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Abstract— This article addresses the invertibility problem for
switched nonlinear systems affine in controls. The problem is
concerned with finding the input and switching signal uniquely
from given output and initial state. We extend the concept of
switch-singular pairs, introduced recently, to nonlinear systems
and develop a formula for checking if given state and output
form a switch-singular pair. We give a necessary and sufficient
condition for a switched system to be invertible, which says
that the subsystems should be invertible and there should
be no switch-singular pairs. When all the subsystems are
invertible, we present an algorithm for finding switching signals
and inputs that generate a given output in a finite interval
when there is a finite number of such switching signals and
inputs. Detailed examples are included to illustrate these newly
developed concepts.

. INTRODUCTION

question of left (resp. right) invertibility is, roughly speaking,
that of the injectivity (surjectivity) of this map.

System invertibility problems are of great importance from
theoretical and practical viewpoint and have been studied
extensively for fifty years, after being pioneered by Brockett-
Mesarovic [3]. The systematic study of invertibility for non-
switched nonlinear systems began with Hirschorn, who first
studied the single-input single-output (SISO) case [4], and
then generalized Silverman’s structure algorithm to multiple-
input multiple-output (MIMO) nonlinear systems [5]. Singh
[6] then modified the algorithm to cover a larger class of
systems. Isidori and Moog [7] used this algorithm to calcu-
late zero-output constrained dynamics and reduced inverse
system dynamics. The algorithm is also closely related to
the dynamic extension algorithm used to solve the dynamic

Switched systems consist of a family of dynamical substate feedback input-output decoupling problem [8, Sections

systems together with a switching signal that determines ttfe2 and 11.3]. The geometric methods have also been used by
active subsystem at each time instant. Switching behaviofdjmeijer [9]. A higher-level interpretation given by a linear-
can come from controller design, such as in switchinglgebraic framework, which also establishes links between
supervisory control [1] or gain scheduling control. Switchinghese algorithms and geometric approach, is presented by Di
can also be inherent by nature, such as when a physical pl&gnedetto et al. in [10]. We also recommend [11, Chapter
has the capability of undergoing several operational mod&3 for a useful survey on various invertibility techniques.
(e.g, an aircraft during different thrust modes, a walking The problem of invertibility for switched linear systems
robot during leg impact and leg swing modes, differenyvas introduced very recently in [2] where the authors
formations of a group of vehicles). Also, switched systemgsed Silverman’s structure algorithm to formulate conditions
may be viewed as higher-level abstractions of hybrid systenfi@" the invertibility of switched systems with continuous
obtained by neglecting the details of the discrete behaviglynamics. The problem of invertibility for discrete time
and instead considering switching signals from a suitabfWitched linear systems has been discussed in [12], [13]
class. As a result, switched systems have been a fochdt here, the authors assume that the switching sequence
of ongoing research and several results related to stabilitg, known and find the corrsponding input. In this paper, we
controllability, observability, and input-to-state stability ofmake no such assumption and adopt an approach similar
such systems have been published; see [1] for referencé®[2] to study the invertibility problem for continuous-time
More recenﬂy’ Vu and Liberzon introduced the prob|en§WitChed nonlinear Systems, affine in COﬂtrOlS, USing Singh’s
of invertibility of switched linear systems in [2]. In this nonlinear structure algorithi.Although the form of the
paper, we extend their methodology to study the problem #npain condition (invertibility of subsystems plus no switch-
invertibility of continuous-time switched nonlinear systemssingular pairs) is essentially similar to [2], the technical
which concerns with the following questioWhat is the details of checking the conditions are different because we

condition on the subsystems of a switched system so th&@rk with the nonlinear structure algorithm.

given an initial statexy and the corresponding output
generated with some switching sigrabnd inputu, we can
recover the switching signal and the input: uniquely?The

The basic idea is to do mode identification by utilizing
relationship among the outputs and the states of the sub-
systems and then use the nonlinear structure algorithm for

problem statement is analogous to the classical invertibilitgorresponding subsystem to recover the input. We can think

problem for non-switched systems. In fact, for every contrd?f non-switched systems as switched systems with constant

system with an output, we have an input-output map and tigwvitching signals. In this regard, the invertibility problem
for switched systems is an extension of the non-switched
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signal in addition to the input, based on the output and th®° such that the system is not invertible fgre )*°; and

initial state. its complementy® := Y\)* is the set of all outputs on
The paper is organized as follows. Section Il contains thehich the system is strongly invertible. All these notions

definitions of invertibility and the formal problem statementwill be developed formally in Section IV but here we give

The main result on left invertibility is presented in Sectioran example to illustrate their usage.

[ll. We then give a characterization of switch-singular pairs Example 1: Consider a non-switched nonlinear system

and the construction of inverse systems in Section IV. Awith two inputs and outputs,

algorithm for output generation is given in Section V along

; . . x1 T1u1
with an example. We conclude the article with some remark i = 2wy |, ( Y1 ) _ ( T ) . M=R?

on further research directions. . Y2 T2
I3 (%)
A. Nonlinear Non-switched Systems .
} i o Yy = T1uwg (2a)
The dynamics of a square nonlinear system affine in ) Z3i1 — Y102 + G1us
controls are given by: Y2 = (2b)

T
r.— &= f(z)+Gx)u= fz)+ >, gi(@)u;, 1) S0,y is in one-to-one correspondence withif z; # 0, and
’ y = h(x) 12 IS In one-to-one relation with if 7; # 0. Consequently,
_ 3 i i i
where z € M, an n-dimensional real connected smooththedsﬁtMa - f{x.e RI |21 # 0} s the inverse SQUb.mamfoId
manifold, for exampleR™; and f, g; are smooth vector fields and the set 0, singuiar out_putsj@ = {y(t) eR* | (t) =
onM, h: M — R™ is a smooth function. 0}. Note thz_it.y?(t) = 0 implies .thatrl(t) =0 oru(t) =0;
We start off by reviewing classical definitions of invert-59 the definition ofy* essentially depends upon the value

ibility for such systems. For that, consider the input-outpu‘?f state trajectories and input S|gnals.:1lft_) € M* and
(t) ¢ Y for all ¢ € [to,to + €), then there is a one-to-one

map H,, : & — Y for some input function spac& and Yi) s . . . .
the corresponding output function spae Since nonlinear relation between the output and input signals provided their

systems exhibit finite blow-up times, some input signalgorr('j"’“gS areihrets't[[:cted t[[%’to. Jri)‘ B% using t%r.iﬂmtlon L
may not have a well defined image in the output spact‘-.o{eF € uée al 1e _fys e;m Isths trct)rr:gy |ntver|1e._ . <]t'b|
over the same length of interval, under this map. We don't rom Example 1, itis clear that the system (1) is invertible

give a rigorous definition oH,, but use it, nevertheless, at every x < M® for the class of inputsu sugh that.
for better illustration. It is assumed that the outputs exi long the trajectory of the system (1), .th.e' refsultlng' motion
on the intervals considered. We do not specify the inp trh(t)’yt(rf)) de M_ ><fy ; Helnc_e, |nvtert|tb|gty IS ;Ch'e.t\;]ed
spacel/ at this moment as it depends upon the systen)é\f en the Odm,?[] ol 5|gnas.|s res,nce [ﬁa ) WO!
under consideration (see Section IV). Denotelhy(u) the % € [EO’B andt = 1n1n{|1_t > to: (x(t), y(t)) ¢ 'blx Y }f
trajectory of the corresponding system with the initial stat ot er words, a nonfinear sy_stem_ IS Invert ?‘m :
2o and the inputs, and the corresponding output BY. () or a given outputy/ over the time intervalty, 7], one

, o(u). , . .
In case of non-switched systems, the following notion ofan find TOE (to,7"] and & unique Input. over [tf)’ T.)
invertibility2 was introduced in [5]. such thatl'y) (up,, 7)) = Yp,,7)- SinceT can be arbitrarily

Definition 1: Consider the intervalty, 7] and the inputs small,l thi§ eXp'?iT‘.S why we rgquire arb?trarily_ sma!l time
w; and u, that are well-defined over this interval. Thedomains in Definition 1. We will generalize this notion of

system (1) isinvertible at a pointz := z(ty) € M if local invertibility to the switched systems.
0, (u1to,1)) = T, (2o, 7)) implies that3 e > 0 such that B, Switched Systems
Uilto.to-+e) = Unlto to+)- TNE System istrongly invertible at g4 family of systems defined by (1) generates a

a pointz if it is invertible for eachz & N(xo), whereN switched system and in this paper we will consider such

IS Some Open ne|g.hborhood 0b. The system |sstro.ngly switched nonlinear systems, affine in controls, that have the
invertible if there exists an open and dense submanifdiy following structure:

(called inverse submanifold) such that, € M“, the system

is strongly invertible atr. < po. { & = fo(x) + Go(x)u = fo(x) + 3270 (i) ()ui,
In general, the inverses of nonlinear dynamical systems’ | ¥ = hs()
are not defined globally. An open and dense subse¥lof (3)

on which the dynamics of a nonlinear system are invertibl¢hereo : [0,00) — P is the switching signal that indicates
is called theinverse submanifolénd is denoted bjuie, If ~ the active subsystem at every time, is some finite index

x € M\M®, we call it asingular pointas it is not possible S€t, andfy, Gy, h,, wherep € P, define the dynamics of
to invert the system starting from such an initial conditionindividual subsystems. The state spadés a connected real
In the most general construction of inverse systems as tfg00th manifold of dimension, for exampleR™; f,, (g:)p

one given by Singh [6], there exists a setsafigular outputs are real smooth vector fields &, andh,, : M — R™ is a
smooth function. A switching signal, as defined in [1], is a

2Throughout the paper invertibility refers to the left invertibility. piecewise constant and everywhere right-continuous function



that has a finite number of discontinuities which we call The invertibility problem for switched nonlinear systems
switching times on every bounded time interval and thusis now formally defined as:

o(t) = p € P, Vt € [r,7+1). We assume that all the The invertibility problem:Consider a (switching signat
subsystems are equi-dimensional, they live in the same stat@ut)-output maf,,, : S x & — Y for the switched system
spaceM], and that there is no state jump at switching timeg3). Find the largest possible sgt, an open dense set in
For any initial stater,, a switching signat, and a piecewise M and a condition on the subsystems such that for a given
continuous input: on any time domain, a solution of (3) outputy € ) over a finite time intervalty, T”], there exist
over the same domain always exists (in Cagatory sense) T € (¢, 7”] and a unique(o, u) over [ty, T') having the
and is unique, provided the flow of the active subsystem isroperty thatH.., (o, 1, Ujte, 7)) = Yjto,T)-

definedv¢ € [r;, 7;+1). In case of no switching this condition
is equivalent to forward completeness of the flow and we !ll. CHARACTERIZATION OF INVERTIBILITY

assume that each subsystem satisfies this conditiory Eor e now give conditions on the subsystem dynamics so
P, denote byl', ., (u) the trajectory of the corresponding that the mapH,, is injective for some sets, ¢/, and V.
subsystem .Wlth the |n|t|aIOstateO an_d the input, anc_i the  we do not explicitly specify what the input set and S
corresponding output by, (u). Since switching signals are put instead we specify the S8tand theri/ will be the
are right-continuous, the outputs are also right-continuo%rresponding set which, together with generates).
and whenever we take derivative of the output, we assume itgor 511 ) € P, let M@ be the inverse submanifold a,
is the nght denvapve. We wHI_use’-‘Pc to denote the Space y pe the set of sufficiently smodthoutputs that can be
of piecewise continuous functions, amdfor concatenation generated by, V3 be the set of singular outputs Bf,, and

1 p 1

of signals. . . Y2 be the set of outputs on whidh, is strongly invertible.
In case of switched systems (3), the “mali;, has an pefine s .— UpepY; as the collection of all singular

augmented domain, that is, now we have a (switching signg|,ints and lep*!! be the set of outputs generated by all the

x input)-output magi,, : § x U — Y, whereSis a switch- — ,qqjple concatenations of all element$yf p € P. Then
ing signal set. Let us first extend the definition of invertibility~,a .= Yall\ s is a set of outputs on which every subsystem

of non-switched systems to define the invertibility of the mag, strongly invertible. We consider outpuisc ) over a
Ha, f‘?r ,S.W'tCh_ed systems. ) finite interval[¢y, 7] and seek invertibility on a subinterval
Definition 2: Consider the intervalty,7] and the in- ito, T) C [to, T'] such that(oy,. 7. up, ) IS a unique

puts 7;1 dand uz that are Wgtl)ll-deflned over th's mtervqlf. A preimage ofyy, ). The first main result is about strong
switched system is invertible at a point, = z(to) i erinility at someay € M.

Hao (010,71, Utfto,1) = Hao (211,71 Uajto,11) = Yito, 115 Theorem 1: Consider the switched system (3) and the
implies that3 & > 0 Su?h thatory 1y, to-+e) = O2fto.to+e) AN output set). The switched system is strongly invertible
Uilto,tote) = U2ty tote)» tlh?t is, the pre(—jlma%e OH.””Oh'sd at zo € M for giveny € Y* if and only if there exists a
unique on some interval for givemo andy. A switche neighborhoodN (x¢) such that each subsystem is invertible
system is strongly invertible at a poing, if it is invertible at everyz € N(zo), and for allz € N(z), y € V*, the

at eachr_e N (o), WhefeN IS Some open ne|ghbor_hood of pairs (z,y) are not switch-singular pairs of',, I'; for all

xg. A switched system is strongly invertibifehere exists an p+q andp,qeP

open and dense submanifdi” of M such thatvzo € M*, To get some intuition behind the result, note that for any

the system is strongly mverqble a for gveny < y'. S outputy that is generated by the switched system, at any time
The reason we have a different notion of invertibility IS, \stantr. there existg € P such thaty(r) € YN V2. Since
because in switched systems, if a subsystem is invertible at I P

for a given non-sinaular out then it is possible that each subsysteri, is invertible, there exists a unique input
o 9 9 put P .which produces that output. Non existence of switch-singular
another subsystem might produce the same output startmg. S
pairs implies that no other system can produce the same

from the same initial condition. This means that the PreSutout even with different inout HencB= (y) = (o, u) is
image of H,, at such (zg, y) is not uniqgue and hence P put 2o \Y) =9

the switched system is not invertible at if such pairs unique.
. y S . b Proof. NecessityWe show that if any of the subsystems is
(wo, y) exist. We call all such pairswitch-singular pairg.

. ; ! - not strongly invertible at:, or if there exist switch-singular
The concept of switch-singular pairs for switched systems_. . : X .
airs, then the switched system is not invertible.

basically refers to the ability of more than one subsystem 2 . . .
produce a segment of the desired output starting from tr)s% rsnuepp(i):ealrtgi?:a? %?S%Stﬁ?ghpthee:; Ieingoteln;eart%bg?aat
same initial condition. The formal definition is given below: - Yy ¥lzo), e Y p’
Definition 3: Let 2y € M andy € ) on some time and inputsu; 7 up Over t'”;e '”ter"a'[fg’ to +¢) C [to, T,
interval. The pair £y, y) is a switch-singular pairof the for somee > 0 such thatl’, , (u1) = Iy, (u2) = Yito,to+e)-

T bz
is impli P - p _
two subsystems,, I, if there existu;, us such that This implies thatl.. (o7, u1) = Ha (0", ug) = y, and the map
F!?M«O (ul) = Fg.’lfg (UQ) =Y. <

H, is not injective for giveny. Hence, the switched system
is not invertible atx. Since there exists such in every

3This is similar to the concept of singular pairs conceived in [2]. We use
the term “switch-singular pair” to avoid conflict with the singularities of 4This assumption can be relaxed depending upon the system under
individual nonlinear subsystems. consideration as discussed in Section IV.



neighborhood ofry, it follows that the switched system is is, perhaps, the most interesting case. <
not strongly invertible atr.
For necessity of the second condition, suppose That IV. CHECKING INVERTIBILITY
N(zp), y € Y*NC>™ such that(z, y) is a switch-singular  In this section, we address the computational aspect of
pair of 'y, T'y, p # ¢. This means that both subsystemsthe concepts introduced in previous sections and develop
even though invertible at, can produce this output over the algebraic criteria for checking the invertibility of switched
interval [tg,to + ¢) C [to, T"], Ve > 0. Consequentlyd u;, Systems. The first condition in Theorem 1 asks for in-
uy (possibly same) on the corresponding interval such thaertibility of subsystems and is verified by the structure
Tgm(m) = ng(UQ) = y. Hence, we havél,(¢?,u;) = algorithm. To put everything into perspective, we provide
H,(c%,us) = y, that is the preimage of is not unique appropriate background related to the invertibility of non-
as o? # 9. This implies that the switched system is notswitched systems and use it to develop the concept of
invertible atx for given y € Y. Since there exists such functional reproducibility. To check ifzo, y) is a switch-
2 in every neighborhood ofy, it follows that the switched singular pair, we develop a formula using the functional
system is not strongly invertible af. reproducibility criteria of non-switched systems. Based on
Sufficiency Suppose that for givemy, € M, there exist these two mathematical characterizations and the result in
some inputsu;, us and switching signalg;, o, such that Theorem 1, we will be able to construct a switched inverse
H,, (01, u1) = Hy (o2, u2) = y € Y over [tp,T']. system for recovering the original input and switching signal
Initially, we haveo;(tg) = o2(tg) = p becausezg, y) is  uniquely.
not a switch-singular pair. Singee Y, andl’,, is invertible . .
at everyr e Ng(q:o),pﬂ - >Q’§ sajch thatupl[to,threl) _ A. Single-Input Single-Output (SISO) Systems
Usito to+e1) = Lpi® (Wpto,toten))s the output of the inverse ~ We start off with the case when all the subsystems are
subsystem. As there are no switch-singular pair&Vifx,), SISO because it gives more insight into computations and
J ez > 0 such thatoyp, 1g4e,) = T2t t0+es)- LELE = helps understand the concepts which we will later generalize
min{e;, g2}, then it follows from Definition 2 that the to multivariable systems. To this end, consider a SISO non-
switched system is invertible at everyc N(z) and hence linear system affine in controls (1) withh = 1 and assume
is strongly invertible atzg. O it has a relative degree at zy [15], i.e, 3 a neighborhood
Based on the result of Theorem 1, the conditions folN(zo) such thatLgL}flh(x) # 0 Vz € N(zg), where
strong invertibility of switched systems can be developedeh z) = B(L’;’lh(w))f(x) and L?h(m) — h(z). To check

I H f ox
Let M* := (1, My}, thenM is an open and dense subset; 'y, subsystem is invertible or not, we first derive an

of M beca_use it is a finite inters_ection of open gnd dens@xplicit expression for the input in terms of the output
subsets. Since, every subsystem is strongly invertibBI6n y by computing the derivatives of as follows:
we have the following result.

Corollary 1: The switched system (3) is strongly invertible y(t) = h(z(t)) (4a)
at everyzy € M® and fory € Y« if and only if Iy, g(t) = Lyh(z(t)) (4b)
Vp € P, is strongly invertible at every, € M and the
subsystem dynamics are such that the péirg y) are not

switch-singular pairs ofl',, I'y for all p # ¢, p,q € P, y(t) = Lh(z) +LgL;ﬁ1h(m)u(t) (4c)
Vxg € M, y € Y. < . ) .

It follows from the proof of the sufficiency part in From the last equation, we can derive an expression for
Theorem 1 that the switched system is strongly invertible Th
over the intervallty, T), where T € [to,f) and { := u(t) = — + y ) (9)

r—1 r—1
min{t > to : (x(t),y(t) ¢ M* x Y°}. If the output LoLy "h(z) — LeLy h(x)
y loses continuity over the intervalty, 7') because of Hence,u can be determined explicitly in terms of measured
switching, then(oy, 7y, Ui, 7)) = (Tlte,m)» Ulto,r)) -+ ©  outputy. On substituting the expression far from (5) in
(O1r,, 1) Uz, 1)), Wherek is the total number of switches in equation (1), one gets the dynamics for the inverse system:
the intervallty, T) andr;, i« = 1,--- , k, are the switching

instants. L= f(2) + g(z)( __Lyh(e) 4 1 Y™ (t))
Remark 1: For the switched system (3), if all subsystems LyLy  h(z)  LeL}y "h(z) ’

are globally invertible in addition to the hypothesis of Corol- L'h(z) 1 ™)

lary 1, that is,M® = M and Y* = 0, then the domain of «(t) = L) I Lr71h<z)y (t) (6)

signals can be arbitrary such &g,c0) and the switched s s

system is strongly invertible ofty, T), VT > t,. <« The dynamics of this inverse subsystem evolve on the set

Remark 2: If a subsystem has more inputs than outputdYl® := {z € M | L,L} 'h(z) # 0}. Since the inverse
then it cannot be (left) invertible. On the other hand, if it hasystem dynamics are driven y") () which satisfies equa-
more outputs than inputs, then some outputs are redunddian (4c), it is not hard to see that the state trajectories of the
(as far as the task of recovering the input is concernedjverse system satisfy the differential equation of the original
Thus, the case of input and output dimensions being equaystem (1). So if the inverse system is initialized with the



same initial condition as that of the plant, then both of thenodes

systems follow exactly the same trajectory. The discussion 1 + o 0
motivates the following result, given in [4]: BEE Lo + 1 u, M=R3
Lemma 1: A SISO system is strongly invertible af if P L1 T2
and only if the system has a finite relative degreat x. Y=
We developed the proof of the sufficiency part. The ] T2 0 5
necessity part, although intuitively clear, is proved rigorously r,:= r=| T2z |+ I |u, M=R
in [4]. —T2 2
Yy =2z

For SISO systems, the inputappears in the-th deriva- ) i ) ) ] ) )
tive of the output (4). Thus the differentiability/ smoothnesdl I'» 1S active, theny = a1 +z; if I'y is active, theny =
of u will not affect the existence of the first— 1 derivatives 272+ Both subsystems have relative degree 2Rgnwhich
of y. If u : [0,t) — R is a locally essentially bounded, can be \{erlﬁed bg/ taklng second de_r|vat|v_e of the qutpl_Jt. If
Lebesgue measurable function, thefi)(t) exists almost there existsc € R® which forms a switch-singular pair with
everywhere andy("~1(¢) is absolutely continuous [16]. ¥ € Y, NY,, then the following equality must be satisfied
So for SISO nonlinear non-switched systeris,can be x1 2xq
defined as the space of functions which are locally essentially ( ) = ( )
bounded and Lebesgue measurable; 3inchn be the set of
corresponding outputs.

xr1 + X9 2$2

which givesz; = x5 = 0. This state cons(traint yieldg =

. —a . . y(

We now turn to the concept of functional reproducibility,y = 0. Ifwe let y .= {y € Fr ( y(tg ) 70 W}’
which in broad terms means the ability to follow a given refthen there exists no switch-singular pair between R? and
erence signal. This concept will help us study the existenge € Y“. Theorem 1 and Lemma 1 infer that the switched
of switch-singular pairs. We look at the conditions undesystem generated b{l",,I',} is strongly invertible ony",
which a system can produce the desired outpuiver some Vo € R3. <
interval ¢y, T) starting from a particular initial statey. To We now have the tool set to check for the invertibility
be precise, given the system (1) with= 1 and initial state conditions given in Theorem 1. If these conditions are
o, we want to find out if there exists a contrelsuch that satisfied and the switched system is strongly invertible, a
l“g?0 (u) = ya(+). The following result was given in [4]: switched inverse system can be constructed to recover the
input and switching signat from given output and initial
state. For the switched inverse system, define ititex
inversion functiors ' : M® x Y — P as:

-1
S (w0, y) =p ¢ y €Yy and yM(to) = L} hy(zo) (9)

*) . wherek = 0,1,--- ,r, — 1, {y is the initial time ofy, and
Ya (to) = Lyh(zo)  Vk=0,1,---,r=1 (7) 20 = z(ty). The functionS ' is well-defined sincep is

This result is easy to comprehend by looking at theinique by the fact that there are no switch-singular pairs.
expressions for the output derivatives (4). As conti¢l) The existence op is guaranteed because it is assumed that
does not directly affecy®)(t), Vk = 1,---,7 — 1, their y € Y is an output. Thus, an inverse switched sysfen
values atty are determined by the initial state. The controls:
zé, ff)r vyhich Fg‘fo (u) = ya(+), is given by §) yvith y replaced o(t) = i_l(z(t),y(t)),

Y yq in that formula. We can now easily check for the L7 ho(2) Y (1)
switch-singular pairs among',,I'; with relative degrees <= fo(2) +g,,(z)(— L%Lfaflha(z) L%L;rlhd(z))’
T, T4 respectively, where, g € P. ult) = Lgho(z) | " ytoy

Loy L7 " ho(2) Loy L} T he(2)

Lemma 2: If the system (1), withn = 1 and z(ty) = o,
has a relative degree < co at x¢, then there exists a control
input « such thatl'$ (u) = y4(-) if and only if

Lemma 3: For SISO switched systen{s,, y) is a switch-
singular pair of two subsystenis, and T, if and only if ~Wwith the initial condition 2(tp) = zo. The notation(-),
yeY,NY, and denotes the object calculated for the subsystem with index

o(t). The initial conditiono (ty) determines the initial active
subsystem at the initial timg,, from which time onwards,

y h (0) the active subsystem indexes and the input as well as the
state are determined uniquely and simultaneously.

: (to) = : , K=D,qEP . :

YD) L7 b (o) B. Multiple-Input Multiple-Output (MIMO) Systems

I (8) For multiple-input multiple-output (MIMO) nonlinear sys-
. tems affine in controls (1), one uses tteucture algorithm
The example below illustrates the use of these concepts, compute the inverse. When a system is invertible, the

Example 2: Consider a SISO switched system with twostructure algorithm, or Singh'’s inversion algorithm, allows us



to express the input as a function of the output, its derivativeghere g,g’fg” consists of the firs{s;11 — si) rows. Since

and possibly some states. _ _ the last rows ofByyq (z, {51 < i < k,i < j < k}) are
The Structure Algorlthm:ThIS version of the algorlthm |inear|y dependent on the firsk+1 rows, we can write
closely follows the construction given in [10], which is a

slightly modified version of the algorithm in [6]. y1 = ax(x) + by (x)u,
Step 1:Calculate :

oh )y

§ = Lsh(z) + Leh(z)u = 5—[f(2) + G(x)ul et = g (2, (5011 < i < ki < j <k +1})
: ] <
and write it agy =: a1 (z)+b1(z)u. Defines; := rank b; (), + bkjrl(m’ 1z ‘41 <i<ki<j<kbu
which is the maximal rank ob; (z) in some neighborhood 5! = " *1(z, {311 <i <k +1,i <j <k +1})

of xz(, denoted asV;(xo). Permute, if necessary, the com- ) o . ) e
ponents of the output so that the fitst rows of by (z) are Where once again everything is rationalgff’. Finally, set

linearly dependent. Decompogeas IBk+I1I .= [B], b{,4]", which has full rank equal tes 1
. i N ocally.
j= ( hn ) _ ( a1 () + by (z)u ) End of Stepk + 1.
U1 a1 (z) + b1 (x)u By construction,s; < sy < --- < m. If for some integer

«a we haves, = m, then the algorithm terminates. We call
the relative ordeP of the system. Ifs,, < m, then such am
does not exist. The closed form expressiondois derived
from the a-th step of the structure algorithm which gives an
i1 = a1 (@) + bi(2)u, invertible matrixB,, := [b7,...,b%]” having full rank equal

= h'(z, 1) = a1 (x) + Fi(z) (@ —ai(z))  (10) to m in a neighborhoodV., () =: N (zo).

where ¢; consists of the firsk; rows of §. Since the last
m — s1 rows of by () are linearly dependent upon the first
s1 rows, there exists a matrik; () such that

o R - U1 ap
where the last equation is affine 4n. Finally, setB = - L ~
Bl(x) q m y 1(1’) u(t) — B;l : _ — B;l[Ya _ Aa}
Step k+1: Suppose that in steps 1 through, Yo Qo
1,58, 9™ have been defined so that _ o (12)
. ~ Note that the entries of the matrix3, are ra-
7 = a1(x) + by (2)u, tional functions of the derivatives of the output and

there may exist an output for which the rank @f,

: drops. All such outputs are called singular outputs and
g](ck) = i, {gl(j)l 1<i<k-1,i<j<k}) we define), := {ky € Jh)p |ranl;]Bﬁ(x,gé)(<)m§éx € J;f(aco)}

= () _ . Hence, we work withu such thatl'g, (u Yy, for any
. +Ab’“(x’ {gﬁ,) 1< Z <k _ 1’1. <j<k-—1}u, time instant. Comparing to the SISO case, we Had =
gy = 0P (@, g7 |1 <i < ki <j <k} Ly L'~ h(z) which is a function of the state only and thus
ntglere exists no singular output for SISO systems. Another
useful class of systems for whigly = () was discussed ify]
by Hirschorn. As was the case in SISO systems, substitution
of the expression for from (12) in (1) gives the dynamics of
the inverse system. These dynamics are defined on an open
and dense set® := {z € M |rank B, (z,y) = m,y ¢

where all the expressions on the right-hand side are ratio
functions of gjg”. Suppose also that the matri®;,
(bT,...,bFT (vertical stacking of the linearly independent
rows obtained at each step) has full rank equalstoin
Ni(zo). Then calculate

) a . ohE Y}
y,(fﬂ) = a—h’“[f(a:) + G(x)u] + Z Z ﬁyz(ﬁl) However, unlike in the SISO case, we need some differen-
x — — A\ o ) . i .
i=1 j=i 9U; tiability assumptions on the input signals to characterize the
and write it as input space for MIMO systems. In the structure algorithm,
(k1) ) _ o Step 1 giveg); that has already on the right-hand side and
O = app(e g7 |1 < i< ki< j<k+1}) the a-th step of the algorithm involve$j”’ |1 < i < a —

+ bi41 (z, {g§f>| 1<i<ki<j<kPu 11) Li<j<a}l Thusgf“_l) must be absolutely continuous

i . SO that~§a) exists almost everywhere. For the input space, it
Define Byy1 := [Bj, bya]” s and sp1 . rank Bit1. means that(®~1) must be Lebesgue measurable and locally
Permute, if necessary, the componentg/f") so that the  essentially bounded. These constraints characterize the input
first si41 rows of By are linearly independent. Decomposespacel/ for MIMO case.

@;ik“) as Based on the structure algorithm, we now study the

giety conditions for functional reproducibility of multivariable
~(k+1)
Yk o . (k+1) 5The term was coined in [5] and is weaker than the notion of vector
Yr+1 relative degree.



nonlinear systems. Using the notation derived in the structure This result gives the following condition for the verifica-

algorithm, denote by’ the vector tion of switch-singular pairs.
h(z) Lemma 5: For MIMO switched systems(xg,y) is a
X switch-singular pair of two subsysterb§, I, if and only
: 1 b (@) if y €Y,nY, and
Z(w g1, 3050) = : v
. . hi(z0)
a1 (g Gy, ~<a—1>> 4 , e {T0)
h (Ivyla yYa—1 U1 h,ﬁ(ffo,yﬁ
(13) _ = . (16)
and let . :
A — T — ) ~(a,—1
Y Yd y(a,@—l) h’nh 1(1;032/17"' 7y((1h,,—1 ))
R U ) Yd, where o, denotes the relative order of subsystemsand
g:= : s Yar= : Q4 L _p.
A(al1) (a—1) The procedure for constructing the inverse from this point
Ya-1 da—1 onwards is exactly the same as discussed earlier for the SISO
So Z is basically a concatenation of the expressions appeajase.
ing at each step of Singh’s structure algorithm which get
differentiated and} is the concatenation of the corresponding V. OUTPUT TRACKING
expressions on the left-hand side so that In the previous section, we considered the question of
Z(x L ~((x—1)) =0 left invertibility where the objective was to recovés, u)
Y Ya v= uniquely for ally in some output sep“. In this section,

The following result is along the same line as Lemma 2. we address a different problem which concerns with finding
Lemma 4: If the system given by equation (1) with(o, w) (that may not be unique) such thHt, (o, u) = yq
x(to) = wo has a relative order < oo, then there exists a for a given functiony, and a statery. For the invertibility

control inputu such thatl'$ (u) = yq(-) if and only if problem, we found conditions on the subsystems and the
. . (k) output set) so that the mapH,, is injective for all =
Jalto) = Z(x0,Ya, (to), -+ , 4, (to)) Yk =0,1,---,a=1 iy some subset. Here, we are given one partictlar v,)
(15)  and wish to find its preimage under the mHp,. For the

whereg, is defined as in (14). . _ __switched system (3), denote bii_' the preimage of a
An insightful geometric version of this result in terms of jetsnction Y,

spaces is given in [11]. Similarly to the SISO case, the idea

is that the portion of output which is not directly affected by H = {(0, v) : Hy(0, u) = ya} a7

u is determined initially by the value of state variables; an

the inputu, for W.h'Ch I, (u) = ya(-), Is given by (2) with H,! = 0. WhenH_!(y4) is a singleton, the mapl,, is

y replaced byy, in that formula. L mo o . o 0
Example 3: Consider the system given in Example 1. Thénvertlble aty. We want to find conditions and an algorithm

-1 -1 ; F i
vector g is the portion of the output that gets differentiateat0 generate_HwO (yd)_ whe_n H,; (ya) is a finite set. .
and therefore, We require the individual subsystems to be strongly in-

vertible because if this is not the case, then thetkgt(y,)

(iif yq 1S not in the image set ofl,, then by convention

R % R Yd, may be infinite. For a non-invertible non-switched nonlinear
y=1 % = Ya=| Y systen§, the matrix B;! in (12) is not defined and the
Y2 Yds expression for, is modified to:
and the vectoZ (z, y1,y2, ¥a, ) IS given by u(t) = Bl[ffa B fla} 4 K (2, Yo 1) (18)
Z1 . . .
Z(2, 1, Y2, a,) = Zo where K is a matrix wr]?se coly;nn~s fg;mj _ba5|s for the
Gay (23/71) null space ofB, and B] := B, (B.B,) " is a right

) ) pseudo-inverse oB3,. If an output is generated by some
By Lemma 4 and equation (2), if we havgi(to) = input u obtained from (18) with some initial state, then
Z (w0, 1(to), y2(to), ¥4, (fo)) then the control which pro- qye to arbitrary choice of, there always exist infinitely
ducesy, as an output, on a small interval, is given by yany different inputs that generate the same output with the

_ Yd. same initial state. Hence to avoid infinite loop reasoning, we
v = 21 will assume that the individual subsysteris are strongly

 T1d, — T3Yd, + Yd, Yds invertible for allp € . However, we do not assume that the
Uz = Vd, switched system is invertible as the subsystems may have

If ya(t) ¢ V* for all time instants and the Correspondingswnch-smgular pairs. We will only consider the functions

State traJECtorW(t) € Ma’ th?n th.e system can prOdUQ@ 8A non-switched system is not invertible if it has more inputs than outputs
as an output over arbitrary time interval. <1 orit doesn't satisfy the structure algorithm criteria.



ya(t) over finite time intervals so that there is only a finiteswitching times. Also by our concatenation notation: if at

number of switches under consideration.

any instant of time, the return of the procedure is an empty

We now present a switching inversion algorithm forset, then that branch of the search will be empty because
switched systems similar to the one given in [2]. They® 0 = 0.

algorithm takes the parameterg € M, y; € FP¢ (defined
over a finite interval) and returns the S8t '(yq). It uses
the index-matching mapX~! : M x FP¢ — 27 defined
as X Y(zo, yq) := p such thaty, € YV and y,y satisfies
(15), obtained via the structure algorithm I8f. The index-

Based on the semigroup property for the trajectories of
dynamical systems, the algorithm determines the preimage
on a subintervallto, t) of [tg, T) and then concatenates
these with the corresponding preimage on the rest of the
interval ¢, T'). If ¢ is the first switching time aftet,, then

matching map returns the indexes of the subsystems that &ve can finng;O1 (Yagto.+)) by singling out which subsystems

capable of generating; starting fromx. If the returned set
is empty, no subsystem is able to generate thastarting
from zo. In the algorithmI"; 1-C(y4) denotes the output of

are capable of generating,, ;) using the index-matching
map. The obvious candidate for first switching time, denoted
by ¢t* in the algorithm, is the time at which the output loses

the inverse subsystem;l. The concatenation of an elementsmoothness. Note that in the SISO casejs the time at

nandasetSisn® S :={n® (< S} By convention,
n & 0 = 0, Vn. Finally, the concatenation of two sefsand
TisSeT:={na(,nes (T}
begin H_ '( ya)
Let the domain ofy, be [to, T).
LetP:={peP: Ydlto,to+e) € Vp andxg € My, € > 0}
Lett* :=min{t € [to, T) : yapt,11¢) ¢ YV, for some
p € P, € > 0} otherwiset* =T.
Let P* = 2_1(3,'0, yd[tg,t(r‘rs))'
if P* = 0 then
Let A:=0
foreach p € P* do
Letx := I‘;’;O (Ydito,t+))
if 2 € My and ygp,,+) € Yy then
Let u =T, 1 (Yage 1))
T :={t € (to,t*) : (x(t),ya(t)) is a switch-
singular pair ofT',, ', for someq # p}.
if 7 is a finite setthen

foreach r € 7 do

let & :=T'p(u)(7)
A— AU
{(07t0.7)» Uto,r) @ He ' (yapr, 1)) }

Ise if 7 = 0 and t* < T then

let € :=T'p(u)(t*)

A — AU{(o114+), w) @ H * (Yaee 1)) }
else if 7 =@ andt* = T then

| A= AU{(o1,),u)}

D

else
L A:=0

else

L A:=0
else
L A:=0
return H!(yq) := A

end

which one of the first- — 1 derivatives of the output lose
continuity (see Section IV-A). But, it is entirely possible
that we have a switching and the output is still smooth at
that switching time because of a switch-singular pair (see
Example 4). The algorithm takes that into account and uses
a switch at a later time to recover a “hidden switch” earlier
(e.g. a switch at which the output is smooth). This makes the
switching inversion algorithm a recursive procedure calling
itself with different parameters within the main algorithm
(e.g.the functionH ! (ya) uses the returns af; ' (yapi- 1)).

The following example will help understand this algo-
rithm.

Example 4: Consider a switched system with two modes

. xix2 0 _ 2
o () o () s

Yy =12

. 0 er2 9
IPE x_(x1>+(e“)u’ M=R

Yy=x1

We wish to reconstruct the switching signal(t) and the
input «(¢) which will generate the following output:

[ cost iftelo,t)
ya(t) = { 2cost ift eft*, T)

wheret* = 7 and T = 4.5, with the given initial state
To = (07 1)T'

In this example, any state lying on the diagonalA :=
{(x1,22)" : 1 = x5} forms a switch-singular pair with the
output whose corresponding state trajectory hits the same
statex at any time.

We now use the above switching inversion algorithm to
find (o, u) such thatT'Q _(u) = y4. We haveP* :=

xo,0

If the return is a non-empty set, the set must be finite angd—1(z, Yajo,.+)) = {1} by using the index-matching map
contains pairs of switching signals and inputs that generaigith given 2, andy;(0) = 1. The inverse of'; on [0, t*)

the giveny, starting fromzy. If the return is an empty

is

set, it means that there is no switching signal and input

that generatey,, or there is an infinite number of possible

"The set2” denotes the set of all subsets of the Bet

L Z1%22 0 . a _ ™2
F;l: Z_( 0 )+(1>yd) Ml_R

u(t) = —z2 + Ya



with z(0) = o, which then gives

u(t) = —cost —sint

telo,t*).  (19)

We want to find7 := {t < t* : (2(t),yqp,++)) is @ switch-
singular pair ofl'1, I'; }, which is equivalent to solving
cost =x1(t) =0, te(0,¢%).

This equation has a solutian= /2 =: t; < t*, and hence
T = {t1}, a finite set. We have = z(t;) = (0,0)T and
we repeat the procedure for the initial stgtand the output
Yaje, ) With P* := S7H(E, yap, ) = {1,2}. We analyze
these two cases:

Case 1:p = 1. This impliest; is not a switching time and
u(t), z(t) are still given by (19) fort; <t < t*. Repeating
the procedure witlt = «(¢*) = (0, 0)” and ygp- 1) and
ya(t*) = —2, we observe thay,(t*) # z1(t*) and also

ya(t*) # xo(t*), thus the index-matching map returns an

empty setX ™" (&, yap-, 1)) = 0.
Case 2:p = 2, which means that; is a switching instant.
So we work with the inverse system bf,

(2)(

u(t) = e *2 gq

ryti{ 77 )yd, =R

with initial statez(¢;) = &, which gives

cost
2t) = ( cost +sint — 1 ) =elt) sy
u(t) — 7ecost+sint sint

We find 7T = {t; <t < t*: (x(t),yqp,+)) IS @ switch-
singular pair ofl'y, 'z}, which is equivalent to solving for

™ *
—=h <t<t' =7

cost = xo(t) = cost +sint — 1, 5

It is easy to see that this equation has no solution and thus

there exist no switch-singular pairs in interv@l, t*). So,
we let¢ = z(t*)
§ andygp¢+ 1), which gives the unique solutiom;. ) = 1
andup- 7y = —2(cost +sint).

Thus, the switching inversion algorithm returfas u), where

(1, —cost —sint), if 0<t<ty
(o, u) = (2, —ecostrsint ging) if 1 <t < t*
(1, —2(cost +sint)), ift*<t<T

(—1, —2)T and repeat the procedure with

VI. CONCLUSIONS

In this paper, we addressed the invertibility problem of
switched nonlinear systems. The concepts introduced in
[2] for the linear systems were extended to the nonlinear
systems. A necessary and sufficient condition for the invert-
ibility of switched systems was given which required the
invertibility of subsystems and the non-existence of switch-
singular pairs. We developed formulae for checking:if, v)
is a switch-singular pair of two subsystems and then gave an
algorithm to recover the input and switching signal from the
given output and initial state.

For future work, one interesting problem is to develop
conditions for checking the existence of switch-singular
pairs which are more constructive as it is in general not
feasible to verify (16) for every output and state. Another
research direction is to approach the problem geometrically
and investigate characterizations equivalent to non-existence
of switch-singular pairs to obtain geometric criteria for left
invertibility of switched systems.
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