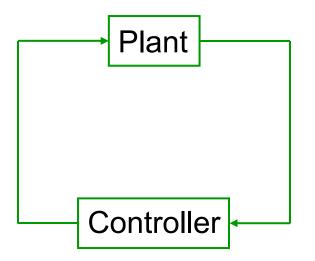
NONLINEAR SYSTEMS with LIMITED DATA: ESTIMATION, CONTROL and SYNCHRONIZATION

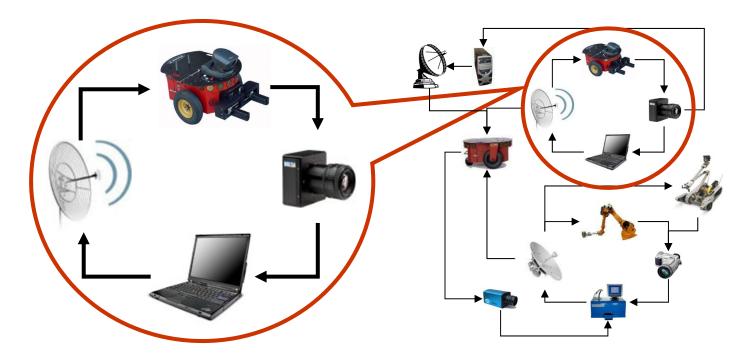
Daniel Liberzon

Coordinated Science Laboratory Electrical & Computer Engineering University of Illinois Urbana-Champaign

INFORMATION FLOW in CONTROL SYSTEMS



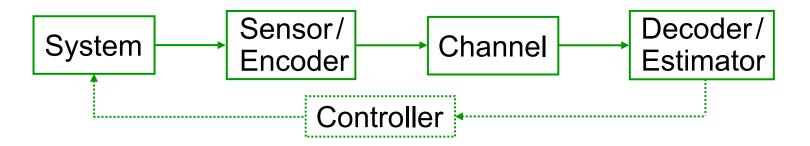
INFORMATION FLOW in CONTROL SYSTEMS



Limited channel capacity, data encryption, coarse sensing & actuation $\downarrow \downarrow$ errors in signal measurement, transmission, and reconstruction $\downarrow \downarrow$ need robust algorithms

TWO SPECIFIC SCENARIOS

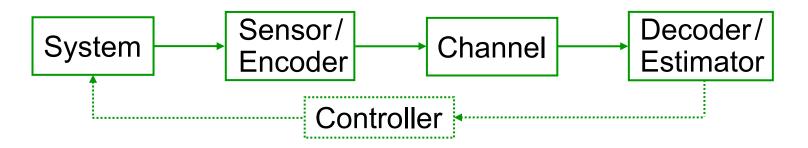
• State estimation and model detection with finite data rate: an entropy approach



 Observers robust to measurement errors, with applications to control and synchronization

TWO SPECIFIC SCENARIOS

 State estimation and model detection with finite data rate: an entropy approach

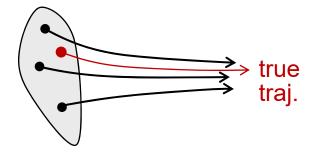


Observers robust to measurement errors, with applications to control and synchronization

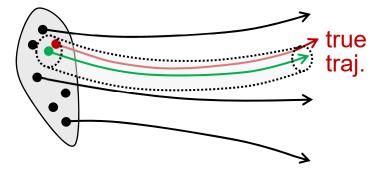
BASIC MOTIVATING QUESTION

How much data is needed to estimate the system's state?

Contractive system:



General system:



Any trajectory can be used to approximate the real one \Rightarrow no data needed

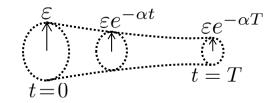
How many trajectories (or initial states) are needed to approximate all others? need to make this precise

This relates to entropy and data rate

AN ENTROPY NOTION

 $\dot{x} = f(x), \ x \in \mathbb{R}^n, \ x(0) \in K$ – known compact set $\xi(x,t)$ – solution from initial state x after time t

Pick: time horizon T > 0, resolution $\varepsilon > 0$, desired exponential convergence rate¹ $\alpha \ge 0$



A set of points $x_1, ..., x_N \in K$ is (T, ε) -spanning if $\forall x \in K \exists x_i$:

$$|\xi(x,t) - \xi(x_i,t)| < \varepsilon e^{-\alpha t} \quad \forall t \in [0,T]$$

 $s(T,\varepsilon) :=$ cardinality N of smallest (T,ε) -spanning set Estimation entropy:

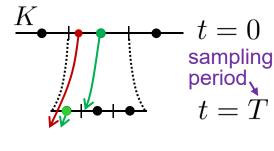
$$h(f) := \lim_{\varepsilon \to 0} \limsup_{T \to \infty} \frac{1}{T} \log s(T, \varepsilon)$$

Kolmogorov, Sinai, Adler, ..., Boichenko, Colonius, Kawan, Leonov, Matveev, Nair, Pogromsky, Savkin, ... [1] L, Mitra, Entropy and minimal bit rates for state estimation and model detection, TAC, 2018

TOY EXAMPLE

 $\dot{x} = \lambda x, \ \lambda > 0, \ x(0) \in K \subset \mathbb{R}$ – known compact interval

Goal: estimate x(t) using finite-data-rate encoding of x-values



- divide K into N equal intervals with centers x_i sampling period. • record the index of the interval containing x(0)
 - t = T divide reachable set again into N subintervals repeat

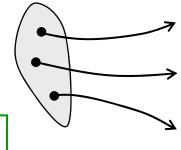
This encoding scheme uses data at $\frac{1}{T}\log N$ bits per time unit At $t = \ell T$, we know x(t) is in an interval of length $\frac{|K|}{N^{\ell}}e^{\ell\lambda T}$ To estimate x(t) with error converging to 0 as $e^{-\alpha t}$ we need $N \ge e^{(\lambda+\alpha)T} \Rightarrow$ need data rate of $\lambda + \alpha$ bits (or nats) Entropy: the set $C := \{x_1, ..., x_N\}$ is (T, ε) -spanning if $|x_i - x_{i+1}| < \varepsilon e^{-(\lambda+\alpha)T} \Rightarrow \#C = e^{(\lambda+\alpha)T} |K|/\varepsilon$ $\limsup_{T\to\infty} \frac{1}{T} \log$ of this gives $h = \lambda + \alpha$

CONTRACTION / EXPANSION RATE

Back to general case: $\dot{x} = f(x), \ x(0) \in K \subset \mathbb{R}^n$

 $\xi(x,t)$ – solution from x after time t

We want to find a constant $c \in \mathbb{R}$ s.t.



$$|\xi(x_1, t) - \xi(x_2, t)| \le e^{ct} |x_1 - x_2|$$

as long as solutions stay in a compact set (or globally)

E.g.,
$$c$$
 can be Lipschitz constant of f

If f is C^1 , a sharper bound is obtained with $c := \sup_x \mu\left(\frac{\partial f}{\partial x}(x)\right)$ where $\frac{\partial f}{\partial x}$ is Jacobian matrix and $\mu(A) := \lim_{\varepsilon \searrow 0} \frac{\|I + \varepsilon A\| - 1}{\varepsilon}$ is matrix measure (e.g., for ∞ -norm $\mu(A) = \max_i \{a_{ii} + \sum_{j \neq i} |a_{ij}|\}$)

BOUNDS on ENTROPY

 $\dot{x} = f(x), \ x(0) \in K \subset \mathbb{R}^n, \ |\xi(x_1, t) - \xi(x_2, t)| \le e^{ct} |x_1 - x_2|$

Upper bound: $h(f) \le \max\{(c+\alpha)n, 0\}$

Sketch of proof:

- centers of balls of radius $\varepsilon e^{-(c+\alpha)T}$ that cover *K* form a (T, ε) -spanning set \Rightarrow need to count them
- if we use, e.g., ∞ -norm balls (cubes), need $e^{(c+\alpha)T}/\varepsilon$ per dimension to cover a unit hypercube

•
$$\limsup_{T \to \infty} \frac{1}{T} \log \left(e^{(c+\alpha)T} / \varepsilon \right)^n = (c+\alpha)n \qquad \square$$

BOUNDS on ENTROPY

 $\dot{x} = f(x), \ x(0) \in K \subset \mathbb{R}^n, \ |\xi(x_1, t) - \xi(x_2, t)| \le e^{ct} |x_1 - x_2|$

Upper bound: $h(f) \le \max\{(c+\alpha)n, 0\}$

For linear system $\dot{x} = Ax$ this result can be refined to

$$h(A) = \sum_{i=1}^{n} \max\{\operatorname{Re}\lambda_i(A) + \alpha, 0\}$$

Lower bound comes from computing $vol(\xi(K, t))$ by Liouville's trace formula and counting # of balls that can cover this volume^{1,2}

Similar argument³ gives a lower bound for nonlinear system:

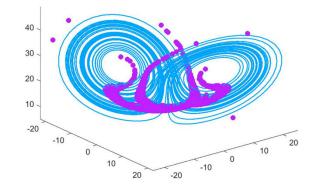
$$h(f) \ge \inf_{x} \operatorname{tr} \frac{\partial f}{\partial x}(x) + \alpha n$$

[1] Savkin, Analysis and synthesis of networked control systems, Automatica, 2006

[2] Schmidt, MS Thesis, UIUC, 2016

[3] Colonius, Minimal bit rates and entropy for exponential stabilization, SICON, 2012

EXAMPLE: LORENZ SYSTEM



EXAMPLE: LORENZ SYSTEM

$$\dot{x}_1 = \sigma x_2 - \sigma x_1 \dot{x}_2 = \theta x_1 - x_2 - x_1 x_3 \dot{x}_3 = -\beta x_3 + x_1 x_2$$

For initial set $K = B_{r_0}((0,0,0))$ can compute r s.t. $x(t) \in B_r((0,0,\sigma+\theta)) \quad \forall t \ge 0$

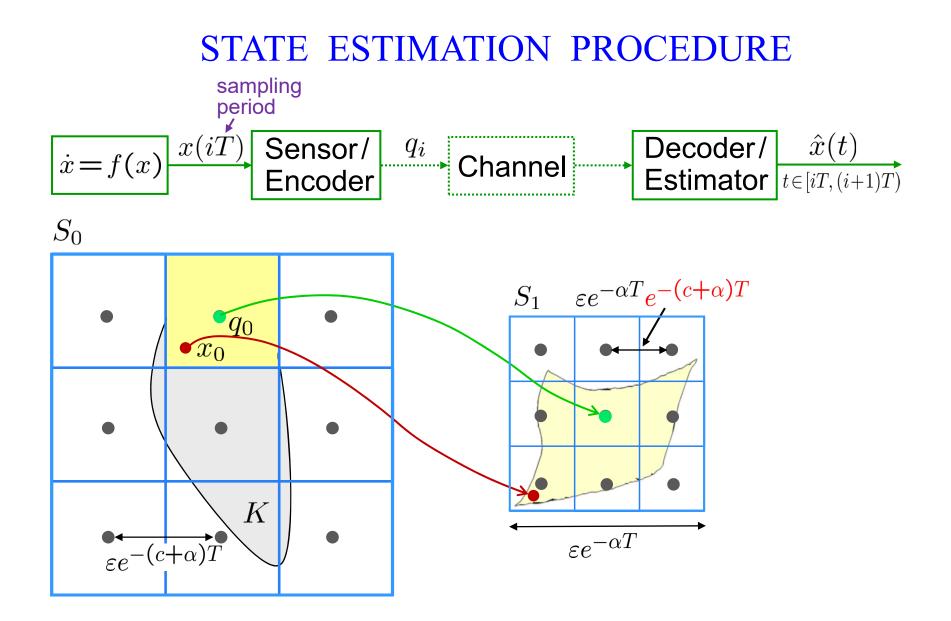
Jacobian is
$$J(x) := \frac{\partial f}{\partial x}(x) = \begin{pmatrix} -\sigma & \sigma & 0\\ \theta - x_3 & -1 & -x_1\\ x_2 & x_1 & -\beta \end{pmatrix}$$

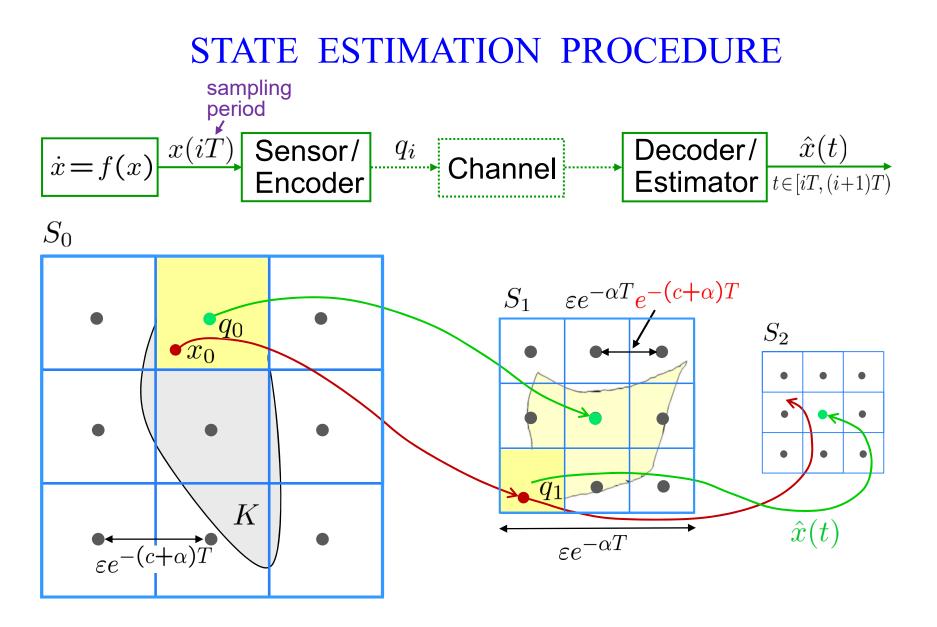
Its matrix measure is $\mu(J(x)) = \max_{i=1,2,3} \left\{ J_{ii}(x) + \sum_{j \neq i} |J_{ij}(x)| \right\}$

hence $c = \max_{x \in B_r} \mu(J(x)) = \max\{0, -1 + \sigma + 2r, -\beta + 2r\}$

and $h(f) \leq 3(c+\alpha)$

STATE ESTIMATION PROCEDURE





Properties: $x(iT) \in S_i \ \forall i \text{ and } \|x(t) - \hat{x}(t)\|_{\infty} \leq \varepsilon e^{-\alpha t} \ \forall t$

DATA RATE and EFFICIENCY GAP

 $S_i, i \ge 1$ is divided into $e^{(c+\alpha)T}$ sub-boxes per dim

 $\Rightarrow q_i$ is drawn from alphabet of size $N = e^{(c+\alpha)Tn}$

⇒ bit rate is
$$\frac{1}{T} \log N = (c + \alpha)n$$

which is our upper bound on $h(f)$

In fact, quantization points define a spanning set

More precisely: # of possible codewords over ℓ rounds, N^{ℓ} , equals cardinality of $(\ell T, \varepsilon)$ -spanning set

$$\Rightarrow \text{ bit rate} = \frac{1}{\ell T} \log N^{\ell} \geq \frac{1}{\ell T} \log s(\ell T, \varepsilon) \underset{\ell \to \infty, \varepsilon \to 0}{\longrightarrow} h(f)$$
smallest spanning set

So, entropy gives the minimal required data rate for state estimation¹ Efficiency gap of our algorithm is $(c + \alpha)n - h(f)$ which is the price to pay for having a constructive procedure

 $\delta_i e^{-(c+\alpha)T}$

 S_i

 δ_i

MODEL DETECTION PROBLEM

Want to distinguish between two competing system models

 $\dot{x} = f_1(x), \qquad \dot{x} = f_2(x)$

using finite-data-rate state measurements (as before) Need the two systems to be "sufficiently different" $\xi_i(x,t)$ – solution of system i from initial state x after time t, T – sampling period, c_1 – expansion rate of system 1 Call the two models separated if $\exists \varepsilon^* > 0$ s.t. $\forall \varepsilon < \varepsilon^*$:

$$|x_1 - x_2| \le \varepsilon \implies |\xi_1(x_1, T) - \xi_2(x_2, T)| > \varepsilon e^{c_1 T}$$

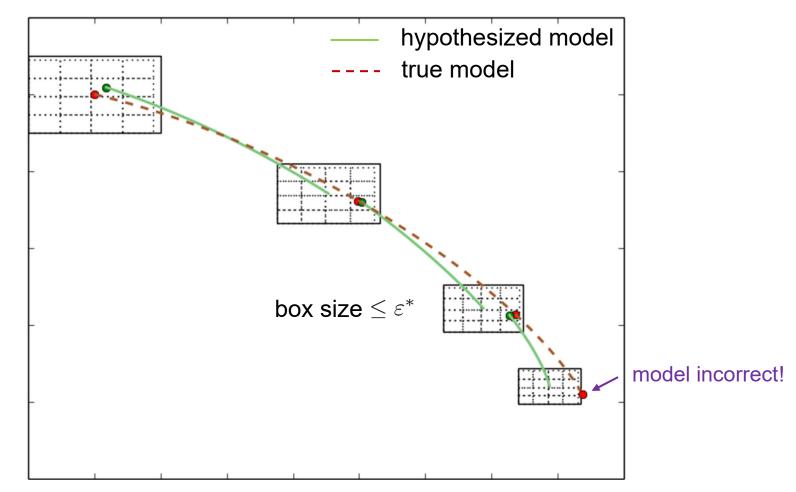
Interpretation: for nearby initial states, trajectories of the two systems diverge faster than would be possible if they both came from system
$$1\,$$

Separation property holds in generic situations, if T is small enough¹

d

MODEL DETECTION **RROBREMH**M

With separation assumption, our previous state estimation algorithm will eventually falsify model 1 if it is incorrect

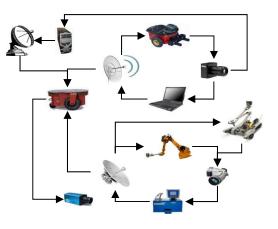


With prior knowledge of ε^* , it will also certify model 1 if it is correct

ONGOING WORK: INTERCONNECTED SYSTEMS

$$\dot{x}_i = f_i(x_1, \dots, x_k), \ i = 1, \dots, k$$

$$\dim(x_i) = n_i, \ n_1 + \dots + n_k = n$$



Jacobian blocks: $J_{ij}(x) = (\partial f_i / \partial x_j)(x)$

Assume: $\mu(J_{ii}(x)) \le a_{ii}, \|J_{ij}(x)\| \le a_{ij} \forall x, \forall i, j$

Structure matrix: $A := (a_{ij})_{i,j=1}^k$

A is a Metzler matrix \Rightarrow eigenvalue $\lambda_{\max}(A)$ is real

Entropy bound¹: $h(f) \le \max\{(\lambda_{\max}(A) + \alpha)n, 0\}$

[1] L, On topological entropy of interconnected nonlinear systems, IEEE CSL/CDC, 2021

EXAMPLE: LORENZ SYSTEM (revisited)

$$\dot{x}_{1} = \sigma x_{2} - \sigma x_{1}$$

$$\dot{x}_{2} = \theta x_{1} - x_{2} - x_{1} x_{3}$$

$$\dot{x}_{3} = -\beta x_{3} + x_{1} x_{2}$$

Can view the system as interconnection of 3 scalar subsystems

Jacobian is
$$J(x) = \begin{pmatrix} -\sigma & \sigma & 0 \\ \theta - x_3 & -1 & -x_1 \\ x_2 & x_1 & -\beta \end{pmatrix}$$

For $K = B_{r_0}((0,0,0))$ we have $x(t) \in B_r((0,0,\sigma+\theta)) \quad \forall t \ge 0$
Need matrix $A = (a_{ij})$ s.t. $\forall x \in B_r$: $\mu(J_{ii}(x)) \le a_{ii}, ||J_{ij}(x)|| \le a_{ij}$
Can take $A = \begin{pmatrix} -\sigma & \sigma & 0 \\ \sigma + r & -1 & r \\ r & r & -\beta \end{pmatrix}$ Previous result gives
 $h(f) \le 3(\lambda_{\max}(A) + \alpha)$

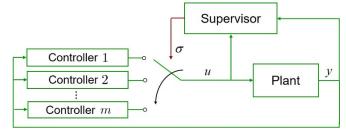
Improves on earlier matrix measure bound, but far from being tight¹ [1] Pogromsky, Matveev, Estimation of topological entropy via direct Lyapunov method, Nonlinearity, 2011

0

ONGOING WORK: SWITCHED SYSTEMS

$$\dot{x} = f_{\sigma}(x)$$

- $\dot{x} = f_p(x), \ p \in \mathcal{P}$ are modes
- σ : $[0,\infty) \to \mathcal{P}$ is a switching signal



Can define entropy as before for each fixed switching signal

For each mode p, define active time $\tau_p(t) := \int_0^t \mathbf{1}_p(\sigma(s)) ds$ and active rate $\rho_p(t) := \tau_p(t)/t$ – these play a role in entropy bounds

For example, entropy of switched linear system $\dot{x} = A_{\sigma}x$ satisfies¹

$$\limsup_{t \to \infty} \sum_{p} \operatorname{tr}(A_p) \rho_p(t) \le h(A_{\sigma}) \le \limsup_{t \to \infty} \sum_{p} n\mu(A_p) \rho_p(t)$$

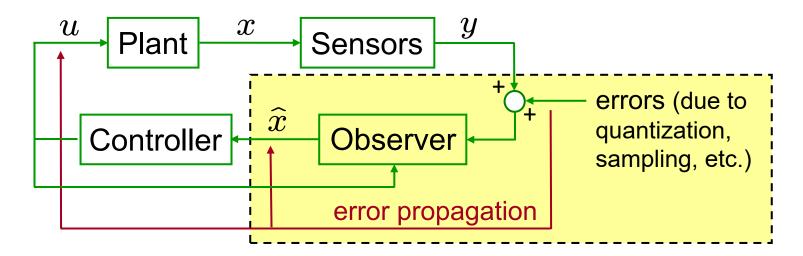
Extensions to switched nonlinear systems also possible²

These bounds can inform control design for switched systems

[1] Yang, Schmidt, L, Hespanha, Topological entropy of switched linear systems, MCSS, 2020; $\alpha = 0$ [2] Yang, L, Hespanha, Topological entropy of switched nonlinear systems, HSCC, 2021

TWO SPECIFIC SCENARIOS

- State estimation and model detection with finite data rate: an entropy approach
- Observers robust to measurement errors, with applications to control and synchronization



Few results for nonlinear systems are available^{1,2}

[1] Khalil, Praly, High-gain observers in nonlinear feedback control, IJRNC, 2013[2] Chong, Postoyan, Nesic, Kuhlmann, Varsavsky, A robust circle criterion observer, Automatica, 2012

SENSITIVITY vs. ROBUSTNESS

 $\dot{x} = f(x, d)$ x – state, d – disturbance

Asymptotic stability for $d \equiv 0$ does not imply bounded response to bounded disturbances:

 $\dot{x} = -x + xd$ (x unbounded for $d \equiv 2$)

or converging response to vanishing disturbances:

$$\dot{x} = -x + x^2 d$$
 (may have $x \uparrow \infty$ even if $d \to 0$)

Both properties are captured by input-to-state stability (ISS)¹:

This will be our benchmark robustness notion, with some caveats

[1] Sontag, Smooth stabilization implies coprime factorization, TAC, 1989

ASYMPTOTIC-RATIO ISS LYAPUNOV FUNCTIONS¹

These are functions V(x) whose derivative along solutions satisfies

$$\dot{V} \leq -\alpha(|x|) + g(|x|, |d|)$$

where $lpha \in \mathcal{K}$, g is continuous non-negative, $g(r, \cdot) \in \mathcal{K}$, and

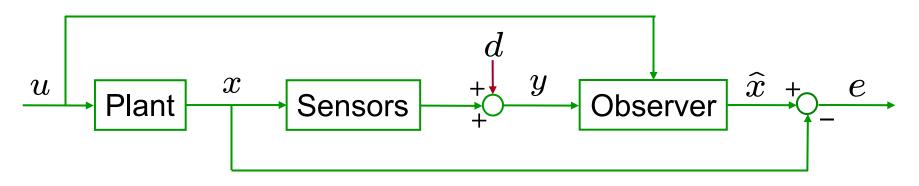
$$\limsup_{r \to \infty} \frac{g(r,s)}{\alpha(r)} < 1 \quad \forall s \ge 0$$

Can show: ISS $\Leftrightarrow \exists$ asymptotic-ratio ISS Lyapunov function (by reducing to more standard Lyapunov characterizations of ISS)

Example (scalar):
$$\dot{x} = -\frac{1}{1+d^2}x + d$$
, $V(x) := \frac{1}{2}x^2$
 $\dot{V} = -\frac{x^2}{1+d^2} + xd = -\frac{x^2}{\alpha(|x|)} + \frac{x^2\frac{d^2}{1+d^2} + xd}{g(|x|, |d|)}$

[1] L, Shim, Asymptotic ratio characterization of input-to-state stability, TAC, 2015

OBSERVER SET-UP



Plant: $\dot{x} = f(x, u), \quad y = h(x, d) \quad (x \in \mathbb{R}^n)$ Observer: $\dot{z} = F(z, y, u), \quad \hat{x} = H(z, y) \quad (z \in \mathbb{R}^m)$ Full-order observer: $m = n, \quad \hat{x} = z$; reduced-order:m < n

State estimation error: $e := \hat{x} - x$

Sensitivity issue¹: can have $e \to 0$ when $d \equiv 0$ yet $e \to \infty$ for arbitrarily small $d \neq 0$

[1] Shim, Seo, Teel, Nonlinear observer design via passivation of error dynamics, Automatica, 2003

ROBUSTNESS of **OBSERVER**

Plant: $\dot{x} = f(x, u), \quad y = h(x, d)$ Observer: $\dot{z} = F(z, y, u), \quad \hat{x} = H(z, y)$ Estimation error: $e := \hat{x} - x$ ISS-like robustness: $\exists \beta \in \mathcal{KL}, \gamma \in \mathcal{K}$ s.t.

$$|e(t)| \leq \beta(|e(0)|, t) + \gamma(||d||_{[0,t]})$$

Turns out to be too restrictive, not realistic

Modification: impose ISS only as long as x, u are bounded (reasonable, as boundedness can come from controller design)

ROBUSTNESS of **OBSERVER**

Plant: $\dot{x} = f(x, u), \quad y = h(x, d)$ Observer: $\dot{z} = F(z, y, u), \quad \hat{x} = H(z, y)$ Estimation error: $e := \hat{x} - x$

ISS-like robustness: $\forall K > 0 \exists \beta_K \in \mathcal{KL}, \gamma_K \in \mathcal{K}$ s.t.

$$|e(t)| \leq \beta_K(|e(0)|, t) + \gamma_K(||d||_{[0,t]})$$

whenever
$$\|u\|_{[0,t]}, \|x\|_{[0,t]} \leq K$$

Modification: impose ISS only as long as x, u are bounded (reasonable, as boundedness can come from controller design)

Call such observers quasi-Disturbance-to-Error Stable (qDES)¹

Accordingly, asymptotic-ratio Lyapunov condition only needs to hold for bounded x, u

[1] Shim, L, Nonlinear observers robust to measurement disturbances in an ISS sense, TAC, 2016

EXAMPLE: LINEARIZED ERROR DYNAMICS¹ Plant: $\dot{x} = Ax + f(Cx, u), \quad y = Cx + d$ with (A, C) detectable pair, so $\exists L$ s.t. A - LC is Hurwitz Observer: $\dot{z} = Az + f(y, u) + L(y - Cz), \quad \hat{x} = z$ Analysis of error dynamics: e = z - x $V := e^{\top} P e$ where $P(A - LC) + (A - LC)^{\top} P = -I$ $\dot{V} \leq -|e|^{2} + 2|e||P||(||L|||d| + |f(Cx + d, u) - f(Cx, u)|)$ $\leq \phi_K(|d|)$ Assume $|u|, |x| \leq K$ Asymptotic ratio: $\frac{g(|e|,|d|)}{\alpha(|e|)} \xrightarrow[|e|\to\infty]{} 0 \Rightarrow \text{observer is qDES}$

Also qDES are high-gain observer, circle-criterion observer

[1] Krener, Isidori, Linearization by output injection and nonlinear observers, SCL, 1983

Plant (after a coordinate change):	Observer:	
$\dot{x}_1 = f_1(x_1, x_2, u)$	$\hat{x}_1 = y$	
$\dot{x}_2 = f_2(x_1, x_2, u)$	$\dot{z} = f_2(y, z, u)$	
$y = x_1 + d$	$\hat{x}_2 = z$	
$e := z - x_2, V = V(e)$		
$\dot{V} = \frac{\partial V}{\partial e} \Big[f_2(x_1, \mathbf{x_2} + \mathbf{e}, u) - f_2(x_1, \mathbf{x_2}, u) \Big]$		
Assume this is $\leq -lpha(e)$, then we have an		

asymptotic observer: $e \rightarrow 0$ (without d)

Plant (after a coordinate change):	Observer:
$\dot{x}_1 = f_1(x_1, x_2, u)$	$\hat{x}_1 = y$
$\dot{x}_2 = f_2(x_1, x_2, u)$	$\dot{z} = f_2(y, z, u)$
$y = x_1 + d$	$\hat{x}_2 = z$
$e := z - x_2, V = V(e)$	
$\dot{V} = \frac{\partial V}{\partial e} \Big[f_2(\mathbf{y}, \mathbf{x}_2 + \mathbf{e}, u) - f_2(\mathbf{y}, \mathbf{x}_2 + \mathbf{e}, u) - f_2(\mathbf{y}, \mathbf{x}_2 + \mathbf{e}, u) \Big]$	$x_1, x_2, u) \Big]$
assumed to be $\leq -lpha(e)$	
$= \frac{\partial V}{\partial e} \Big[f_2(\boldsymbol{y}, \boldsymbol{x_2} + \boldsymbol{e}, \boldsymbol{u}) - f_2(\boldsymbol{y}, \boldsymbol{x_2}, \boldsymbol{u}) \Big] + \frac{\partial V}{\partial e}$	$\frac{1}{e}\left[f_2(\boldsymbol{y},\boldsymbol{x_2},\boldsymbol{u})-f_2(\boldsymbol{x_1},\boldsymbol{x_2},\boldsymbol{u})\right]$

Plant (after a coordinate change):	Observer:
$\dot{x}_1 = f_1(x_1, x_2, u)$	$\hat{x}_1 = y$
$\dot{x}_2 = f_2(x_1, x_2, u)$	$\dot{z} = f_2(y, z, u)$
$y = x_1 + d$	$\hat{x}_2 = z$
$e := z - x_2, V = V(e)$	
$\dot{V} = \frac{\partial V}{\partial e} \Big[f_2(\mathbf{y}, \mathbf{x_2} + \mathbf{e}, u) - f_2(\mathbf{y}, \mathbf{x_2} + \mathbf{e}, u) - f_2(\mathbf{y}, \mathbf{x_2} + \mathbf{e}, u) \Big]$	(x_1, x_2, u)
assumed to be $\leq -\alpha(e) \leq$	$\leq \rho(e)$
$\leq \frac{\partial V}{\partial e} \left[f_2(\boldsymbol{y}, \boldsymbol{x_2} + \boldsymbol{e}, \boldsymbol{u}) - f_2(\boldsymbol{y}, \boldsymbol{x_2}, \boldsymbol{u}) \right] + \left[\frac{\partial V}{\partial e} \right]$	$\frac{\partial V}{\partial e} \left \left f_2(\boldsymbol{y}, \boldsymbol{x_2}, \boldsymbol{u}) - f_2(\boldsymbol{x_1}, \boldsymbol{x_2}, \boldsymbol{u}) \right \right $
Assume $ u , x \leq K$	$\leq \phi_K(d)$

We have: $\dot{V} \leq -\alpha(|e|) + \rho(|e|)\phi_K(|d|)$

Plant (after a coordinate change):	Observer:
$\dot{x}_1 = f_1(x_1, x_2, u)$	$\hat{x}_1 = y$
$\dot{x}_2 = f_2(x_1, x_2, u)$	$\dot{z} = f_2(y, z, u)$
$y = x_1 + d$	$\hat{x}_2 = z$

came from asymptotic observer property came from Lyapunov function

Asymptotic ratio condition:

$$\limsup_{r \to \infty} \frac{\rho(r)}{\alpha(r)} \phi_K(s) < 1 \ \forall s \ \leftarrow \left[\lim_{r \to \infty} \frac{\rho(r)}{\alpha(r)} = 0 \right]$$

Under this condition the observer is $qDES_{A(|e|)} \neq \rho(|e|)\phi_{K}(|d|)$ Synchronization examples that follow are analyzed in this way ROBUST SYNCHRONIZATION and qDES OBSERVERS

$$\begin{array}{c|c} \dot{x}_1 = f_1(x_1, x_2) & x_1 + y & \cdots \\ \dot{x}_2 = f_2(x_1, x_2) & \downarrow & \downarrow \\ \text{Leader} & d & \text{Follower} \end{array} e := z - x_2$$

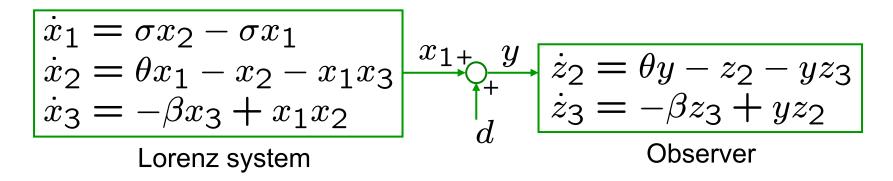
Robust synchronization: $\forall K > 0 \exists \beta_K \in \mathcal{KL}, \gamma_K \in \mathcal{K}_{\infty}$ s.t.

$$|e(t)| \leq \beta_K(|e(0)|, t) + \gamma_K(||d||_{[0,t]})$$

whenever $||x||_{[0,t]} \leq K$ (in closed loop)

Equivalently: follower is a reduced-order qDES observer for leader Sufficient condition from before: $\exists V = V(e) \text{ s.t. } \left| \frac{\partial V}{\partial e} \right| \leq \rho(|e|),$ $\frac{\partial V}{\partial e}(e) \left(f_2(x_1, z) - f_2(x_1, x_2) \right) \leq -\alpha(|e|), \text{ and}$ $\limsup_{r \to \infty} \frac{\rho(r)}{\alpha(r)} = 0$ (asymptotic ratio condition)



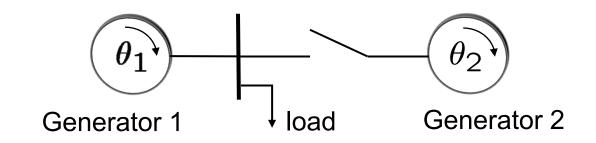


We already mentioned that x is bounded

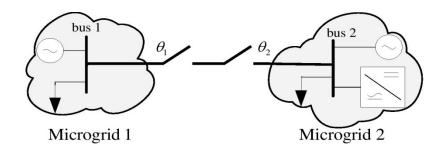
Can show qDES from
$$d$$
 to $e := \begin{pmatrix} z_2 - x_2 \\ z_3 - x_3 \end{pmatrix}$ using $V(e) = |e|^2$

For d arising from time sampling and quantization, we can derive an explicit bound on synchronization error which is inversely proportional to data rate¹

[1] Andrievsky, Fradkov, L, Robust Pecora-Carroll synchronization under communication constraints, SCL, 2018



Baby version of microgrid synchronization



 $\ell(t) =$ electrical load (slowly varying) $u_1(t, \theta_1) =$ control input (mechanical power) With integral control: $\omega_1 \rightarrow$ desired freq. ω_0

 $\ell(t) =$ electrical load (slowly varying) $u_1(t, \theta_1) =$ control input (mechanical power) With integral control: $\omega_1 \rightarrow$ desired freq. ω_0

$$\begin{array}{c} \dot{\theta}_1 = \omega_1 \\ \dot{\omega}_1 = u_1 - \ell(t) - D_1 \omega_1 \end{array} \xrightarrow{\begin{array}{c} \theta_1 + \\ \phi_1 + \\ \phi_2 = u_2 - D_2 \omega_2 \end{array}} \\ \begin{array}{c} \dot{\theta}_2 = \omega_2 \\ \dot{\omega}_2 = u_2 - D_2 \omega_2 \end{array} \\ \begin{array}{c} d \end{array} \\ \begin{array}{c} \text{Generator 1} \end{array} \xrightarrow{\begin{array}{c} \theta_1 + \\ \phi_2 = u_2 - D_2 \omega_2 \end{array} \end{array}$$

 $\ell(t) =$ electrical load (slowly varying) Measurements: $u_1(t, \theta_1) =$ control input (mechanical power) PMU corrupted With integral control: $\omega_1 \rightarrow$ desired freq. ω_0 by disturbance

Objective: connect 2nd generator when $\theta_1 \approx \theta_2$, $\omega_1 \approx \omega_2$

- $V = e^2$ gives DES (ISS) from d to $e := \omega_2 \omega_1$ (becomes qDES for phase-dependent damping, $D_1 = D_1(\theta_1)$)
- frequency regulation and synchronization meet IEEE standards for realistic disturbance values¹

[1] Ajala, Dominguez-Garcia, L, Robust leader-follower synchronization of electric power generators, SCL, 2021

ACKNOWLEDGEMENTS

Entropy:

Sayan Mitra

Guosong Yang

Synchronization:

Boris Andrievsky

Alexander Fradkov

Olaolu Ajala

Alejandro Dominguez-Garcia

Observers:

Hyungbo Shim

