ROBUST OBSERVERS and PECORA–CARROLL SYNCHRONIZATION with LIMITED INFORMATION

Boris Andrievsky and Alexander L. Fradkov
(Institute for Problems of Mechanical Engineering of Russian Academy of Sciences, St. Petersburg, Russia)

Daniel Liberzon
(University of Illinois, Urbana-Champaign, USA)
TALK OUTLINE

• Observers robust to measurement disturbances in ISS sense: formulation and Lyapunov condition
 [Shim–L, TAC, 2016]

• Application to robust synchronization: Lorenz chaotic system
 (this paper)
TALK OUTLINE

• Observers robust to measurement disturbances in ISS sense: formulation and Lyapunov condition

• Application to robust synchronization: Lorenz chaotic system
INPUT—to—STATE STABILITY (ISS) [Sontag '89]

System $\dot{x} = f(x, d)$ is ISS if its solutions satisfy

$$|x(t)| \leq \beta(|x(0)|, t) + \gamma\left(\|d\|_{[0,t]}\right)$$

where $\gamma \in \mathcal{K}_\infty$, $\beta(\cdot, t) \in \mathcal{K}_\infty$, $\beta(r, \cdot) \searrow 0$

ISS \iff existence of ISS Lyapunov function:

pos. def., rad. unbdd, C^1 function V satisfying

$$|x| \geq \rho(|d|) \Rightarrow \dot{V} < 0 \quad (\rho \in \mathcal{K}_\infty)$$

or equivalently

$$\dot{V} \leq -\alpha(|x|) + \chi(|d|) \quad (\alpha, \chi \in \mathcal{K}_\infty)$$
ROBUST OBSERVER DESIGN PROBLEM

Plant: \(\dot{x} = f(x, u), \quad y = h(x, d) \quad (x \in \mathbb{R}^n) \)

Observer: \(\dot{z} = F(z, y, u), \quad \hat{x} = H(z, y) \quad (z \in \mathbb{R}^m) \)

Full-order observer: \(\hat{x} = z, \quad m = n \); reduced-order: \(m < n \)

State estimation error: \(e := \hat{x} - x = H(z, h(x, d)) - x \)

Robustness issue: can have \(e \to 0 \) when \(d \equiv 0 \)

yet \(e \not\to \infty \) for arbitrarily small \(d \neq 0 \)
DISTURBANCE–to–ERROR STABILITY (DES)

Plant: \[\dot{x} = f(x, u), \quad y = h(x, d) \]
Observer: \[\dot{z} = F(z, y, u), \quad \hat{x} = H(z, y) \]
Estimation error: \[e := \hat{x} - x \]

ISS-like robustness notion: call observer DES if
\[|e(t)| \leq \beta(|e(0)|, t) + \gamma \left(\|d\|_{[0,t]} \right) \]
\[\beta \in \mathcal{KL}, \quad \gamma \in \mathcal{K}_{\infty} \]

Known conditions for this [Sontag–Wang ’97, Angeli ’02] are very strong

Also, DES is coordinate dependent as global error convergence is coordinate dependent: \[z \rightarrow x \not\Rightarrow \Phi(z) \rightarrow \Phi(x) \]

Path toward less restrictive, coordinate-invariant robustness property: impose DES only as long as \(x, u \) are bounded
QUASI–DISTURBANCE–to–ERROR STABILITY (qDES)

\[
\begin{align*}
\dot{x} &= f(x, u), \quad y = h(x, d) \\
\dot{z} &= F(z, y, u), \quad \hat{x} = H(z, y) \\
e &= \hat{x} - x
\end{align*}
\]

Definition: observer is quasi-Disturbance-to-Error Stable (qDES) if \(\forall K > 0 \ \exists \beta_K \in \mathcal{K}\mathcal{L}, \ \gamma_K \in \mathcal{K}\infty \) such that

\[
|e(t)| \leq \beta_K(|e(0)|, t) + \gamma_K(\|d\|_{[0,t]})
\]

whenever \(\|u\|_{[0,t]}, \|x\|_{[0,t]} \leq K \)

The qDES property is invariant to coordinate changes
REduced-Order qDES ObsErvers

Plant (after a coordinate change):

\[
\begin{align*}
\dot{x}_1 &= f_1(x_1, x_2, u) \\
\dot{x}_2 &= f_2(x_1, x_2, u) \\
y &= x_1 + d
\end{align*}
\]

 Observer:

\[
\begin{align*}
\dot{z} &= f_2(y, z, u) \\
\hat{x}_1 &= y \\
\hat{x}_2 &= z
\end{align*}
\]

\[
e := z - x_2, \quad V = V(e)
\]

\[
\dot{V} = \frac{\partial V}{\partial e}[f_2(x_1, x_2 + e, u) - f_2(x_1, x_2, u)]
\]

Assume this is \(-\alpha_3(|e|)\), then we have an asymptotic observer: \(e \to 0 \text{ when } d \equiv 0\)
REDUCED-ORDER qDES OBSERVERS

Plant (after a coordinate change):
\[
\dot{x}_1 = f_1(x_1, x_2, u) \\
\dot{x}_2 = f_2(x_1, x_2, u) \\
y = x_1 + d
\]

Observer:
\[
\dot{z} = f_2(y, z, u) \\
\hat{x}_1 = y \\
\hat{x}_2 = z
\]

\[e := z - x_2, \quad V = V(e)\]

\[
\dot{V} = \frac{\partial V}{\partial e} [f_2(y, x_2 + e, u) - f_2(x_1, x_2, u)]
\]

\[
\dot{V} = \frac{\partial V}{\partial e} [f_2(y, x_2 + e, u) - f_2(y, x_2, u)] + \frac{\partial V}{\partial e} [f_2(y, x_2, u) - f_2(x_1, x_2, u)]
\]

assumed to be \[\leq -\alpha_3(|e|)\]

upper-bounded by \[\phi_K(|d|)\]

assume this has norm \[\leq \alpha_4(|e|)\]

Then
\[
\dot{V} \leq -\alpha_3(|e|) + \alpha_4(|e|)\phi_K(|d|)
\]

whenever \[\|u\|[0,t], \|x\|[0,t] \leq K\]
REDUCED–ORDER qDES OBSERVERS

Plant (after a coordinate change):
\[\dot{x}_1 = f_1(x_1, x_2, u) \]
\[\dot{x}_2 = f_2(x_1, x_2, u) \]
\[y = x_1 + d \]

Observer:
\[\dot{z} = f_2(y, z, u) \]
\[\hat{x}_1 = y \]
\[\hat{x}_2 = z \]

Asymptotic ratio condition for qDES [L–Shim, TAC, 2015]:
\[\limsup_{r \to \infty} \frac{\alpha_4(r) \phi_K(s)}{\alpha_3(r)} < 1 \quad \forall s \iff \lim_{r \to \infty} \frac{\alpha_4(r)}{\alpha_3(r)} = 0 \]

If we have \(\alpha \in \mathcal{K}_\infty \) such that \(\alpha_3(r) \geq \alpha(r) \alpha_4(r) \)
then
\[\dot{V} \leq -[\alpha(|e|) - \phi_K(|d|)] \cdot \alpha_4(|e|) \]
\[\dot{V} \leq \text{when } 3(|e|) + -\alpha_4(\phi_K)(|d|) \cdot \dot{d}(|d|) \]

Can estimate ISS gain but only if \(\alpha \) is known
• Observers robust to measurement disturbances in ISS sense: formulation and Lyapunov condition

• Application to robust synchronization: Lorenz chaotic system
ROBUST PECORA–CARROLL SYNCHRONIZATION

Leader

\[
\begin{align*}
\dot{x}_1 &= f_1(x_1, x_2) \\
\dot{x}_2 &= f_2(x_1, x_2)
\end{align*}
\]

\[d \rightarrow y \rightarrow x_1 + y \rightarrow \hat{z} = f_2(y, z)\]

Follower

\[e := z - x_2\]

Robust synchronization: \(\forall K > 0 \ \exists \beta_K \in \mathcal{KL}, \gamma_K \in \mathcal{K}_\infty \) s.t.

\[
|e(t)| \leq \beta_K(|e(0)|, t) + \gamma_K(\|d\|_{[0,t]})
\]

whenever \(\|x\|_{[0,t]} \leq K \)

Equivalently: follower is a reduced-order qDES observer for leader

Sufficient condition from before: \(\exists V = V(e) \) s.t.

\[
\frac{\partial V}{\partial e} \leq \alpha_4(|e|), \quad \frac{\partial V}{\partial e}(e)(f_2(x_1, z) - f_2(x_1, x_2)) \leq -\alpha_3(|e|), \quad \text{and}
\]

\[
\lim_{r \to \infty} \frac{\alpha_4(r)}{\alpha_3(r)} = 0 \quad \text{(asymptotic ratio condition)}
\]
APPLICATION EXAMPLE

Lorenz system
Can show \(x \) is bounded using \(V(x) = x_1^2 + x_2^2 + (x_3 - \sigma - \theta)^2 \)

Can show qDES from \(d \) to \(e := \begin{pmatrix} z_2 - x_2 \\ z_3 - x_3 \end{pmatrix} \) using \(V(e) = e_2^2 + e_3^2 \)

For \(d \) arising from time sampling and quantization, we can derive an explicit bound on synchronization error which is inversely proportional to data rate (see paper for details)
CONCLUSIONS

Summary:
• qDES observer concept and Lyapunov condition
• Asymptotic ratio characterization of ISS
• Robust version of Pecora-Carroll synchronization scheme
• Application example: Lorenz system with sampled and quantized measurements

Other applications:
• Quantized output feedback control [with H. Shim, TAC 2016]
• Synchronization of electric power generators [with A. Domínguez-Garcia, ongoing work]