance d such that d(t) = 0 for

t > 0 and that d(0) is non-zero such that e(0) = H(z(0), h(x(0), d(0))) − x(0) = 0, making

the right-hand side of (5) zero so that we must have e ≡ 0, which means that the condition

would not be realistic. Similarly, we only ask the inequality (5) to hold for almost all t because

the error variable e(t) at a particular time t may become arbitrarily large with some large value

of d(t), even though the essential supremum ‖d‖[0,t] is small, and the inequality (5) would be

violated at such times.

As discussed in the Introduction, the qDES observer property means that, as long as the plant’s

input u and state x remain bounded, the state estimation error e is robust to the disturbance d in

the ISS sense [27]. The functions βK and γK in (5) quantify the convergence rate and the ISS

gain, respectively. If these functions can be chosen to be independent of K, then the observer

becomes a DES observer, without the term “quasi”. If the measurement disturbance is absent

(i.e., d ≡ 0), the DES observer becomes a so-called globally convergent observer meaning that

limt→∞ e(t) = 0 for any initial conditions as long as the solution exists for all forward time. The

qDES observer becomes a globally convergent observer with bounded input/state when d ≡ 0

because the error convergence is guaranteed with bounded inputs and states.

It should be noted that the boundedness of the plant state x(t) and the input u(t) is not

assumed a priori, nor do their bounds affect the design process of the observer. Definition 1 just

says that the property (5) holds whenever these bounds are fulfilled. The following two examples

are intended to motivate why for nonlinear systems it is natural that the boundedness of x and

u becomes of importance in the discussion of robustness.

Example 1: The gain from the measurement disturbance to the estimation error may be

unbounded with respect to ‖u‖[0,t] and ‖x‖[0,t]. To see this, consider the plant ẋ = −x + x2u
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with y = x+ d. Obviously, ż = −z+ y2u, x̂ = z is a globally convergent observer when d ≡ 0.

When d 6≡ 0, the error dynamics become ė = −e+2xud+ud2 with e = z−x = e0. This system

is ISS from d to e when x(t) and u(t) are bounded, and the ISS gain is an unbounded function

of ‖u‖[0,t] and ‖x‖[0,t]. Therefore, this observer is a qDES observer, but not a DES observer. ///

Example 2: This example illustrates that boundedness of u(t) required for the property (5)

may be needed to guarantee a uniform convergence rate for each K. Consider the plant

ẋ =

(
u2

1 + u2
− 1

)
x+ u

for which an observer may be given as x̂ = z and

ż =

(
u2

1 + u2
− 1

)
z + u.

Hence the error dynamics (with e = z − x = e0) becomes

ė =

(
u2

1 + u2
− 1

)
e.

It is noted that its convergence rate depends on the size of u(t), and the rate can become

arbitrarily small with large u(t). The convergence becomes uniform with the boundedness of

u(t), and thus, it is a qDES observer but not a DES observer (there is no β function that works

for all K). ///

The following example presents a globally convergent full-order observer that is not qDES.

Example 3: Consider a plant given by

ẋ1 = −x1 + 2, y1 = x1 + d1,

ẋ2 = x1x3, y2 = x2 + d2,

ẋ3 = −x1x2 + u, u = sin t.

(6)

It is seen that if x1 is constant, then the (x2, x3)-dynamics is a marginally stable linear system

(in fact, a harmonic oscillator) with a periodic input. The solution x(t), as well as the input u(t),

are in fact bounded because x1(t)→ 2 and the bounded input sin t does not cause resonance.5

Now, an observer of the form

ż1 = −z1 + 2− (z1 − y1) (7a)

ż2 = z1z3 − y1(z2 − y2) (7b)

ż3 = −z1z2 + u− y1(z2 − y2) (7c)

5For detailed analysis, see the Appendix.
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with x̂ = z is a globally convergent observer if d ≡ 0. That is, with ei := zi− xi, we obtain the

error dynamics

ė1 = −2e1[
ė2

ė3

]
=

[
x1e3 − x1e2 + e1 · (e3 + x3)

−x1e2 − x1e2 − e1 · (e2 + x2)

]
= x1

[
−1 1

−2 0

][
e2

e3

]
+ e1

[
e3 + x3

−e2 − x2

]
(8)

whose solution converges to zero (because x1(t) → 2 and e1(t) → 0 as t → ∞, and (8) is a

stable linear system when x1 ≡ 2 and e1 ≡ 0).5

Finally, suppose that d1(t) = −x1(t) and d2(t) = 0, which are bounded, and that z1(0) = 1,

for simplicity. (In fact, we have the same result with any z1(0) and with any bounded d1 and d2
such that limt→∞ d1(t) = −2 and limt→∞ d2(t) = 0.) Then, from (7), it is seen that z1(t) = 1,

and that [
ż2

ż3

]
=

[
0 1

−1 0

][
z2

z3

]
+

[
0

1

]
sin t (9)

since y1(t) = x1(t) + d1(t) = 0. Note that this system has a resonance at the frequency of

1 rad/sec and has the input of frequency 1 rad/sec. It is a standard exercise to check that

|(z2(t), z3(t))| → ∞ as t → ∞, which illustrates that (7) is not a qDES observer since |u(t)|,
|x(t)|, and |d(t)| are bounded. ///

A. Coordinate Invariance Property

Another benefit of the qDES observer over the DES observer is that the qDES property is

coordinate-invariant. As a matter of fact, even if one obtains a DES observer in some coordinates,

it may not be a DES observer in other coordinates. This phenomenon is in fact inherited from

the deficiency that global error convergence may not be preserved when x(t) is unbounded.

Consider a global diffeomorphism Φ : Rn → Rn which transforms the plant (1) into different

coordinates, ζ = Φ(x). Then, even though one has an observer whose estimate ζ̂(t) converges

to ζ(t) as t → ∞, it is not guaranteed that x̂(t) = Φ−1(ζ̂(t)) converges to x(t), as seen in the

following example.

Example 4: Consider a C1 increasing function φ : R→ R defined by

φ(s) =


2s, |s| ≤ 1,

s2 + 1, s > 1,

−s2 − 1, s < −1
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and consider a nonlinear system whose state is x ∈ R2. If this system is converted by the

diffeomorphism (ζ1, ζ2) = (φ−1(x1), x2) into

ζ̇1 = 2ζ1 + ζ2, y = ζ1,

ζ̇2 = −ζ2,

then a choice of an observer might be

ż1 = 2z1 + z2 − 3(z1 − y), ż2 = −z2, ζ̂ = z,

because its error dynamics in these coordinates are globally exponentially stable. With the initial

conditions ζ(0) = (−1, 0) and z(0) = (0, 0), the solutions are given by

ζ1(t) = −e2t, ζ2(t) = 0, ζ̂1(t) = −e2t + e−t, ζ̂2(t) = 0,

so that it is seen that the estimation errors ζ̂1(t) − ζ1(t) = e−t, ζ̂2(t) − ζ2(t) = 0 converge to

zero. However, in the original coordinates, it is seen that, for t large enough to have ζ̂1(t) < −1

(as well as ζ1(t) = −e2t < −1),

x̂1(t)− x1(t) = φ(ζ̂1(t))− φ(ζ1(t)) = 2et − e−2t,

so the observer is not convergent. ///

Example 4 alerts us that the DES property is coordinate-dependent as well. On the other hand,

by virtue of restricting the state x(t) to be bounded, the qDES property (5) is invariant with

respect to coordinate changes.

Proposition 1: The qDES property (5) is coordinate-invariant.

Proof: Let ζ = Φ(x) and ζ̂ = Φ(x̂), where Φ is a diffeomorphism on Rn. Let Lr be a

Lipschitz constant of Φ on the ball of radius r around the origin, which is non-decreasing as

r increases without loss of generality. Then, the class K function pK(r) := LK+r · r satisfies

|Φ(x̂) − Φ(x)| ≤ pK(|x̂ − x|) as long as |x| ≤ K. Similarly, consider a class K function

qK(r) such that |Φ−1(ζ̂) − Φ−1(ζ)| ≤ qK(|ζ̂ − ζ|) under the condition that |x| ≤ K (and thus,

|ζ| = |Φ(x)| ≤ K̄ with some K̄). Then, assuming that (5) holds in the ζ-coordinates, it is seen

that, for almost all t ≥ 0,

|x̂(t)− x(t)| = |Φ−1(ζ̂(t))− Φ−1(ζ(t))| ≤ qK(|ζ̂(t)− ζ(t)|)

≤ qK
(
βK(|ζ̂(0)|d(0)=0 − ζ(0)|, t) ∨ γK(‖d‖[0,t])

)
= qK(βK(|ζ̂(0)|d(0)=0 − ζ(0)|, t)) ∨ qK(γK(‖d‖[0,t]))

≤ qK(βK(pK(|x̂(0)|d(0)=0 − x(0)|), t)) ∨ qK(γK(‖d‖[0,t]))
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which implies the property (5) for x̂ and x. Similarly, it can be shown from (5) in the x-

coordinates that

|ζ̂(t)− ζ(t)| ≤ pK(βK(qK(|ζ̂(0)|d(0)=0 − ζ(0)|), t)) ∨ pK(γK(‖d‖[0,t])) for a.a. t ≥ 0,

which implies (5) in the ζ-coordinates.

III. CHARACTERIZATION OF QDES OBSERVERS

In this section, a characterization of qDES observers in terms of a Lyapunov-type function is

given.

Theorem 1: The system (2) is a qDES observer for the plant (1) if there exists a C1 function

V : Rm × Rn → R such that the following hypotheses hold:

H1. V satisfies

α1(|H(z, h(x, 0))− x|) ≤ V (z, x) ≤ λ(|x|)α2(|H(z, h(x, 0))− x|) ∀z, x

for some class K∞ functions α1 and α2 and positive non-decreasing function λ : R→ R>0.

H2. The time derivative V̇ (z, x, u, d) := ∂V
∂z

(z, x)F (z, h(x, d), u) + ∂V
∂x

(z, x)f(x, u) of V along

solutions of (1) and (2) satisfies

V̇ (z, x, u, d) ≤ −W (z, x, u, d) + g(z, x, u, d) ∀z, x, u, d

where W : Rm × Rn × U × Rq → R≥0 and g : Rm × Rn × U × Rq → R are continuous

functions with the properties that

W (z, x, u, d) ≥ α3(|H(z, h(x, 0))− x|, |x| ∨ |u|) ∀z, x, u, d (10)

for some class KL function α3,

g(z, x, u, 0) ≤ 0 ∀z, x, u, (11)

and, for each K > 0, there exists a continuous function θK : R>0 × R≥0 → R≥0 non-

decreasing in the second argument such that

g(z, x, u, d)

W (z, x, u, d)
≤ θK(|H(z, h(x, 0))− x|, |d|) (12)

for all d, |x| ≤ K, |u| ≤ K, z with |H(z, h(x, 0))− x| 6= 0, and

lim sup
ξ→∞

θK(ξ, r) < 1 ∀r ≥ 0. (13)
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H3. The set {z : |H(z, h(x, 0))− x| = ξ} is compact6 for each ξ ≥ 0 and x.

H4. There exists a continuous function ρ : Rn × Rq → R≥0 such that ρ(x, 0) = 0 and

|H(z, h(x, d))−H(z, h(x, 0))| ≤ ρ(x, d) for all z, x, and d.

Remark 1: The hypothesis H1 basically says that V is upper- and lower-bounded in terms

of e0 (the upper bound also has the factor λ(|x|)). H2 is our main hypothesis, which restricts

the evolution of V along solutions. Note that the condition (10) is weaker than W (z, x, u, d) ≥
α◦3(|H(z, h(x, 0))− x|) with a class K function α◦3 (since a class KL function α3 always exists

with such α◦3). H3 and H4 are essentially mild technical conditions characterizing the dependence

of the map H on z. Note that H3 and H4 trivially hold if (∂H)/(∂z) exists and is a constant

matrix of full column rank, for example, if H(z, y) = z (the case of full-order observer), or

H(z, y) = [y>, (z−l(y))>]> where l is a certain function of y (the case of reduced-order observer

in Section V).

Proof: The goal is to construct a class KL function βK and a class K function γK for

each K > 0 such that (5) holds as long as ‖u‖[0,t] ≤ K and ‖x‖[0,t] ≤ K. For this, let us first

pick an arbitrary K > 0, and let

ΘK(r) := lim sup
ξ→∞

θK(ξ, r). (14)

Then, ΘK(r) < 1 for all r ≥ 0 and K > 0 from (13), and ΘK(·) is non-decreasing because so

is θK(ξ, ·) for each ξ and K. Define

Θ̄K(k) :=
1

2
+

1

2
ΘK(k), k ∈ N,

where N is the set of natural numbers. Then, {Θ̄K(k)} is a non-decreasing sequence of k such

that

ΘK(r) < Θ̄K(k) < 1, k − 1 < r ≤ k (15)

because, for r ∈ (k − 1, k], ΘK(r) < 1
2

+ 1
2
ΘK(r) ≤ 1

2
+ 1

2
ΘK(k) = Θ̄K(k) < 1.

Let a sequence {mK(k), k ∈ N} be such that

ξ ≥ mK(k) ⇒ θK(ξ, k) ≤ Θ̄K(k), (16)

whose existence follows from (14) and (15) with r = k. By the fact that θK(ξ, ·) is non-

decreasing, we have

ξ ≥ mK(k) ⇒ θK(ξ, r) ≤ Θ̄K(k), k − 1 < r ≤ k, k ∈ N. (17)

6For cases when this set is empty, we follow the convention that an empty set is compact.
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By H2, this in turn implies that, for all z, x, u, d, and k ∈ N such that |x| ≤ K, |u| ≤ K,

k − 1 < |d| ≤ k,

|H(z, h(x, 0))− x| ≥ mK(k) ⇒ g(z, x, u, d)

W (z, x, u, d)
≤ Θ̄K(k)

⇒ V̇ ≤ −(1− Θ̄K(k))W (z, x, u, d) ≤ −(1− Θ̄K(k))α3(|H(z, h(x, 0))− x|, |x| ∨ |u|).
(18)

On the other hand, we note that, since g is continuous and g(z, x, u, 0) ≤ 0 for any z, x, and

u, there exists a continuous function δ∗(z, x, u) such that, for each z, x, and u,

g(z, x, u, δ) ≤ Θ̄K(1)α3(|H(z, h(x, 0))− x|, |x| ∨ |u|) ∀|δ| ≤ δ∗(z, x, u),

and that δ∗(z, x, u) > 0 for all z, x, and u such that |H(z, h(x, 0)) − x| > 0. By H3, the set

{z : |H(z, h(x, 0))− x| = ξ} is compact (or possibly empty) for each ξ ≥ 0 and x. Let

n∗K(ξ) := min
|x|≤K,|u|≤K

min
{z:|H(z,h(x,0))−x|=ξ}

δ∗(z, x, u)

which is defined for ξ such that the set over which the minimum is being taken is nonempty.

Using the continuity of h and H , it is easy to show that the function n∗K is defined on a

subinterval of [0,∞) and is lower semi-continuous.7 Moreover, we have n∗K(ξ) > 0 for all

ξ > 0 in the domain of n∗K . Thus there exists a class K function nK : [0,mK(1)] → R≥0
such that nK(ξ) ≤ n∗K(ξ) wherever both functions are defined, and nK(mK(1)) ≤ 1. Then, by

construction, g(z, x, u, d) ≤ Θ̄K(1)α3(|H(z, h(x, 0))− x|, |x| ∨ |u|) for all z, x, u, and d such

that |x| ≤ K, |u| ≤ K, and |d| ≤ nK(|H(z, h(x, 0))− x|) ≤ nK(mK(1)). This implies that

mK(1) ≥ |H(z, h(x, 0))−x| ≥ n−1K (|d|) ⇒ V̇ ≤ −(1−Θ̄K(1))α3(|H(z, h(x, 0))−x|, |x| ∨ |u|).
(19)

Now, pick a class K∞ function MK such that

MK(r) ≥


n−1K (r), 0 ≤ r ≤ nK(mK(1)),

mK(1), nK(mK(1)) < r ≤ 1,

mK(k), k − 1 < r ≤ k, k ≥ 2,

(20)

7Lower semi-continuity means that n∗K(ξ) ≤ lim infη→ξ n
∗
K(η) for all ξ. To see why this property holds, note that n∗K(ξ)

cannot exceed the limit of the values n∗K(ηi) for any sequence {ηi} → ξ because the limit of (a subsequence of) the sequence

of points (xi, ui, zi) at which the minimum defining n∗k(ηi) is achieved is included in the set over which the minimum defining

n∗k(ξ) is being taken.
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and pick a continuous non-increasing function φK : R≥0 → R≥0 such that

0 < φK(r) ≤ 1− Θ̄K(k), k − 1 < r ≤ k, k ∈ N (21)

and φK(0) = limr→0+ φK(r). Then, from (18), (19), (20), and (21),

|H(z, h(x, 0))− x| ≥MK(|d|) ⇒ V̇ ≤ −φK(|d|)α3(|H(z, h(x, 0))− x|, |x| ∨ |u|) (22)

with |x| ≤ K and |u| ≤ K. Since

V (z, x) ≥ M̄K(|d|) := λ(K)α2(MK(|d|)) ⇒ λ(|x|)α2(|H(z, h(x, 0))− x|) ≥ λ(K)α2(MK(|d|))

⇒ |H(z, h(x, 0))− x| ≥MK(|d|)

by H1, it follows from (22) that, for almost all t ≥ 0 and for all essentially bounded d(·),

V (z(t), x(t)) ≥ M̄K(‖d‖) ⇒

V̇ (z(t), x(t)) ≤ −φK(|d(t)|)α3(|H(z(t), h(x(t), 0))− x(t)|, K)

≤ −φK(‖d‖)α3

(
α−12

(
V (z(t), x(t))

λ(K)

)
, K

)
as long as ‖x‖ ≤ K and ‖u‖ ≤ K, where ‖·‖ := ‖·‖[0,∞). In other words, under the assumption

that ‖x‖ ≤ K and ‖u‖ ≤ K,

V (z(t), x(t)) ≥ M̄K(‖d‖) ⇒ dV (z(t), x(t))

d(φK(‖d‖)t)
≤ −αK(V (z(t), x(t))) (23)

for almost all t ≥ 0, where αK(V ) := α3

(
α−12 (V/λ(K)), K

)
is a class K function. From this

and the standard arguments as in, e.g., [27] (see also [31, Lemma A.4]), it follows that there

exists a class KL function β̄K such that

V (z(t), x(t)) ≤ β̄K(V (z(0), x(0)), φK(‖d‖)t) ∨ M̄K(‖d‖). (24)

It follows from H1 and the fact that φK is non-increasing that

|e0(t)| ≤ α−11 (V (z(t), x(t)))

≤ α−11

(
β̄K(λ(K)α2(|e0(0)|), φK(‖d‖)t) ∨ M̄K(‖d‖)

)
≤ α−11

(
β̄K(λ(K)α2(|e0(0)|), φK(|e0(0)|)t) ∨ β̄K(λ(K)α2(‖d‖), φK(‖d‖)t) ∨ M̄K(‖d‖)

)
≤ α−11

(
β̄K(λ(K)α2(|e0(0)|), φK(|e0(0)|)t)

)
∨ α−11

(
β̄K(λ(K)α2(‖d‖), 0) ∨ M̄K(‖d‖)

)
.

(25)

Finally, using H4 and taking a class K function ρ̄K such that

ρ̄K(r) ≥ max
|x|≤K,|δ|≤r

ρ(x, δ), (26)
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we have for almost all t ≥ 0 that

|e(t)| ≤ |H(z(t), h(x(t), d(t)))−H(z(t), h(x(t), 0))|+ |e0(t)|

≤ ρ̄K(‖d‖) + |e0(t)| ≤ 2ρ̄K(‖d‖) ∨ 2|e0(t)|. (27)

Therefore, after defining

βK(r, t) = 2α−11 (β̄K(λ(K)α2(r), φK(r)t)

γK(r) = 2ρ̄K(r) ∨ 2α−11

(
β̄K(λ(K)α2(r), 0) ∨ M̄K(r)

)
and replacing ‖d‖ with ‖d‖[0,t] due to causality, the inequality (5) follows from (25) and (27).

Remark 2: It is seen from the proof (in particular from (23) and (24)) that the convergence

rate of the error may get smaller as the size of ‖d‖ gets larger. Note that in (25), in order to get

to the desired form (5), the effect of ‖d‖ is moved from the class KL function to the class K
function, which may be seen as trading slower convergence for a larger gain.

Example 5: In order to demonstrate Theorem 1, a (reduced-order) qDES observer is presented

in this example. Consider a plant given by

ẋ1 = −2x1 − 2x2, y = x1 + d,

ẋ2 =
x2

1 + x21
+ u.

(28)

For this plant, consider an observer given by

ż =
−z + tan−1(y)− 2y

1 + y2
+ u

x̂1 = y

x̂2 = z − tan−1(y).

(29)

The last equation implies that H(z, h(x, d)) = (x1 + d, z − tan−1(x1 + d)), which satisfies H3

and H4 in Theorem 1. This construction is inspired by [24] as follows. With a new variable

ζ := x2 + tan−1(x1), we have the dynamics

ζ̇ =
x2

1 + x21
+ u+

−2x1 − 2x2
1 + x21

=
−ζ + tan−1(x1)− 2x1

1 + x21
+ u (30)

which are incrementally GAS [3] for any x1 and u. Therefore, a copy of the system works as a

globally convergent observer with bounded input/state when d ≡ 0, which is (29). Indeed, with

ε := z − ζ , the error dynamics in this coordinate is given by

ε̇ =
−(ε+ ζ) + tan−1(x1 + d)− 2(x1 + d)

1 + (x1 + d)2
− −ζ + tan−1(x1)− 2x1

1 + x21
.
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When d ≡ 0, it becomes ε̇ = −ε/(1 + x21), which shows that ε(t)→ 0 if ‖x1‖[0,∞) is bounded.

Let the function V of Theorem 1 be

V (z, x) =
1

2
(H(z, h(x, 0))−x)>(H(z, h(x, 0))−x) =

1

2

(
(x1 − x1)2 + (z − tan−1(x1)− x2)2

)
=

1

2
ε2

which satisfies H1 of Theorem 1 with λ ≡ 1. (The function V is in fact 1
2
e20 because e0 =

H(z, h(x, 0))− x = [0, ε]>.) This in turn yields, by adding and subtracting a term,

V̇ =
−ε2

1 + x21
+

[
−ε(ε+ ζ) + ε tan−1(x1 + d)− 2ε(x1 + d)

1 + (x1 + d)2
− −ε(ε+ ζ) + ε tan−1(x1)− 2εx1

1 + x21

]
.

This suggests to take W and α3 as

W (z, x, u, d) =
ε2

1 + x21
=

(z − tan−1(x1)− x2)2

1 + x21
,

α3(s, r) =
s2

1 + r2
since

ε2

1 + x21
≥ α3(|H(z, h(x, 0))− x|, |x| ∨ |u|) =

ε2

1 + (|x| ∨ |u|)2
.

In addition, the bracket term above is taken as the function g(z, x, u, d) of Theorem 1, which

satisfies g(z, x, u, 0) = 0 of (11). We note that, with ζ = x2 + tan−1(x1),

g(z, x, u, d)

W (z, x, u, d)
=

1 + x21
ε2

[
−ε2 − εζ + ε tan−1(x1 + d)− 2εx1 − 2εd

1 + (x1 + d)2
− −ε

2 − εζ + ε tan−1(x1)− 2εx1
1 + x21

]
≤ 1 + x21

ε2

[
−ε2

1 + (|x1|+ |d|)2
+
|ε| (|x2 + tan−1(x1)|+ | tan−1(x1 + d)|+ 2|x1|+ 2|d|)

1

+
ε2

1 + x21
+
|ε|(|x2|+ 2|x1|)

1 + x21

]

≤
(

1− 1 + x21
1 + (|x1|+ |d|)2

)
+

(1 + x21) (|x2 + tan−1(x1)|+ | tan−1(x1 + d)|+ 2|x1|+ 2|d|)
|ε|

+
|x2|+ 2|x1|
|ε|

≤
(

1− 1

1 + (K + |d|)2

)
+

(1 +K2) (|K + tan−1(K)|+ π/2 + 2K + 2|d|)
|ε|

+
K + 2K

|ε|

=: θK(|ε|, |d|)

and this function θK is non-decreasing in |d| and satisfies (13), so that H2 holds. Therefore, the

observer (29) is a (reduced-order) qDES observer. ///

In the derivations of inequalities in Example 5, the upper bounds were not tight. Thanks to

the lim sup operation in (13), we do not need these bounds to be very accurate as long as

the resulting function θK is smaller than 1 for large |ε| and is non-decreasing in |d|. The next
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example also emphasizes the importance of the non-decreasing property of θK with respect to

its second argument |d| in H2 of Theorem 1.

Example 6: Let us consider a full-order observer so that H(z, y) = z and e = z − x =

e0. With sat(s) := sign(s) min{|s|, 1}, suppose that V̇ = −W (z, x, u, d) + g(z, x, u, d) with

g(z, x, u, d) = sat(|d(z − x)|)e−(|d||z−x|−1)2(z − x)2 and W (z, x, u, d) = (z − x)2 so that

g(z, x, u, d)

W (z, x, u, d)
= sat(|d||e0|)e−(|d||e0|−1)

2

=: ϑK(|e0|, |d|). (31)

The function ϑK is continuous and nonnegative, and satisfies the condition (13) since

lim sup
ξ→∞

ϑK(ξ, r) = 0 < 1 ∀r ≥ 0, K > 0,

but is not non-decreasing in its second argument. In fact, ϑK takes the value of 1 on the curve

{(d, e0) : |d||e0| = 1} in the (d, e0)-plane, and is less than 1 away from this curve, and therefore,

there is no function θK ≥ ϑK that satisfies (13) and is non-decreasing in the second argument.

Note that it is not possible to find a class K function MK such that

|e0| ≥MK(|d|) ⇒ V̇ < 0

as required in the proof of Theorem 1. Indeed, for an arbitrary class K function MK , let d∗ > 0

be the solution to MK(d∗) = 1/d∗ (which always exists). Then, for any d with 0 < |d| < d∗,

there is an e0 such that |e0| ≥MK(|d|) and |d||e0| = 1. With such e0 and d, we have g/W = 1

in (31), and thus V̇ = 0. ///

IV. FULL-ORDER QDES OBSERVERS

Now we use Theorem 1 to derive more easily verifiable sufficient conditions that guarantee

qDES property in the case of full-order observers. If f in (1) and F in (2) are continuously

differentiable, then a globally convergent observer can always be written as

ż = F (z, y, u) = f(z, u) + L(z, y, u), x̂ = H(z, y) = z, (32)

where L : Rn×Rp×U → Rn is C1 and L(z, y, u) becomes the zero vector whenever h(z, 0) = y.

(See [29, Lemma 21] or [21] for a proof of this fact.) Then, with d ≡ 0, the problem of designing

a globally convergent full-order observer can be thought of as a search for a function V (x, e0)

(with e0 = z − x) and a vector L(z, h(x, 0), u) such that

α1(|e0|) ≤ V (x, e0) ≤ α2(|e0|) (33)
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and the time derivative of V along (1) and ė0 = f(e0 + x, u) − f(x, u) + L(e0 + x, h(x, 0), u)

satisfies

∂V

∂x
(x, e0)f(x, u)+

∂V

∂e0
(x, e0)[f(e0+x, u)−f(x, u)]+

∂V

∂e0
(x, e0)L(e0+x, h(x, 0), u) ≤ −α◦3(|e0|)

(34)

for all e0, x, and u, where α1 and α2 are class K∞ functions and α◦3 is a class K function.

Corollary 1: With a given L for which (34) holds, the system (32) is a full-order qDES

observer for (1) if, for each K > 0, there is a nonnegative continuous function GK : R≥0×R≥0 →
R≥0 that is non-decreasing in its second argument and satisfies

∂V

∂e0
(x, e0)L(e0 + x, h(x, d), u)− ∂V

∂e0
(x, e0)L(e0 + x, h(x, 0), u) ≤ GK(|e0|, |d|), (35)

lim sup
ξ→∞

GK(ξ, r)

α◦3(ξ)
< 1 ∀r ≥ 0 (36)

for all e0, d, |x| ≤ K, and |u| ≤ K.

Proof: With d 6≡ 0, the time derivative of V (x, e0) is given, similarly to (34), by

V̇ =
∂V

∂x
(x, e0)f(x, u) +

∂V

∂e0
(x, e0)[f(e0 + x, u)− f(x, u)] +

∂V

∂e0
(x, e0)L(e0 + x, h(x, d), u).

By adding and subtracting ∂V
∂e0

(x, e0)L(e0 + x, h(x, 0), u) on the right-hand side of this formula,

and using (34), we can verify the hypotheses H1–H4 of Theorem 1. Indeed, H3 and H4 hold

since H(z, h(x, 0)) = z (see Remark 1) while H1 holds by (33) with e0 = z− x and λ ≡ 1. H2

holds with W (z, x, u, d) = α◦3(|z − x|), g(z, x, u, d) = ∂V
∂e0

(x, z − x)L(z, h(x, d), u)− ∂V
∂e0

(x, z −
x)L(z, h(x, 0), u) (the left-hand side of (35)), and θK(|e0|, |d|) = GK(|e0|, |d|)/α◦3(|e0|).

Corollary 2: With a given L for which (34) holds and h being C1, the system (32) is a

full-order qDES observer for (1) if the following conditions are satisfied:

1) ∂L
∂y

(z, y, u) is independent of z.

2) For each K > 0, there is a function αK such that | ∂V
∂e0

(x, e0)| ≤ αK(|e0|) for all e0 and

|x| ≤ K, and

lim sup
ξ→∞

αK(ξ)

α◦3(ξ)
= 0. (37)

Proof: Note that

L(z, h(x, d), u)− L(z, h(x, 0), u) =

∫ 1

0

∂L
∂y

(z, h(x, sd), u)
∂h

∂d
(x, sd)ds · d =: φ(x, u, d)

in which φ does not depend on z and is continuous. Let

GK(ξ, r) = αK(ξ) · max
|x|≤K,|u|≤K,|δ|≤r

|φ(x, u, δ)|. (38)
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Then, the assumptions of Corollary 1 hold.

Remark 3: A condition of the type (37), for the special case when GK in (35) decomposes

into a product of an e0-dependent and an e0-independent term as in (38), appeared in [26] (see

Section V as well), and a similar condition was used in the context of ISS controller design

in [28].

We now illustrate that several of the nonlinear observers in the literature are already qDES

observers, even though this property has not been explored, to the authors’ knowledge. Thanks

to Corollary 1 and Corollary 2, verification of the qDES observer property becomes quite a

simple task as seen in the following. Note that, since the qDES property is coordinate invariant,

we can verify it in any convenient coordinates.

A. Linearized Error Dynamics

The observer presented in [18] is based on the technique of “linearized error dynamics.” Here

we just illustrate its qDES property in a particular coordinate system where the plant (1) is

written as

ẋ = Ax+ f(Cx, u), y = Cx+ d,

where (A,C) is a detectable matrix pair. With a matrix L such that A − LC is Hurwitz, the

observer is given by

ż = Az + f(y, u) + L(y − Cz), x̂ = z

which corresponds to (32) with L(z, y, u) = f(y, u)−f(Cz, u)+L(y−Cz). Then, with e0 = z−x,

the error dynamics can be written as

ė0 = (A− LC)e0 + Ld+ f(Cx+ d, u)− f(Cx, u).

With V = e>0 Pe0, where P > 0 is the solution to P (A− LC) + (A− LC)>P = −I , we have

V̇ = −|e0|2 + 2e>0 PLd+ 2e>0 P (f(Cx+ d, u)− f(Cx, u)).

Hence, taking α◦3(|e0|) := |e0|2 and choosing GK as

GK(|e0|, |d|) := 2|e0|‖PL‖|d|+ 2|e0|‖P‖ max
|x|≤K,|u|≤K,|δ|≤|d|

|f(Cx+ δ, u)− f(Cx, u)|, (39)

where ‖ · ‖ denotes the maximum singular value of a matrix, the inequalities (35) and (36) are

easily verified. Then, Corollary 1 ensures the qDES property. Note that the maximum in (39)

need not be actually computed to verify the assumptions of Corollary 1.
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B. High-gain Observer

The observer from [13] is applicable to the plant given by

ẋ1 = x2 + f1(x1, u), y = x1 + d

ẋ2 = x3 + f2(x1, x2, u),

...

ẋn−1 = xn + fn−1(x1, . . . , xn−1, u),

ẋn = fn(x, u)

where fi is globally Lipschitz in (x1, . . . , xi) with its Lipschitz constant independent of u ∈ U .

The observer has the form
ż1
...

żn

 =


z2
...

0

+


f1(z1, u)

...

fn(z, u)

+ L(y − z1), x̂ = z

where the injection gain L is designed by a nested high-gain technique (see [13]). In fact, it is

shown in [13] that, with e0 = z − x and V (e0) = e>0 Pe0, where P is a certain positive definite

matrix, we have

V̇ ≤ −αe>0 Pe0, α > 0

when there is no disturbance (d ≡ 0). Hence, (34) holds with α◦3(|e0|) = αλmin(P )|e0|2, where

λmin(·) stands for the smallest eigenvalue of a matrix. And, the injection term L(z, y, u) is

L(y − z1) so that ∂L
∂y

= L which is obviously independent of z. Since | ∂V
∂e0
| = 2‖P‖|e0| =:

αK(|e0|) satisfies (37), Corollary 2 verifies the qDES property.

C. Circle Criterion Observer

The circle criterion observer [4] is designed for a system given by

ẋ = Ax+
r∑
i=1

biγi(hix) + f(Cx, u), y = Cx+ d

where bi is the i-th column of a matrix B ∈ Rn×r, hi is the i-th row of a matrix H ∈ Rr×n,

and γi : R → R is a non-decreasing function, i = 1, . . . , r. Assume that there exist L ∈ Rn×p,

M ∈ Rr×p, and Λ = diag(λ1, . . . , λr) > 0 such that the system

η̇ = (A− LC)η −Bv, ν = Λ(H +MC)η
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with input v and output ν is strictly positive real (SPR), or, equivalently, there exist P > 0, L,

M , and Λ > 0 such that

(A− LC)>P + P (A− LC) ≤ −αI, B>P + Λ(H +MC) = 0

with some α > 0. Then, the observer given in [4] is

ż = Az − L(Cz − y) +
r∑
i=1

biγi(hiz +mi(Cz − y)) + f(y, u)

in which mi is the i-th row of M .

With V = e>0 Pe0, we get

V̇ ≤ −α|e0|2 + 2e>0 PLd+ 2e>0 P (f(Cx+ d, u)− f(Cx, u))

+ 2e>0 P
r∑
i=1

bi
(
γi
(
hi(e0 + x) +mi(C(e0 + x)− (Cx+ d))

)
− γi(hix)

)
.

Since Pbi = −λi(hi +miC)>, the inequality becomes

V̇ ≤ −α|e0|2 + [2e>0 PLd+ 2e>0 P (f(Cx+ d, u)− f(Cx, u))]

−
r∑
i=1

2λie
>
0 (hi +miC)>

(
γi
(
(hi +miC)e0 −mid+ hix

)
− γi(hix)

)
.

(40)

Here, we present a technical lemma (whose proof is in the Appendix).

Lemma 1: For any non-decreasing function γ(·) and any given numbers a, b, and c,

a(γ(a− b+ c)− γ(c)) ≥ 0 if |a| ≥ |b|.
With the lemma, we conclude that the summation in (40) is nonnegative when d = 0. (This is

seen with a = (hi + miC)e0, b = mid = 0, and c = hix.) Therefore, let W (z, x, u, d) = α|e0|2

and take g(z, x, u, d) as the remaining terms in (40). Then, it is seen that (11) of H2 in Theorem 1

holds (possibly with strict inequality). On the other hand, since the terms inside the brackets

in (40) are the same as in Section IV-A, let us take G0,K(|e0|, |d|) as the function GK in (39),

which dominates the terms in the brackets. For the terms in the summation of (40), we claim

that there exist nonnegative functions Gi,K(|d|), i = 1, . . . , r such that

−2λie
>
0 (hi +miC)>

(
γi
(
(hi +miC)e0 −miδ + hix

)
− γi(hix)

)
≤ Gi,K(|d|) (41)

for all e0, |x| ≤ K, |δ| ≤ |d|, and all i. Indeed, applying Lemma 1 with a = (hi + miC)e0,

b = miδ, and c = hix, it is seen that the left-hand side of (41) becomes nonpositive if |(hi +

miC)e0| ≥ |miδ|. Hence, with

Gi,K(|d|) := max

{
max

|a|≤|b|≤|mi||d|
|x|≤K

−2λia(γi(a− b+ hix)− γi(hix)), 0

}
,

April 11, 2014 DRAFT



21

(41) follows. Finally, let GK(|e0|, |d|) := G0,K(|e0|, |d|) +
∑r

i=1Gi,K(|d|). Then (13) follows

since

lim sup
|e0|→∞

GK(|e0|, |d|)
α|e0|2

= 0 < 1 ∀K > 0, d.

All conditions H1, H2, H3, and H4 in Theorem 1 are verified, hence the qDES property is

ensured.

V. REDUCED-ORDER QDES OBSERVERS

We have seen in the previous section that a few observer designs automatically yield qDES

observers. On the other hand, the following example shows that this is not the case for the

so-called I&I (immersion and invariance) observer design [15], [16].

Example 7: Consider a plant given by

ẋ1 = (1− 2ex
2
1)x1 + u, y = x1 + d,

ẋ2 = (x21 − 1)x2 + u,

where u ∈ U := [−1, 1], and a reduced-order observer

ż = F (z, y, u) = (y2 − 1)z + u

x̂ = H(z, y) =

[
y

z

]
.

(42)

This observer serves as a globally convergent reduced-order observer when d ≡ 0, which can

be verified with

V (x, ε) =

(
1− 1

2
e−x

2
1

)
ε2, ε := z − x2.

Indeed, the function V satisfies that 0.5|ε|2 ≤ V (x, ε) ≤ |ε|2 for all x and ε, and

V̇ = [(1 + ux1)e
−x21 − 2]ε2

in which the bracket term is less than or equal to (1 +
√

3)/2 − 2 for all x1 and u ∈ U . (The

maximum of fu(x1) := (1 + ux1)e
−x21 occurs at x∗1 = (−1 +

√
1 + 2u2)/(2u) for any u ∈ U .

Then, fu(x1) ≤ fu(x
∗
1) = (1 +

√
1 + 2u2)/2 · e−x∗21 ≤ (1 +

√
3)/2 for any x1 and u ∈ U .) Hence,

ε(t) exponentially converges to zero and limt→∞(x̂(t)− x(t)) = 0. The reduced-order observer

(42) in fact is inspired by [25, Remark 4], and satisfies all the conditions of [16, Proposition 1]

so that it can be classified as an I&I observer.

However, this observer does not have the qDES property. We first note that x(t), as well as

u(t), is bounded. This can be easily seen from d|x1|/dt ≤ −(2e|x1|
2 − 1)|x1|+ |u| except when
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x1 = 0, and so, lim supt→∞ |x1(t)| < 1. Then, from the x2-dynamics, it is seen that |x2(t)| is

also bounded. Now suppose that d(t) = −x1(t) + 2, which is a bounded disturbance. Then, we

have ż = 3z + u, and z(t) may diverge while u(t) is bounded. This shows that (42) is not a

qDES observer. ///

Motivated by the observation in Example 7 that the function V is dependent not only on the

error variable ε but also on the plant state x explicitly, we present a sufficient condition for

a reduced-order observer to be a qDES observer based on a state-independent error Lyapunov

function. For this, let us first suppose that the plant (1) has a linear output as in

ẋ =

[
ẋ1

ẋ2

]
=

[
f1(x1, x2, u)

f2(x1, x2, u)

]
= f(x, u)

y = x1 + d

(43)

where x1 ∈ Rp, x2 ∈ Rn−p, and d ∈ Rp. When the system (1) is not in the form (43), it

may be converted into (43) by a diffeomorphism Φ(x). This is indeed possible if the output

map has the form h(x, d) = h0(x) + d (i.e., the disturbance is additive) where h0 is C1 with

locally Lipschitz partial derivatives and if h0 admits a complementary map φ : Rn → Rn−p

with the same regularity as h0 so that Φ(x) = [h0(x)>, φ(x)>]> is a desired diffeomorphism

converting (1) into (43) with a locally Lipschitz right-hand side. Thanks to Proposition 1, the

qDES property is preserved under such a coordinate change.

Assumption 1: There exist a C1 function l : Rp → Rn−p whose partial derivatives are locally

Lipschitz, a C1 function V : Rn−p → R, and class K∞ functions α1, α2, α◦3, and α4 such that

for all ε ∈ Rn−p, χ1 ∈ Rp, χ2 ∈ Rn−p, and u ∈ U ,

α1(|ε|) ≤ V (ε) ≤ α2(|ε|),
∣∣∣∣∂V∂ε (ε)

∣∣∣∣ ≤ α4(|ε|), (44)

∂V

∂ε
(ε)
(

[f2(χ1, ε+ χ2, u) +
∂l

∂χ1

(χ1)f1(χ1, ε+ χ2, u)]

−[f2(χ1, χ2, u) +
∂l

∂χ1

(χ1)f1(χ1, χ2, u)]
)
≤ −α◦3(|ε|), (45)

and

lim sup
ξ→∞

α4(ξ)

α◦3(ξ)
= 0. (46)

Under Assumption 1, a reduced-order qDES observer can be constructed (based on the design

of [15], [24]) as in the following result, which appeared in [26] and is reproduced here for

completeness.
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Corollary 3: Under Assumption 1, the system

ż = f2(y, z − l(y), u) +
∂l

∂y
(y)f1(y, z − l(y), u),

x̂1 = y,

x̂2 = z − l(y),

(47)

where z ∈ Rn−p is the observer state, is a reduced-order qDES observer for (43).

Proof: Define ζ := x2 + l(x1). Then, the plant (43) is globally converted into

ẋ1 = f1(x1, ζ − l(x1), u),

ζ̇ = f2(x1, ζ − l(x1), u) +
∂l

∂x1
(x1)f1(x1, ζ − l(x1), u) =: f̄(x1, ζ, u),

y = x1 + d,

(48)

where the shortcut notation f̄ is introduced for convenience. With f̄ , the observer (47) can be

simply written as ż = f̄(y, z, u).

Let ε := z − ζ . Then, since H(z, y) = [y>, (z − l(y))>]>, the conditions H3 and H4 in

Theorem 1 hold (see Remark 1). Moreover, since H(z, x1) − x = [0>, ε>]>, the function V (ε)

in Assumption 1 can play the role of V (z, x) in Theorem 1 and satisfies H1 with α1 and α2

of (44). The time derivative of V along (47) and (48) is

V̇ =
∂V

∂ε
(ε)
(
f̄(y, ε+ ζ, u)− f̄(x1, ζ, u)

)
=
∂V

∂ε
(ε)
(
f̄(y, ε+ ζ, u)− f̄(y, ζ, u)

)
+
∂V

∂ε
(ε)
(
f̄(y, ζ, u)− f̄(x1, ζ, u)

)
.

The first term on the right-hand side, which corresponds to −W of Theorem 1, is less than or

equal to −α◦3(|ε|) by (45). (Indeed, the inequality (45) can be rewritten as

∂V

∂ε
(ε)
(
f̄(χ1, ε+ χ2, u)− f̄(χ1, χ2, u)

)
≤ −α◦3(|ε|),

which holds for all independent variables ε, u, χ1, and χ2. Hence, y and ζ in the previous

equation can be considered as χ1 and χ2, respectively. This is in fact true thanks to the state-

independence of the function V .) Now treating the second term, which vanishes when d = 0,

as the function g of Theorem 1, we obtain that

g

W
≤ 1

α◦3(|ε|)

∣∣∣∣∂V∂ε (ε)

∣∣∣∣ ∣∣f̄(y, ζ, u)− f̄(x1, ζ, u)
∣∣

≤ α4(|ε|)
α◦3(|ε|)

max
|x|≤K,|u|≤K,|δ|≤r

|f̄(x1 + δ, x2 + l(x1), u)− f̄(x1, x2 + l(x1), u)| =: θK(|ε|, r)
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for all ε 6= 0, |x| ≤ K, |u| ≤ K, and |d| ≤ r. Then H2 of Theorem 1 holds from (46).

Remark 4: Assumption 1 automatically holds if, for (43) with d ≡ 0, there exists a globally

convergent full-order observer ż = F (z, y, u), x̂ = z that admits a quadratic positive definite

error Lyapunov function

V(e1, e2) =
1

2

[
e1

e2

]> [
P1 P>2

P2 P3

][
e1

e2

]
, ei := zi − xi, i = 1, 2

such that

V̇ =

[
e1

e2

]> [
P1 P>2

P2 P3

][
F1(z, x1, u)− f1(x, u)

F2(z, x1, u)− f2(x, u)

]
≤ −α

∣∣∣∣∣
[
e1

e2

]∣∣∣∣∣
2

with α > 0. Since Fi(z, x1, u) = fi(x1, z2, u), i = 1, 2 when z1 = x1 (by an argument similar

to the one showing that L in (32) becomes zero when the estimated output equals the actual

output of the plant; see the paragraph below (32)), the above inequality can be rewritten when

e1 = 0 as

V̇|e1=0 = e>2 P2(f1(x1, z2, u)− f1(x1, x2, u)) + e>2 P3(f2(x1, z2, u)− f2(x1, x2, u))

= e>2 P3[(f2(x1, z2, u)− f2(x1, x2, u)) + P−13 P2(f1(x1, z2, u)− f1(x1, x2, u))] ≤ −α|e2|2,

in which P3 is positive definite since V is positive definite. This inequality implies Assumption 1

with ε = e2, V (ε) = 1
2
ε>P3ε, χ = x, and l(x1) = P−13 P2x1. The utility of this observation lies

in the fact that most nonlinear observer designs in the literature are based on quadratic error

Lyapunov functions.

Example 8: Let us demonstrate a construction of a reduced-order qDES observer via Corol-

lary 3. Consider the system

ẋ1 = x1 + 2x2 + 4x32 + 2u

ẋ2 = x32 + u

y = x1 + d

(49)

which is taken from [6]. This system is already in the form (43), and Assumption 1 is satisfied

with V (ε) = ε2/2, l(χ1) = −(1/4)χ1, and α◦3(s) = (1/2)s2. Indeed, the left-hand side of (45)

becomes

ε
(

[(ε+χ2)
3+u−1

4
(χ1+2(ε+χ2)+4(ε+χ2)

3+2u)]−[χ3
2+u−

1

4
(χ1+2χ2+4χ3

2+2u)]
)

= −1

2
ε2
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which verifies the claim. Therefore, the reduced-order qDES observer (47) becomes

ż = −1

4
y − 1

2
(z +

1

4
y) +

1

2
u

x̂1 = y

x̂2 = z +
1

4
y.

(50)

///

VI. APPLICATION: QUANTIZED OUTPUT FEEDBACK CONTROL

A. ISS Controller plus Observer Set-up

Consider again the plant (1) and the observer (2) which we assume to be qDES. For sim-

plicity, we confine ourselves in this section to the full-order observer case (see [26] for related

developments in the reduced-order observer case). So, here we assume that x̂ = z and the state

estimation error is e = z − x = e0.

Next, suppose that a “nominal” controller (i.e., a controller that we would apply if the state

x were directly available for control) is given in the form of a static feedback u = k(x). This

naturally leads us to define a dynamic output feedback controller by the law

u = k(z) = k(x+ e)

together with the observer dynamics (2). We impose the following assumption on the feedback

law k.

Assumption 2: The system ẋ = f(x, k(x + e)) is input-to-state stable (ISS) with respect to

the input e, i.e., its solutions satisfy

|x(t)| ≤ β̂(|x(0)|, t) ∨ γ̂
(
‖e‖[0,t]

)
(51)

for a class KL function β̂ and a class K function γ̂.

In other words, our state feedback law should provide ISS with respect to a state measurement

error, which in our case is the observer’s state estimation error.

Remark 5: The existence of feedback laws providing ISS with respect to measurement errors

is studied in several references. As was demonstrated by way of counterexamples in [10] and later

in [8], not every stabilizable nonlinear system, even affine in controls, is input-to-state stabilizable

with respect to measurement errors by means of static feedback. In [9] and [11, Chapter 6],

static feedback laws guaranteeing ISS with respect to measurement errors were designed for the

class of single-input plants in strict feedback form, via backstepping and “flattened” Lyapunov
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functions. In that work, the function g(x) multiplying the control was assumed to be sign-definite

and known. For the case when the sign of g(x) is unknown, a time-varying feedback solution

was developed for one-dimensional systems and then extended to feedback passive systems of

any dimension in [12]. In [8], a time-varying feedback was designed to handle affine systems

for which g(x) is allowed to have zero crossings, but only in one dimension. In [14], small-

gain techniques were applied to a class of systems with unknown parameters and unmodeled

dynamics. In [22], a hybrid control solution was developed for systems possessing an output

function whose dynamics take the form considered in [12] and with respect to which the system

is minimum phase (in a suitable sense); this class covers the counterexample from [10] but not

the one from [8]. The papers [6] and [7] identified a class of static state feedbacks guaranteeing

ISS with respect to measurement errors, which consist of inverse optimal feedbacks with certain

additional structure.

The overall closed-loop system consisting of the plant, the observer, and the control law is

ẋ = f(x, k(z))

ż = F (z, h(x, d), k(z)).
(52)

Combining the ISS property (51) of the controller with the qDES property (5) of the observer

(recall that here e0 = e) and applying a standard ISS cascade argument (cf. [27]), we can show

that the closed-loop system is quasi-ISS8 in the sense that, for each K > 0,∣∣∣∣∣
[
x(t)

z(t)

]∣∣∣∣∣ ≤ β̄K

(∣∣∣∣∣
[
x(0)

z(0)

]∣∣∣∣∣ , t
)
∨ γ̄K

(
‖d‖[0,t]

)
(53)

as long as ‖x‖[0,t] ≤ K and ‖k(z)‖[0,t] ≤ K, where β̄K is a class KL function and γ̄K is a class

K function. (The cascade argument establishes this quasi-ISS property in the (x, e)-coordinates,

and hence the same property holds in the (x, z) = (x, x + e)-coordinates, albeit with different

β̄K and γ̄K functions.) We note for future use the obvious fact that

β̄K(s, 0) ≥ s ∀ s ≥ 0. (54)

B. Quantizer as Disturbance Generator

By an output quantizer we mean a piecewise constant function q : Rp → Q, where Q is a

finite subset of Rp. Consider now a plant with state dynamics as in (1) but with quantized output

8The terminology of quasi-ISS is used differently in [2].
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measurements:

ẋ = f(x, u), y = q(h0(x))

where h0 : Rn → Rp is a continuous map. If we introduce the quantization error

d := q(h0(x))− h0(x)

then the output of this plant can be written as

y = h0(x) + d =: h(x, d)

and this fits into our set-up (1) with an additive measurement disturbance. As in [19], [20],

we assume that there exist positive numbers M and ∆ (called the quantizer’s range and error

bound) such that the following condition holds:

|h0(x)| ≤M =⇒ |d| ≤ ∆. (55)

Since the quantizer saturates outside a bounded region in the output space (the ball of radius M

around the origin), we must work on this bounded region and the qDES formulation will turn

out to be adequate.

Suppose, as in Section VI-A, that we are given a full-order observer in the form (2) which

is qDES, and a static control law k(·) which fulfills Assumption 2 (ISS with respect to the

state estimation error). As we showed earlier, the closed-loop system (52) then possesses the

quasi-ISS property expressed by (53). Take κy to be some class K∞ function such that

|h0(x)| ≤ κy(|x|) ∀x. (56)

Similarly, take κu to be some class K∞ function such that

|k(z)| ≤ κu(|z|) ∀ z. (57)

Let

K := κ−1y (M) ∨ κu(κ
−1
y (M)). (58)

We are now ready to state the following result, which provides an ultimate bound on the solutions

of the closed-loop system starting in a suitable region. (A similar result but for the reduced-order

observer case appeared in [26].)

Proposition 2: With β̄K and γ̄K coming from (53), M and ∆ as in (55), κy and κu coming

from (56) and (57), and K defined in (58), assume that

γ̄K(∆) < κ−1y (M). (59)
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Suppose that the initial condition of the closed-loop system (52) satisfies∣∣∣∣∣
[
x(0)

z(0)

]∣∣∣∣∣ < E0 (60)

where E0 > 0 is such that

β̄K(E0, 0) = κ−1y (M). (61)

Then the corresponding solution satisfies

lim sup
t→∞

∣∣∣∣∣
[
x(t)

z(t)

]∣∣∣∣∣ ≤ γ̄K(∆). (62)

Proof: Note first of all that E0 indeed exists and satisfies

E0 ≤ κ−1y (M) (63)

by virtue of (61) and (54). As long as the inequality∣∣∣∣∣
[
x(t)

z(t)

]∣∣∣∣∣ ≤ κ−1y (M)

remains true, we have the following:

• |x(t)| ≤ κ−1y (M) ≤ K by (58);

• |u(t)| ≤ κu(κ
−1
y (M)) ≤ K by (57) and (58) again;

• |d(t)| ≤ ∆ by (55) because |h0(x)| ≤M by (56).

The time

T := sup

{
t ≥ 0 :

∣∣∣∣∣
[
x(t)

z(t)

]∣∣∣∣∣ < κ−1y (M)

}
≤ ∞

is well defined thanks to (60) and (63). For t ∈ [0, T ], we have from the above calculations that∣∣∣∣∣
[
x(t)

z(t)

]∣∣∣∣∣ ≤ β̄K

(∣∣∣∣∣
[
x(0)

z(0)

]∣∣∣∣∣ , t
)
∨ γ̄K(∆) < β̄K(E0, 0) ∨ κ−1y (M) = κ−1y (M) (64)

by virtue of (53), (59), (60), and (61). If T were finite, this would be a contradiction, hence

T =∞ and the above analysis is valid for all time. Since β̄K is a class KL function, for every

ε > 0 there exists a time T (ε) such that

β̄K

(∣∣∣∣∣
[
x(0)

z(0)

]∣∣∣∣∣ , t
)
≤ ε ∀ t ≥ T (ε)

which in view of the first inequality in (64) gives∣∣∣∣∣
[
x(t)

z(t)

]∣∣∣∣∣ ≤ ε ∨ γ̄K(∆) ∀ t ≥ T (ε).
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This proves (62).

Remark 6: For the ultimate bound (62) to guarantee contraction, we need to know that

γ̄K(∆) < E0. In light of (61) this is equivalent to

β̄K(γ̄K(∆), 0) < κ−1y (M) (65)

which is a strengthening of (59). Note that γ̄K depends on K which in turn depends on M ,

i.e., M affects both sides of the inequality (65). With a fixed M , we can always satisfy (65) by

making ∆ small enough. In other words, (65) basically says that we must have sufficiently many

quantization regions so that the quantizer’s error bound is small enough. The same comments

apply to the condition (59).

The above result is especially useful in situations where the quantization can be dynamic, in

the sense that the parameters of the quantizer can be changed on-line by the control designer [19].

We can then improve on the ultimate bound (62) by using a “zooming” strategy. In the context

of observer-based quantized output feedback, this idea is developed in more detail in [20] for

full-order DES observers and in [26] for reduced-order qDES observers; the case of full-order

qDES observers considered here can be treated similarly.

VII. CONCLUSION

We proposed and studied the notion of a qDES observer, which captures robustness of a

nonlinear observer to output measurement disturbances. We developed a general framework

for studying both full-order and reduced-order qDES observers, based on Lyapunov functions.

Three well-known observer designs (the linearized error dynamics, high-gain, and circle criterion

observers) were shown to already possess the qDES property, and novel qDES observers for

several systems were constructed. Our results were illustrated on numerous examples. As an

application, we presented and analyzed a quantized output feedback control design that relies

on an ISS state feedback controller and a qDES observer. Future work will focus on identifying

interesting classes of nonlinear systems to which our qDES observer methodology can be applied.

APPENDIX

Detailed discussion about Example 3: Boundedness of the solution x(t) to (6) is seen as follows.

First, from (6), we have x1(t) = 2+(x1(0)−2)e−t which is bounded. Let α(t, s) :=
∫ t
s
x1(τ)dτ =

2(t− s) + (e−s − e−t)(x1(0)− 2). Then, the state-transition matrix of[
ẋ2

ẋ3

]
=

[
0 x1(t)

−x1(t) 0

][
x2

x3

]
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is obtained by

Φ(t, s) :=

[
cos(α(t, s)) sin(α(t, s))

− sin(α(t, s)) cos(α(t, s))

]
.

Hence, with x̄ := [x2, x3]
>, we have, from (6),

x̄(t) = Φ(t, 0)x̄(0) +

∫ t

0

Φ(t, τ)

[
0

sin τ

]
dτ = Φ(t, 0)x̄(0) +

∫ t

0

[
sin(α(t, τ)) sin τ

cos(α(t, τ)) sin τ

]
dτ.

Then, boundedness of x̄(t) follows since Φ(t, 0),
∫ t
0

sin(α(t, τ)) sin τdτ , and
∫ t
0

cos(α(t, τ)) sin τdτ

are bounded; for example,
∫ t
0

sin(α(t, τ)) sin τdτ = sin(2t−e−t(x1(0)−2))
∫ t
0

cos(2τ−e−τ (x1(0)−
2)) sin τdτ − cos(2t− e−t(x1(0)− 2))

∫ t
0

sin(2τ − e−τ (x1(0)− 2)) sin τdτ is bounded.

To show that limt→∞ e(t) = 0, we refer to (8), from which limt→∞ e1(t) = 0 is straightforward.

For e2 and e3, it is observed that[
ė2

ė3

]
=

[
x1(t)

[
−1 1

−2 0

]
+

[
0 e1(t)

−e1(t) 0

]][
e2

e3

]
+

[
e1(t)x3(t)

e1(t)x2(t)

]
.

From [17, Example 9.6], the system[
ė2

ė3

]
=

[
x1(t)

[
−1 1

−2 0

]
+

[
0 e1(t)

−e1(t) 0

]][
e2

e3

]
is an exponentially stable linear system after the time when x1(t) becomes positive. Moreover,

we know that e1(t) converges to zero while x2(t) and x3(t) are bounded. Thus, e2(t) and e3(t)

converge to zero.

Proof of Lemma 1: If a ≥ 0 then inequality |a| ≥ |b| implies a ≥ |b| and so a − b ≥ 0. Since

γ is non-decreasing, the claim follows. When a < 0, it follows from |a| ≥ |b| that −a ≥ |b| so

that a− b ≤ 0 and the claim again follows.
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[4] M. Arcak and P. V. Kokotović, “Nonlinear observers: a circle criterion design and robustness analysis,” Automatica, vol.

37, pp. 1923–1930, 2001.

[5] S. Dashkovskiy and L. Naujok, “Quasi-ISS/ISDS reduced-order observers and quantized output feedback for interconnected

systems,” Proc. 49th IEEE Conf. on Decision and Control, pp. 5732–5737, 2010.

April 11, 2014 DRAFT



31
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