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a b s t r a c t

Stability of an interconnected system consisting of two switched systems is investigated in the scenario
where in both switched systems theremay exist some subsystems that are not input-to-state stable (non-
ISS). We show that, providing the switching signals neither switch too frequently nor activate non-ISS
subsystems for too long, a small-gain theorem can be used to conclude global asymptotic stability (GAS)
of the interconnected system. For each switched system, with the constraints on the switching signal
beingmodeled by an auxiliary timer, a correspondent hybrid system is defined to enable the construction
of a hybrid ISS Lyapunov function. Apart from justifying the ISS property of their corresponding switched
systems, these hybrid ISS Lyapunov functions are then combined to establish a Lyapunov-type small-gain
condition which guarantees that the interconnected system is globally asymptotically stable.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

The study of interconnected systems plays a significant role in
the development of stability theory of dynamic systems, as it al-
lows one to investigate the stability property of a complex sys-
tem by analyzing its less complicated components. In this context,
the small-gain theorems have proved to be important tools in the
analysis of feedback connections of multiple systems, which ap-
pear frequently in the control literature. A comprehensive summa-
rization of classical small-gain theorems involving input–output
gains of linear systems can be found in [1]. This technique was
then generalized to nonlinear feedback systems in [2,3] within the
input–output context. The notion of input-to-state stability (ISS)
proposed by Sontag [4] was naturally adopted and extended in [5]
to establish a general nonlinear small-gain theorem which guar-
anteed both external and internal stabilities. Instead of analyzing
the behavior of solution trajectories, Jiang et al. [6] have developed
a Lyapunov-type nonlinear small-gain theorem based on the con-
struction of ISS Lyapunov functions. A variety of nonlinear small-
gain theorems were summarized in [7, Section 10.6].

In this paper, we explore the stability property of intercon-
nected nonlinear switched systems. The study of switched systems

✩ This work was supported by the NSF grants CNS-1217811 and ECCS-1231196
and by the Korean National Research Foundation grant NRF-2011-220-D00043.
∗ Corresponding author.

E-mail addresses: yang150@illinois.edu (G. Yang), liberzon@illinois.edu
(D. Liberzon).

http://dx.doi.org/10.1016/j.sysconle.2015.02.001
0167-6911/© 2015 Elsevier B.V. All rights reserved.
has attracted a lot of attention in recent years (see, e.g., [8] and
references therein). It is well-known that, in general, a switched
system does not necessarily inherit the stability properties of its
subsystems. For example, in [8, Part II] it is shown that a switched
system consisting of two asymptotically stable subsystems may
not be stable. In the linear system context, it was proved in [9] that
such a switched system can achieve asymptotic stability provid-
ing the switching signal satisfies a certain dwell-time condition.
This approach was then generalized to the nonlinear system con-
text and to the concept of average dwell-time condition in [10].
In [11] a similar result was developed for a linear switched system
with both stable and unstable subsystems by restricting the frac-
tion of time inwhich the unstable subsystems are active. The study
of stability property inheritance in switched systemswas extended
to the ISS context byVu et al. [12], and to the IOSS (input/output-to-
state stability) context by Müller and Liberzon [13], both for non-
linear switched systems. Furthermore, in [13] the IOSS property of
a nonlinear switched system was studied also for the general case
where some of the subsystems are not input/output-to-state sta-
ble. In [14] a small-gain theorem was formulated to establish the
ISS property of a switched interconnected nonlinear system under
an average dwell-time condition, and the global stabilization of a
switched nonlinear system in strict-feedback form with possibly
non-ISS subsystemswas investigated based on this small-gain the-
orem.

In this work, a sufficient condition is formulated to guarantee
the global asymptotic stability (GAS) of an interconnected system
consisting of two nonlinear switched systems.We have considered
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a very general scenario: in both switched systems there may exist
some subsystems that are not input-to-state stable (non-ISS). It is
proved that, providing the switching signals neither switch too fre-
quently (average dwell-time constraint) nor activate non-ISS sub-
systems for too long (time-ratio constraint), a small-gain theorem
can be established by introducing auxiliary timers and adopting
hybrid system techniques. In particular, for each switched system,
a hybrid system is defined such that their solutions are correspon-
dent and the constraints on the switching signal are modeled by
the auxiliary timer. For each hybrid system, an ISS Lyapunov func-
tion is then constructed to establish the ISS property for all com-
plete solutions to the hybrid system, and therefore all solutions to
the switched system. (Although the result that a switched system
with not necessarily ISS subsystems is ISS under certain average
dwell-time condition and time-ratio condition has already been
proved in [13], the Lyapunov-type formulation in this paper ex-
hibits an improvement: it not only generates an ISS Lyapunov func-
tion which is used later in the study of the interconnected system,
but provides means for robustness analysis as well.) With these
two ISS Lyapunov functions, a small-gain condition is then estab-
lished to prove the GAS property of the interconnected switched
system.

Hybrid systems are dynamic systems that possess both
continuous-time and discrete-time features. Trajectory-based
small-gain theorems for interconnected hybrid systems were first
presented in [15,16], while Lyapunov-based formulations were in-
troduced in [17]. The concept of ISS Lyapunov function was ex-
tended to hybrid systems in [18]. In our analysis of hybrid systems,
we have adopted the modeling framework proposed by Goebel
et al. [19], which proved to be general and natural from the view-
point of Lyapunov stability theory. In the hybrid system context,
a detailed study of small-gain theorems based on the construction
of ISS Lyapunov functions using this modeling framework can be
found in [20–22]. Comparing to [22], our result on modifying the
ISS Lyapunov function to guarantee its decrease along solutions is
more general in the sense that it applies to the situation where the
original ISS Lyapunov functions are increasing both at the jumps
and during some of the flows. Based on the idea of restricting
non-ISS subsystems’ total activation time proportion proposed in
[11,13], an aforementioned auxiliary timer is introduced in the
construction of the hybrid system to manage the non-ISS flows.

This paper is structured as follows. In Section 2, we introduce
somemathematical preliminaries. Ourmain result – the small-gain
theorem for interconnected switched systems with both ISS and
non-ISS subsystems – is presented and interpreted in Section 3,
followed by a corollary discussing relaxations in the assumptions
to conclude GAS when all subsystems are ISS. A detailed proof,
prefaced by an introduction to hybrid systems, is provided in
Section 4. Section 5 concludes the paper with a short summary and
an outlook on future research.

2. Preliminaries

Consider a family of dynamic systems

ẋ = fp(x, u), p ∈ P (1)

where x ∈ Rn is the state, u ∈ Rm is the input and P is the index
set (which can in principle be arbitrary). For all p ∈ P , fp is locally
Lipschitz and fp(0, 0) = 0. Given the family (1), a switched system

ẋ = fσ (x, u) (2)

is generated by a switching signal σ :R≥0 → P which specifies
the index of the active system at time t . The switching signal
σ is assumed to be piecewise constant and right-continuous. Let
ψk (k ∈ Z>0) denote the time when the k-th switch occurs and
define Ψ := {ψk : k ∈ Z>0} as the set of switching time instants,
which is assumed to contain no accumulation points. (Thus the
switched system (2) has atmost one switch at any time instant and
finitely many switches in any finite time interval.) A function u is
an admissible input to the switched system (2) if it is measurable
and locally essentially bounded.

Following Morse [9], we say that a switching signal σ satisfies
the dwell-time condition if there exists a τd ∈ R>0, called the
dwell-time, such that for all consecutive switching time instants
ψk, ψk+1 ∈ Ψ ,

ψk+1 − ψk ≥ τd. (3)

A generalized conceptwas introducedbyHespanha andMorse [10]:
a switching signal σ is said to satisfy the average dwell-time condi-
tion if there exists a τa ∈ R>0, called the average dwell-time, and an
N0 ∈ Z≥0 such that

N(t2, t1) ≤ N0 +
t2 − t1
τa

∀ t2 ≥ t1 ≥ 0, (4)

where N(t2, t1) denotes the number of switchings in the time
interval (t1, t2]. Note that the dwell-time condition can be
interpreted as a special case of the average dwell-time condition
with N0 = 1 and τa = τd.

For two vectors x1, x2, (x1, x2) is used to denote their
concatenation, that is, (x1, x2) := (x⊤

1 , x
⊤

2 )
⊤. For a vector x ∈ Rn,

we use |x| to denote its Euclidean norm. For a compact set A ⊂ Rn,
we use |x|A to denote the Euclidean distance from a vector x to A.
For a function u:R≥0 → Rn, ∥u∥t is used to denote its essential
supremum (Euclidean) norm on the interval [0, t].

A function α:R≥0 → R≥0 is of class K if it is continuous,
strictly increasing and positive definite. A function γ is of classK∞

if γ ∈ K and limr→∞ γ (r) = ∞. In particular, this implies that
γ is globally invertible. A function β:R≥0 × R≥0 → R≥0 is of
class KL if β(·, t) ∈ K for all fixed t , β(r, ·) is decreasing and
limt→∞ β(r, t) = 0 for all fixed r .

As introduced by Sontag [4], a dynamic system from family
(1) is called input-to-state stable (ISS) if there exist functions γ ∈

K∞, β ∈ KL such that for all initial states x(0) ∈ Rn and all inputs
u:R≥0 → Rm,

|x(t)| ≤ β(|x(0)|, t)+ γ (∥u∥t) ∀ t ∈ R≥0. (5)

The definition of input-to-state stability (ISS) also applies to
switched systems. Note that for an autonomous dynamic system
(i.e. u ≡ 0), the ISS property (5) is equivalent to the notion of global
asymptotic stability (GAS) [23, Proposition 2.5].

3. Main result

3.1. Interconnected switched system with both ISS and non-ISS
subsystems

Consider two switched systems

ẋ1 = f1,σ1(x1, u1),

ẋ2 = f2,σ2(x2, u2),
(6)

where xi ∈ Rni , ui ∈ Rmi , and σi ∈ Pi for all i ∈ {1, 2}.1 Suppose
the two switched systems fulfill the same assumptions as those
imposed on the switched system (2) in Section 2. If m1 = n2
and m2 = n1, an interconnected switched system with the state
(x1, x2) ∈ Rn1+n2 can be constructed by letting u1 = x2 and
u2 = x1:

1 We use fi,σi instead of fσi to avoid confusion in case the two index sets P1,P2
contain common elements.
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
ẋ1
ẋ2


=


f1,σ1(x1, x2)
f2,σ2(x2, x1)


. (7)

Suppose that in the interconnected switched system (7), both
switched systems may contain ISS as well as non-ISS subsystems.
For all i ∈ {1, 2}, let Ps,i and Pu,i denote the subsets of Pi con-
taining the indices of ISS and non-ISS subsystems, respectively.
Then (Ps,i,Pu,i) forms a partition of Pi (i.e., Ps,i ∪ Pu,i = Pi and
Ps,i ∩ Pu,i = ∅). Following Müller and Liberzon [13], we define
Ts,i(t2, t1) as the total activation time of ISS subsystems (i.e., sub-
systems from Ps,i) on the time interval (t1, t2] and Tu,i(t2, t1) that
for non-ISS subsystems. Then Ts,i(t2, t1)+ Tu,i(t2, t1) = t2 − t1.

We introduce three constraints in the following assumption;
the first two are frequently used in the context of switched sys-
tems, while the last one (the Time-Ratio Constraint) is somewhat
less standard. The idea of restricting the fraction of time during
which non-ISS subsystems are active in the third constraint is
essentially introduced by Zhai et al. [11] and Müller and Liber-
zon [13].

Assumption 1. For all i, j ∈ {1, 2} such that i ≠ j, the following
constraints are satisfied:

Uniform ISS Lyapunov-Type Constraint There exists a family
of positive definite C1 functions Vi,pi :Rni → R≥0, pi ∈ Pi such
that the following conditions hold:
1. ∃α1,i, α2,i ∈ K∞ such that for all xi ∈ Rni and all pi ∈ Pi,
α1,i(|xi|) ≤ Vi,pi(xi) ≤ α2,i(|xi|). (8)

2. ∃φi ∈ K∞, λs,i, λu,i ∈ R>0 such that for all xi ∈ Rni , xj ∈ Rnj

and all ps ∈ Ps,i, pu ∈ Pu,i,

|xi| ≥ φi(|xj|) ⇒


∂Vi,ps(xi)
∂xi

· fi,ps(xi, xj) ≤ −λs,iVi,ps(xi),

∂Vi,pu(xi)
∂xi

· fi,pu(xi, xj) ≤ λu,iVi,pu(xi).
(9)

3. ∃µi ∈ R≥1 such that for all xi ∈ Rni and all pi, qi ∈ Pi,
Vi,pi(xi) ≤ µiVi,qi(xi). (10)

Average Dwell-Time Constraint The switching signal σi
satisfies the average dwell-time condition (4) with constants
τa,i ∈ R>0 and N0,i ∈ Z≥0.
Time-Ratio Constraint There exist ρi ∈ [0, 1) and T0,i ∈

R≥0 such that the total activation time of non-ISS subsystems
satisfies

Tu,i(t2, t1) ≤ T0,i + ρi(t2 − t1) ∀ t2 ≥ t1 ≥ 0. (11)

The constraints in Assumption 1 apply to each switched sys-
tem separately. Moreover, the Uniform ISS Lyapunov-Type Con-
straint is a constraint on the subsystems’ dynamics,while the Aver-
age Dwell-Time Constraint and the Time-Ratio Constraint are con-
straints on the switching signals.

Remark 1. TheUniform ISS Lyapunov-Type Constraint in Assump-
tion 1 is ‘‘Lyapunov-type’’ in the sense that it constrains not only
the ISS subsystems, but the non-ISS subsystems as well. The exis-
tence of functions Vi,ps satisfying (9) for ps ∈ Ps,i follows from the
fact that these subsystems are ISS [24], while the existence of func-
tions Vi,pu satisfying (9) for pu ∈ Pu,i is equivalent to the forward
completeness property of non-ISS subsystems [25].

Remark 2. TheUniform ISS Lyapunov-Type Constraint in Assump-
tion 1 is ‘‘uniform’’ since for the i-th switched system, it is satisfied
by ISS Lyapunov functions Vi,pi for all subsystems, with fixed class
K∞ functions α1,i, α2,i, φi and constants λs,i, λu,i, µi. This unifor-
mity can be concluded automatically for some particular types of
index sets. For example, (8) is guaranteed if Pi is finite and all sub-
systems are ISS [12, Remark 1]. Besides, for positive definite func-
tions Vi,pi , the existence of the uniform ratio bound µi in (10) is
a sufficient condition for the existence of the uniform comparison
functions α1,i, α2,i in (8).
Our main result is stated as the following theorem:

Theorem 1. Consider the interconnected switched system (7). Sup-
pose that Assumption 1 holds with the constants satisfying

λs,i >
ln(µi)

τa,i
+ ρi(λs,i + λu,i) =: γi ∀ i ∈ {1, 2}. (12)

For all i, j ∈ {1, 2} such that i ≠ j, let

Γi := N0,i ln(µi)+ T0,i(λs,i + λu,i), (13)

and χi ∈ K∞ be defined as

χi(r) := α2,i(φi(α
−1
1,j (r))) exp(Γi). (14)

Then the interconnected switched system is globally asymptotically
stable if the following small-gain condition is satisfied:

χ1(χ2(r)) < r ∀ r ∈ R>0. (15)

Remark 3. The inequality in (12) can be rewritten as

(1 − ρi)λs,i − ρiλu,i −
ln(µi)

τa,i
> 0 ∀ i ∈ {1, 2},

which helps provide a clearer interpretation of the condition. Here
(1 − ρi)λs,i measures the average rate of exponential decay of
the ISS Lyapunov functions due to the ISS subsystems, while ρiλu,i
measures their exponential growth due to the non-ISS subsystems,
and ln(µi)/τa,i measures their exponential growth due to the
switches. Thus this condition can be interpreted as saying that, for
each switched system, the ISS Lyapunov functions are decreasing
on average.

Remark 4. The inequality in (12) can also be rewritten as

λs,i >
1

1 − ρi


ln(µi)

τa,i
+ λu,i


− λu,i ∀ i ∈ {1, 2},

from which it is clear that by increasing λs,i (with all other param-
eters fixed), we are able to accommodate a larger time-ratio ρi. On
the other hand, from the definitions of Γi (13) and χi (14), and the
small-gain condition (15), for a fixed time-ratio ρi, we see that one
should work with the smallest possible λs,i satisfying (12) to have
the least conservative gain estimate.

Remark 5. Consider the following interconnected switched sys-
tem:
ẋ1
ẋ2


=


f1,σ1(x1, x2, v1)
f2,σ2(x2, x1, v2)


, (16)

where, for each i ∈ {1, 2}, vi ∈ Rki is an external input. If the
Uniform ISS Lyapunov-Type Constraint in Assumption 1 is modi-
fied so that the effects of the external inputs are included in (9)
(e.g., change the left-hand-side to |xi| ≥ φi(|xj|) + φu,i(|vi|)), then
Theorem 1 can be used to conclude the input-to-state stability of
the interconnected switched system (16). The proof is essentially
the same as that of Theorem 1.

3.2. Interconnected switched system with only ISS subsystems

In the stability analysis of the interconnected switched system
(7), a less complicated scenario arises when all the subsystems
are ISS for both of the switched systems (i.e., for all i ∈ {1, 2},
Ps,i = Pi,Pu,i = ∅). In this case, the global asymptotic stability of
the interconnected switched system can be established under less
restrictive assumptions, as stated in the following assumption and
corollary (which closely correspond to the results in [22]).
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Assumption 2. For all i, j ∈ {1, 2} such that i ≠ j, the following
constraints are satisfied:

Uniform ISS Lyapunov Constraint There exists a family of
positive definite C1 functions Vi,pi :Rni → R≥0, pi ∈ Pi such
that the following conditions hold:
1. ∃α1,i, α2,i ∈ K∞ such that (8) holds for all xi ∈ Rni and all

pi ∈ Pi.
2. ∃φi ∈ K∞, λi ∈ R>0 such that for all xi ∈ Rni , xj ∈ Rnj and

all pi ∈ Pi,

|xi| ≥ φi(|xj|) ⇒
∂Vi,pi(xi)
∂xi

· fi,pi(xi, xj) ≤ −λiVi,pi(xi). (17)

3. ∃µi ∈ R≥1 such that (10) holds for all xi ∈ Rni and all
pi, qi ∈ Pi.

Average Dwell-Time Constraint The switching signal σi
satisfies the average dwell-time condition (4) with constants
τa,i ∈ R>0 and N0,i ∈ Z≥0.

Remark 6. The existence of a positive definiteC1 functionVi,pi sat-
isfying (8) and (17) is equivalent to the fact that subsystem pi in the
i-th switched system is ISS [24]. The set of possible ISS-Lyapunov
functions is constrained by condition (10). While this condition
might seem somehow restrictive (e.g., it does not hold if Vi,p is
quadratic and Vi,q is quartic for some p, q ∈ Pi), it is quite common
in the study of switched systems under slow switching assump-
tions, and is a considerable relaxation to the condition requiring a
common ISS Lyapunov condition (which is equivalent to the Uni-
form ISS Lyapunov Constraint in Assumption 2 with µi = 1 [26]);
cf. [12, Remark 1 and Subsection 4.1].

Corollary 1. Consider the interconnected switched system (7). Sup-
pose that Assumption 2 holds with constants satisfying

λi >
ln(µi)

τa,i
∀ i ∈ {1, 2}. (18)

For all i, j ∈ {1, 2} such that i ≠ j, let χi ∈ K∞ be defined as

χi(r) := α2,i(φi(α
−1
1,j (r))) exp(N0,i ln(µi)). (19)

Then the interconnected switched system is globally asymptotically
stable if the small-gain condition (15) is satisfied.

Remark 7. For an interconnected switched system (7) in which
only one of the two switched systems contains non-ISS subsys-
tems, the global asymptotic stability can be established if Assump-
tion 1 is satisfied by this switched system, while Assumption 2 is
satisfied by the other, and the small-gain condition (15) is satisfied
with the functions χ1, χ2 defined as in (14) and (19), accordingly.

Remark 8. Suppose that in one of the two switched systems, in-
stead of the average dwell-time condition (4), the switching signal
satisfies the dwell-time condition (3)with dwell-time τd,i. Then the
same result holds if the average dwell-time τa,i in (12) (or (18), in
case this switched system consists of only ISS subsystems) is sub-
stituted by τd,i and the constant N0,i in (14) (or (19)) is equal to 1.

4. Proof of the main result

In this section, a detailed proof of Theorem 1 is presented.
We start by introducing some preliminaries for hybrid systems
in Section 4.1. In Section 4.2, a correspondent hybrid system is
constructed for each switched system under Assumption 1 and
the correspondence between solutions is proved. An ISS Lyapunov
function for each hybrid system is defined and verified in Sec-
tion 4.3. In Section 4.4, the ISS property of each hybrid system is es-
tablished.2 Section 4.5 concludes the proof of Theorem 1 by show-
ing that any solution to the interconnected switched system is GAS.

4.1. Preliminaries for hybrid systems

Following Goebel et al. [19, Chapter 2], a hybrid system with
inputs can be modeled as
ż ∈ F(z, u), z ∈ C,
z+

∈ G(z, u), z ∈ D, (20)

where z ∈ Rn is the state, u ∈ Rm is the input, C ⊂ Rn is the flow
set, D ⊂ Rn is the jump set, F :Rn

× Rm ⇒ Rn is the flow map and
G:Rn

× Rm ⇒ Rn is the jump map.3 (In this model, if z ∈ C , the
state can flow at a velocity ż ∈ F(z, u); if z ∈ D, the state can jump
to a point z+

∈ G(z, u); if z ∈ C ∩ D, the state can either flow or
jump.)H = (C, F ,D,G) is called the data of the hybrid system. The
solutions to the hybrid system are defined on the so-called hybrid
time domain. A set E ⊂ R≥0 ×Z≥0 is a compact hybrid time domain
if

E =

K
k=0

([θk, θk+1], k) (21)

for some finite sequence of time instants 0 = θ0 < θ1 < · · · <
θK+1. E is a hybrid time domain if for all (T , K) ∈ E, E ∩ ([0, T ] ×

{0, 1, . . . , K}) is a compact hybrid time domain. A hybrid arc is a
function z: dom z → Rn defined on a hybrid time domain such
that for each fixed k ∈ Z≥0, z(·, k) is locally absolutely continuous
on {t : (t, k) ∈ dom z} =: Θz

k . A hybrid arc is complete if its
domain is unbounded. A hybrid input is a function u: dom u → Rm

defined on a hybrid time domain such that for each fixed k ∈ Z≥0,
u(·, k) is Lebesgue measurable and locally essentially bounded on
{t : (t, k) ∈ dom u} = Θu

k . A hybrid arc z: dom z → Rn is a
solution to a hybrid system H = (C, F ,D,G) with a hybrid input
u: dom u → Rm if the following conditions hold:
1. dom z = dom u.
2. z(t, k) ∈ C and ż(t, k) ∈ F(z(t, k), u(t, k)) for all k ∈ Z≥0 and

almost all t ∈ Θz
k .

4

3. z(t, k) ∈ D and z(t, k + 1) ∈ G(z(t, k), u(t, k)) for all (t, k) ∈

dom z such that (t, k + 1) ∈ dom z.
With proper assumptions on the data H , one can establish the
local existence of solutions to the hybrid system, which may not
be necessarily unique (see, e.g., [19, Proposition 2.10]).

Following Cai and Teel [18], for a function defined on a hybrid
time domain z: dom z → Rn, the essential supremum (Euclidean)
norm up to hybrid time (t, k) is denoted by ∥z∥(t,k) and defined as

∥z∥(t,k) := max

 ess sup
(s,l)∈dom z\J(z),

s≤t,l≤k

|z(s, l)|, sup
(s,l)∈J(z),
s≤t,l≤k

|z(s, l)|

 ,
where J(z) is the set of all (s, l) ∈ dom z such that (s, l+1) ∈ dom z.
(Note that the set of measure 0 of hybrid time that can be ignored
when computing this essential supremum norm cannot include
any jump time instants.)

For a locally Lipschitz function f : Rn
→ R and vectors x, v ∈

Rn, the Clarke derivative [28] of f at x in the direction of v is defined
as

f ◦(x; v) := lim
h→0+

sup
y→x

f (y + hv)− f (y)
h

. (22)

2 This subsection is not directly related to the proof of Theorem 1 but considered
as an independent result. More details on this result can be found in [27].
3 We use ‘‘⇒’’ to denote a set-valued mapping.
4 Here z(t, k) represents the state of the system at time t and after k jumps.
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4.2. A correspondent hybrid system

In this subsection, for each switched system, we construct a
hybrid system with state consisting of variables representing the
state of the corresponding switched system, the corresponding
switching signal and an auxiliary timer τi. The dynamics of each
timer is specifically designed to not only incorporate the effect
of the Average Dwell-Time Constraint and Time-Ratio Constraint
in Assumption 1, but also enable us to construct an ISS Lyapunov
function for the corresponding hybrid system in Section 4.3.

For each i ∈ {1, 2}, consider the hybrid system with state zi =

(xi,σi, τi) ∈ Rni × Pi × [0,Γi] =: Zi and inputui ∈ Rmi defined as
follows:
żi ∈ Fi(zi,ui), zi ∈ Ci,

z+

i ∈ Gi(zi), zi ∈ Di,
(23)

where

Fi(zi,ui) :=




{fi,σi(xi,ui)}

{0}
[0, γi]


, ifσi ∈ Ps,i,

{fi,σi(xi,ui)}
{0}

{γi − (λs,i + λu,i)}


, ifσi ∈ Pu,i,

Ci := Rni × Pi × [0,Γi],

Gi(zi) := {xi} × (Pi \ {σi})× {τi − ln(µi)},

Di := Rni × Pi × [ln(µi),Γi],

(24)

and constants γi and Γi are defined in (12) and (13), respectively.
We will show that the following proposition holds:

Proposition 1. Consider a solution xi to the i-th switched system
in (6)with an input ui and a switching signalσi. Suppose that Assump-
tion 1 is satisfied. Then there is a complete solution zi = (xi,σi, τi) to
the hybrid system (23) with a hybrid inputui such thatui(t, k) = ui(t)xi(t, k) = xi(t)

∀ (t, k) ∈ dom zi.5 (25)

Proof. Suppose xi is a solution to the i-th switched system in (6)
with an input ui and a switching signal σi. We construct a hybrid
arc zi and a hybrid input ũi in a recursive manner. Define Ψi :=

{ψi,k : k ∈ Z>0} as the set of the switching time instants of σi and
let ψi,0 = 0. For all T ∈ R≥0, let Ki,T := max{k ∈ Z≥0 : ψi,k ≤ T }

be the number of switches on [0, T ] and

Ei,T :=

Ki,T−1
k=0

([ψi,k, ψi,k+1], k)


∪ ([ψi,Ki,T , T ], Ki,T ). (26)

Then Ei,T is a compact hybrid time domain. Consider the hybrid
inputui and the hybrid arc zi = (xi,σi, τi) defined so that for all
T ∈ R≥0, the following conditions hold:

• The domains satisfy dom zi ∩ ([0, T ] × {0, 1, . . . , Ki,T }) = Ei,T
and domui = dom zi;

• For all (t, k) ∈ Ei,T , ui(t, k) = ui(t), xi(t, k) = xi(t) andσi(t, k) = σi(ψi,k);

5 From the proof of Proposition 1, it will be clear that there exists a complete
solution zi such that in addition to (25), we also have σi(t, k) = σi(t) for all
(t, k) ∈ dom zi . But only (25) is required in the proof of Theorem 1.
• For all (t, k) ∈ Ei,T ,

τi(t, k) =


Γi, if k = 0,
min{Γi, τ̄s,i(t, k)}, if k > 0, σi(ψi,k) ∈ Ps,i,
τ̄u,i(t, k), if k > 0, σi(ψi,k) ∈ Pu,i,

(27)

where

τ̄s,i(t, k) := τi(ψi,k, k − 1)− ln(µi)+ γi(t − ψi,k),

τ̄u,i(t, k) := τ̄s,i(t, k)− (λs,i + λu,i)(t − ψi,k).
(28)

Wewill show that, if Assumption 1 is satisfied, the hybrid arc zi is a
complete solution to the hybrid system (23) with the hybrid inputui.

Indeed, by construction, zi andui are defined on the samehybrid
time domain and satisfy the dynamics of the hybrid system (23).
Then it remains to prove that zi is complete and zi(t, k) ∈ Ci ∪Di =

Zi, which amounts to showing the following properties:

1. By the Uniform ISS Lyapunov-Type Constraint in Assumption 1,
the solution xi to the i-th switched system in (6) is forward
complete and is thus defined for all t ∈ R≥0. Therefore dom zi is
unbounded in the t-direction andxi(t, k) ∈ Rni for all (t, k) ∈

dom zi.
2. As the range of the switching signal σi is Pi,σi(t, k) ∈ Pi for all
(t, k) ∈ dom zi.

3. From (27) and (28), it is clear that τi(t, k) ≤ Γi for all (t, k) ∈

dom zi. On the other hand, for any (t, k) ∈ dom zi, let (t0, k0) :=

argmax(s,l)∈dom zi{s + l ≤ t + k : τi(s, l) = Γi}. (Such
(t0, k0) always exists since τi(0, 0) = Γi.) Then according to the
Time-Ratio Constraint and the Average Dwell-Time Constraint
in Assumption 1 and the definitions of γi in (12) and Γi in (13),
we have

τi(t, k) = τi(t0, k0)− N(t, t0) ln(µi)+ Ts,i(t, t0)γi
+ Tu,i(t, t0)(γi − (λs,i + λu,i))

≥ Γi − (N0,i + (t − t0)/τa,i) ln(µi)+ (t − t0)γi
− (T0,i + ρi(t − t0))(λs,i + λu,i)

= (Γi − N0,i ln(µi)− T0,i(λs,i + λu,i))

+ (γi − ln(µi)/τa,i − ρi(λs,i + λu,i))(t − t0)
= 0.

Thus τi(t, k) ≥ 0 for all (t, k) ∈ dom zi.6

Therefore, the hybrid arc zi constructed above is a complete
solution to the hybrid system (23) with the hybrid inputui.7

4.3. Hybrid ISS Lyapunov functions

Consider the hybrid system (23). Define a function Vi:Zi →

R≥0 as

Vi(zi) := Vi,σi(xi) exp(τi), (29)

where functions Vi,pi , pi ∈ Pi are the ISS Lyapunov functions in
the Uniform ISS Lyapunov-Type Constraint in Assumption 1. For all
zi = (xi,σi, τi) ∈ Zi, since Vi,σi(xi) is C1 with respect toxi, Vi(zi) is
continuously differentiable with respect toxi and τi. We will show
that the following uniform ISS Lyapunov conditions are satisfied:

6 This property is equivalent to the fact that τi ≥ ln(µi)whenever a jump occurs,
since otherwise τ+

i < 0.
7 ByGoebel et al. [19, Proposition 2.10], for a hybrid systemwith local existence of

solutions, a solution is complete if it has no finite escape time and does not jump out
of the union of the jump set and the closure of the flow set. Unfortunately,we cannot
apply this result since in the hybrid system (23), the local existence of solutions
is not satisfied everywhere. In particular, at zi = (xi,σi, 0) where σi ∈ Pu,i , the
condition (VC) in [19, Proposition 2.10] does not hold. However, the hybrid arcs we
constructed will not arrive at such points.
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Proposition 2. Vi satisfies the following conditions:
1. ∃αi, αi ∈ K∞ such that for all zi ∈ Zi,

αi(|zi|Ai) ≤ Vi(zi) ≤ αi(|zi|Ai), (30)

where

Ai := 0ni × Pi × [0,Γi]. (31)

2. ∃ λi ∈ R>0 such that for all zi ∈ Ci, all ui ∈ Rmi and all
vi ∈ Fi(zi,ui),

|zi|Ai ≥ φi(|ui|) ⇒ V ◦

i (zi; vi) ≤ −λiVi(zi). (32)

3. For all zi ∈ Di and all z+

i ∈ Gi(zi),

Vi(z+

i ) ≤ Vi(zi). (33)

Proof. Based on the Uniform ISS Lyapunov-Type Constraint in
Assumption 1, we have:
1. Let

αi(r) := α1,i(r),
αi(r) := α2,i(r) exp(Γi),

(34)

then (30) is satisfied according to (8).
2. Let

λi := λs,i − γi, (35)

then λi > 0 by (12). For all zi ∈ Ci, allui ∈ Rmi and all vi ∈

Fi(zi,ui), since Vi(zi) is continuously differentiable with respect
toxi and τi, and ̇σ i = 0, the Clarke derivative in (32) is well-
defined. (In fact, the standard directional derivative exists and
is equal to the Clarke derivative, as one can see in the following
proof.) According to (9), |zi|Ai ≥ φi(|ui|) implies the following:
i. Ifσi ∈ Ps,i,

V ◦

i (zi; vi) =
∂Vi(zi)
∂zi

· vi

≤
∂Vi(xi,σi, τi)

∂xi · fi,σi(xi,ui)+
∂Vi(xi,σi, τi)

∂τi
· γi

≤
∂Vi,σi(xi)
∂xi · exp(τi)fi,σi(xi,ui)

+ Vi,σi(xi) exp(τi)γi
≤ −(λs,i − γi)Vi,σi(xi) exp(τi)
= −λiVi(zi).

ii. Ifσi ∈ Pu,i,

V ◦

i (zi; vi) =
∂Vi(zi)
∂zi

· vi

=
∂Vi(xi,σi, τi)

∂xi · fi,σi(xi,ui)

+
∂Vi(xi,σi, τi)

∂τi
· (γi − (λs,i + λu,i))

=
∂Vi,σi(xi)
∂xi · exp(τi)fi,σi(xi,ui)

+ Vi,σi(xi) exp(τi)(γi − (λs,i + λu,i))

≤ (λu,i + γi − (λs,i + λu,i))Vi,σi(xi) exp(τi)
= −λiVi(zi).

Thus (32) is satisfied.
3. For all zi ∈ Di and all z+

i ∈ Gi(zi), according to (10),

Vi(z+

i ) = Vi,σ+

i
(x+

i ) exp(τ
+

i )

≤ µiVi,σi(xi) exp(τi − ln(µi))

= Vi,σi(xi) exp(τi)
= Vi(zi).

Thus (33) is satisfied.
Remark 9. From the proof of Proposition 2, we see that the auxil-
iary timer τi is designed so that it compensates the increases in the
concatenation of the ISS Lyapunov-type function of the active sub-
system,Vi,σi(xi). Similar techniques can be found in [8] for switched
systems, [29] for impulsive systems and [22] for hybrid systems.
Our timer is more general in the sense that it is able to handle the
undesired increases of Vσ (x) both at the switches and when a non-
ISS subsystem is active. In the latter case, our construction provides
more decay in the auxiliary timer τi for compensation, as we can
see clearly in the definition of the flow map Fi (24).

4.4. Digression on ISS of the switched systems

In this subsection,wewill show that, for all i ∈ {1, 2}, the hybrid
ISS Lyapunov function Vi defined in (29) can be conveniently used
to prove the ISS property of the i-th switched system in (6). While
not directly related to the proof of Theorem 1, this result is pre-
sented here to show the advantage of our method in comparison
with that of [13]. More details on this result can be found in [27].

For all i ∈ {1, 2}, let αi ∈ K∞, βi ∈ KL be defined as
αi(r) := α−1

i (αi(φi(r))),
βi(r, t) := α−1

i (αi(r) exp(−λit)),

thenwehave the followingproposition, forwhich the proof is quite
standard and omitted here:

Proposition 3. Suppose zi is a complete solution to the hybrid
system (23) with a hybrid inputui. Then for all (t, k) ∈ dom zi,

|zi(t, k)|Ai ≤ βi(|zi(0, 0)|Ai , t)+ αi(∥ui∥(t,k)), (36)

where the set Ai is defined in (31).

Combining Propositions 1 and 3 gives that, for each solution xi
to the i-th switched system in (6) with an input ui and a switching
signal σi, if Assumption 1 holds, then xi satisfies

|xi(t)| ≤ βi(|xi(0)|, t)+ αi(∥ui∥t) ∀ t ∈ R≥0. (37)

Therefore, we have the following corollary, which has been first
proved by Müller and Liberzon [13] using trajectory analysis:

Corollary 2 ([13, Theorem 2]). For all i ∈ {1, 2}, the i-th switched
system in (6) is input-to-state stable if Assumption 1 holds with
constants satisfying (12) for nj = mi and xj = ui.

4.5. GAS of the interconnected switched system

As shown by Jiang et al. [6], the small-gain condition (15) im-
plies that there exists a K∞ function δ such that

χ−1
1 (r) > δ(r) > χ2(r) ∀ r ∈ R>0, (38)

and δ is C1 on R>0.
Let z = (z1, z2) ∈ Z1 × Z2 =: Z and define a function

V :Z → R≥0 as

V (z) := max{δ(V1(z1)), V2(z2)}, (39)

where functions V1, V2 are defined in (29). Since for all i ∈ {1, 2},
Vi is continuously differentiable with respect toxi and τi, and δ is
K∞ and C1 on R>0, V is locally Lipschitz and thus absolutely con-
tinuous and almost everywhere differentiable away from its zero
set (Rademacher’s theorem [30]). We will show that, according to
Proposition 2, V satisfies the following Lyapunov conditions:

1. ∃α, α ∈ K∞ such that

α(|z|A) ≤ V (z) ≤ α(|z|A) (40)

for all z ∈ Z, whereA := A1 ×A2, and setsA1,A2 are defined
in (31).

Guosong
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Indeed, let
α(r) := min{δ(α1(r/

√
2)), α2(r/

√
2)},

α(r) := max{δ(α1(r)), α2(r)},

where functions α1, α2, α1, α2 are defined in (34), then (40) is
satisfied according to (30). In particular, for all z ∈ Z,

α(|z|A) = min{δ(α1(|z|A/
√
2)), α2(|z|A/

√
2)}

≤ min

max{δ(α1(|z1|A1)), δ(α1(|z2|A2))},

max{α2(|z1|A1), α2(|z2|A2)}


≤ max{δ(α1(|z1|A1)), α2(|z2|A2)}

≤ max{δ(V1(z1)), V2(z2)}
= V (z).

2. There exists a continuous and positive definite function
h:R≥0 → R≥0 such that

V ◦(z; v) ≤ −h(V (z)) (41)

for all v ∈ F(z) and all z ∈ C1 × C2, where

F(z) :=


F1(z1, |z2|A2)
F2(z2, |z1|A1)


. (42)

Indeed, let h be defined as

h(r) := min{δ′(δ−1(r))λ1δ−1(r), λ2r},

where constants λ1, λ2 are defined in (35). As δ is K∞ and
C1 on R>0, h is continuous and positive definite. For all z ∈

C1 × C2 and all v = (v1, v2) such that v1 ∈ F1(z1, |z2|A2), v2 ∈

F2(z2, |z1|A1), consider the following three cases:
i. δ(V1(z1)) > V2(z2). Then V (z) = δ(V1(z1)) and, according

to (38),
V1(z1) ≥ δ−1(V2(z2)) > χ1(V2(z2)). (43)
By the definitions of χ1 (14) and αi, αi (34) and the
inequality (30), V1(z1) ≥ χ1(V2(z2)) implies |z1|A1 ≥

φ1(|z2|A2). Thus by (32),
V ◦(z; v) = δ′(V1(z1))V ◦

1 (z1; v1)
≤ −δ′(V1(z1))λ1V1(z1)
= −δ′(δ−1(V (z)))λ1δ−1(V (z))
≤ −h(V (z)).

ii. δ(V1(z1)) < V2(z2). Then V (z) = V2(z2) and, according to
(38),
V2(z2) ≥ δ(V1(z1)) > χ2(V1(z1)). (44)
By the definition of χ2 in (14) and αi, αi (34) and the
inequality (30), V2(z2) ≥ χ2(V1(z1)) implies |z2|A2 ≥

φ2(|z1|A1). Thus by (32),
V ◦(z; v) = V ◦

2 (z2; v2)
≤ −λ2V2(z2)
= −λ2V (z)
≤ −h(V (z)).

iii. δ(V1(z1)) = V2(z2). Then V (z) = δ(V1(z1)) = V2(z2), and
(43) and (44) are both satisfied. By virtue of [22, Lemma II.1],
which is a direct consequence of [28, Propositions 2.1.2 and
2.3.12], V ◦(z; v) is well-defined and satisfies
V ◦(z; v) ≤ max{δ′(V1(z1))V ◦

1 (z1; v1), V
◦

2 (z2; v2)}
≤ −h(V (z)),

where the last inequality follows directly from the proof of
the first two cases.

Thus (41) is satisfied.
3. For all z+

∈ G(z) and all z ∈ (Z1 × D2) ∪ (D1 × Z2),

V (z+) ≤ V (z), (45)
where

G(z) :=




G1(z1)
G2(z2)


if z ∈ D1 × D2,

{z1}
G2(z2)


if z ∈ Z1 × D2,

G1(z1)
{z2}


if z ∈ D1 × Z2.

(46)

Indeed, for all z ∈ (Z1×D2)∪(D1×Z2) and all z+
= (z+

1 , z
+

2 ) ∈

G(z), according to (33),

V (z+) ≤ max{δ(V1(z+

1 )), δ(V1(z1)), V2(z+

2 ), V2(z2)}
≤ max{δ(V1(z1)), V2(z2)}
= V (z).

Thus (45) is satisfied.

For all i ∈ {1, 2}, let z i = (xi, σ i, τ i) be a complete solution
to the hybrid system (23). By definition, dom z i is a hybrid time
domain. Define a hybrid arc z = (z1, z2) : dom z → Z1 × Z2 as
follows:
1. dom z is defined so that z jumps if and only if at least one of z1

and z2 jumps;
2. For all (t, k) ∈ dom z such that z does not jump at (t, k),

from the first condition, there exist unique k1, k2 such that
(t, k1) ∈ dom z1, (t, k2) ∈ dom z2. Let z1(t, k) = z1(t, k1) and
z2(t, k) = z2(t, k2).

3. For all (t, k) ∈ dom z such that (t, k + 1) ∈ dom z, for all
i ∈ {1, 2}, if there exists ki such that (t, ki), (t, ki +1) ∈ dom z i,
let zi(t, k) = z i(t, ki) and zi(t, k+ 1) = z i(t, ki + 1); otherwise,
there exists a unique ki such that (t, ki) ∈ dom z i and let
zi(t, k) = zi(t, k + 1) = z i(t, ki).

Remark 10. In fact, z is a complete solution to the following
interconnected hybrid system:
ż ∈ F(z), z ∈ C1 × C2,

z+
∈ G(z), z ∈ (Z1 × D2) ∪ (D1 × Z2),

where functions F ,G are defined in (42) and (46), respectively.

For all i ∈ {1, 2}, let zi = (xi,σi, τi). According to the definition
of the jump maps in the system dynamics (23), one sees that the
value ofxi does not change at jumps. Thusxi(t, k) = xi(t, ki) (47)

for all (t, k) ∈ dom z and all (t, ki) ∈ dom z i.
By definition, for all k ∈ Z≥0, z(t, k) is absolutely continuous

in t on Θz
k = {t : (t, k) ∈ dom z}. Since V is almost everywhere

differentiable and its Clarke derivative V ◦ satisfies (41), following
the argument in [31, p. 99], we conclude that, for all k ∈ Z≥0,
V (z(t, k)) is absolutely continuous in t onΘz

k and

dV (z(t, k))
dt

≤ −h(V (z(t, k))) a.e. onΘz
k . (48)

More precisely, for all k ∈ Z≥0, since z(t, k) is absolutely
continuous in t on Θz

k and V is locally Lipschitz, by definition, for
almost all t ∈ Θz

k and all v = ż(t, k) ∈ F(z(t, k)),

dV (z(t, k))
dt

= lim
h→0+

V (z(t, k)+ hv)− V (z(t, k))
h

≤ lim
h→0+

sup
w→z(t,k)

V (w + hv)− V (w)
h

= V ◦(z(t, k); v)
≤ −h(V (z(t, k))),

where the last inequality follows from (41).
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Remark 11. Consider the condition that either V1 or V2 is not con-
stant in any open set in Z1 or Z2, respectively, which is quite com-
mon for ISS Lyapunov functions. Under this additional condition,
the set {z = (z1, z2) : δ(V1(z1)) = V2(z2)} in case iii. in the proof
of (41) has zero Lebesgue measure. (If not, consider an open ball
contained in this set centered at (z∗

1 , z
∗

2 ), then δ(V1(z∗

1 )) = V2(z∗

2 ).
Without loss of generality, assume V2 is not constant in any open
set in Z2. Then there exists another point (z∗

1 , z
′

2) in this open ball
such that z ′

2 ≠ z∗

2 and V2(z ′

2) ≠ V2(z∗

2 ) = δ(V1(z∗

1 )), which contra-
dicts the assumption that this open ball is contained in the afore-
mentioned set.) Then, by virtue of [29, Lemma 1], it is sufficient to
conclude (48) from inequalities (43) and (44), and the analysis of
case (c) becomes unnecessary.

Based on (48), we claim that there exists βV ∈ KL such that

V (z(t, k)) ≤ βV (V (z(0, 0)), t) ∀ (t, k) ∈ dom z.

The proof essentially follows the proof of the comparison principle
for hybrid systems proposed by Cai and Teel [18, Lemma C.1]. The
only significant difference is that, at jump time instants, the func-
tion V here satisfies (45), which is aweaker condition comparing to
the second condition in [18, Lemma C.1], but it is sufficient for the
existence of a class KL function. Indeed, if the hybrid arc z jumps
at (θk+1, k) ∈ dom z (thus (θk+1, k + 1) ∈ dom z), by (45), V (z(θk+1,k+1))

V (z(θk+1,k))

ds
h(s)

≤ 0.

Following the proof of [18, Lemma C.1], it can be shown that V (z(t,k))

V (z(0,0))

ds
h(s)

≤ −t ∀ (t, k) ∈ dom z,

from which our claim follows exactly as in the proof of [23,
Lemma 4.4].

Letx = (x1,x2) and define β ∈ KL as

β(r, t) := α−1(βV (α(r), t)).

Then, according to (40) and the definition of set A,

|x(t, k)| ≤ β(|x(0, 0)|, t) ∀ (t, k) ∈ dom z.

Finally, let x = (x1, x2) be a solution to the interconnected
switched system (7). Then, according to (47) and Proposition 1,

|x(t)| ≤ β(|x(0)|, t) ∀ t ∈ R≥0,

that is, the interconnected switched system (7) is globally asymp-
totically stable. This completes the proof of Theorem 1.

5. Conclusions

Wehave studied the stability property of an interconnected sys-
tem consisting of two switched systems in the scenario where in
both switched systems there may exist some subsystems that are
not input-to-state stable. We have proved a small-gain theorem as
a sufficient condition that guarantees the global asymptotic stabil-
ity of the interconnected system via the hybrid system approach
and the construction of appropriate ISS Lyapunov functions.

In this paper, for each switched system, we have categorized its
subsystems by their ISS property (i.e., ISS or non-ISS). On the other
hand, we have only assumed an upper-bound on the effect of the
switches (i.e., Eq. (10)). This lack of symmetry has drawn our atten-
tion, and the case where switching between some of the subsys-
tems produces a stabilizing effect could possibly become a future
research topic.
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