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Abstract— This article addresses the invertibility problem for
switched nonlinear systems affine in controls. The problem is
concerned with finding the input and switching signal uniquely
from given output and initial state. We extend the concept of
switch-singular pairs, introduced recently, to nonlinear systems
and develop a formula for checking if given state and output
form a switch-singular pair. We give a necessary and sufficient
condition for a switched system to be invertible, which says
that the subsystems should be invertible and there should
be no switch-singular pairs. When all the subsystems are
invertible, we present an algorithm for finding switching signals
and inputs that generate a given output in a finite interval
when there is a finite number of such switching signals and
inputs. Detailed examples are included to illustrate these newly
developed concepts.

I. INTRODUCTION

Switched systems consist of a family of dynamical sub-
systems together with a switching signal that determines the
active subsystem at each time instant. Switching behaviors
can come from controller design, such as in switching
supervisory control [1] or gain scheduling control. Switching
can also be inherent by nature, such as when a physical plant
has the capability of undergoing several operational modes
(e.g., an aircraft during different thrust modes, a walking
robot during leg impact and leg swing modes, different
formations of a group of vehicles). Also, switched systems
may be viewed as higher-level abstractions of hybrid systems
obtained by neglecting the details of the discrete behavior
and instead considering switching signals from a suitable
class. As a result, switched systems have been a focus
of ongoing research and several results related to stability,
controllability, observability, and input-to-state stability of
such systems have been published; see [1] for references.
More recently, Vu and Liberzon introduced the problem
of invertibility of switched linear systems in [2]. In this
paper, we extend their methodology to study the problem of
invertibility of continuous-time switched nonlinear systems,
which concerns with the following question:What is the
condition on the subsystems of a switched system so that,
given an initial statex0 and the corresponding outputy
generated with some switching signalσ and inputu, we can
recover the switching signalσ and the inputu uniquely?The
problem statement is analogous to the classical invertibility
problem for non-switched systems. In fact, for every control
system with an output, we have an input-output map and the
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question of left (resp. right) invertibility is, roughly speaking,
that of the injectivity (surjectivity) of this map.

System invertibility problems are of great importance from
theoretical and practical viewpoint and have been studied
extensively for fifty years, after being pioneered by Brockett-
Mesarovic [3]. The systematic study of invertibility for non-
switched nonlinear systems began with Hirschorn, who first
studied the single-input single-output (SISO) case [4], and
then generalized Silverman’s structure algorithm to multiple-
input multiple-output (MIMO) nonlinear systems [5]. Singh
[6] then modified the algorithm to cover a larger class of
systems. Isidori and Moog [7] used this algorithm to calcu-
late zero-output constrained dynamics and reduced inverse
system dynamics. The algorithm is also closely related to
the dynamic extension algorithm used to solve the dynamic
state feedback input-output decoupling problem [8, Sections
8.2 and 11.3]. The geometric methods have also been used by
Nijmeijer [9]. A higher-level interpretation given by a linear-
algebraic framework, which also establishes links between
these algorithms and geometric approach, is presented by Di
Benedetto et al. in [10]. We also recommend [11, Chapter
5] for a useful survey on various invertibility techniques.

The problem of invertibility for switched linear systems
was introduced very recently in [2] where the authors
used Silverman’s structure algorithm to formulate conditions
for the invertibility of switched systems with continuous
dynamics. The problem of invertibility for discrete time
switched linear systems has been discussed in [12], [13]
but here, the authors assume that the switching sequence
is known and find the corrsponding input. In this paper, we
make no such assumption and adopt an approach similar
to [2] to study the invertibility problem for continuous-time
switched nonlinear systems, affine in controls, using Singh’s
nonlinear structure algorithm.1 Although the form of the
main condition (invertibility of subsystems plus no switch-
singular pairs) is essentially similar to [2], the technical
details of checking the conditions are different because we
work with the nonlinear structure algorithm.

The basic idea is to do mode identification by utilizing
relationship among the outputs and the states of the sub-
systems and then use the nonlinear structure algorithm for
corresponding subsystem to recover the input. We can think
of non-switched systems as switched systems with constant
switching signals. In this regard, the invertibility problem
for switched systems is an extension of the non-switched
counterpart in the sense that we have to recover the switching

1A related problem is discussed in [14] but it doesn’t follow the same
theoretical approach we do, and instead uses a heuristic approach with the
purpose of studying a specific application.



signal in addition to the input, based on the output and the
initial state.

The paper is organized as follows. Section II contains the
definitions of invertibility and the formal problem statement.
The main result on left invertibility is presented in Section
III. We then give a characterization of switch-singular pairs
and the construction of inverse systems in Section IV. An
algorithm for output generation is given in Section V along
with an example. We conclude the article with some remarks
on further research directions.

II. PRELIMINARIES

A. Nonlinear Non-switched Systems

The dynamics of a square nonlinear system affine in
controls are given by:

Γ :=
{

ẋ = f(x) + G(x)u = f(x) +
∑m

i=1 gi(x)ui,
y = h(x) (1)

where x ∈ M, an n-dimensional real connected smooth
manifold, for exampleRn; andf , gi are smooth vector fields
on M, h : M→ Rm is a smooth function.

We start off by reviewing classical definitions of invert-
ibility for such systems. For that, consider the input-output
map Hx0 : U → Y for some input function spaceU and
the corresponding output function spaceY. Since nonlinear
systems exhibit finite blow-up times, some input signals
may not have a well defined image in the output space,
over the same length of interval, under this map. We don’t
give a rigorous definition ofHx0 but use it, nevertheless,
for better illustration. It is assumed that the outputs exist
on the intervals considered. We do not specify the input
spaceU at this moment as it depends upon the system
under consideration (see Section IV). Denote byΓx0(u) the
trajectory of the corresponding system with the initial state
x0 and the inputu, and the corresponding output byΓO

x0
(u).

In case of non-switched systems, the following notion of
invertibility2 was introduced in [5].

Definition 1: Consider the interval[t0, T ] and the inputs
u1 and u2 that are well-defined over this interval. The
system (1) isinvertible at a pointx0 := x(t0) ∈ M if
ΓO

x0
(u1[t0,T ]) = ΓO

x0
(u2[t0,T ]) implies that∃ ε > 0 such that

u1[t0,t0+ε) = u2[t0,t0+ε). The system isstrongly invertible at
a point x0 if it is invertible for eachx ∈ N(x0), whereN
is some open neighborhood ofx0. The system isstrongly
invertible if there exists an open and dense submanifoldMα

(called inverse submanifold) such that∀x0 ∈Mα, the system
is strongly invertible atx0. C

In general, the inverses of nonlinear dynamical systems
are not defined globally. An open and dense subset ofM
on which the dynamics of a nonlinear system are invertible
is called theinverse submanifoldand is denoted byMα. If
x ∈ M\Mα, we call it asingular pointas it is not possible
to invert the system starting from such an initial condition.
In the most general construction of inverse systems as the
one given by Singh [6], there exists a set ofsingular outputs

2Throughout the paper invertibility refers to the left invertibility.

Ys such that the system is not invertible fory ∈ Ys; and
its complementYα := Y\Ys is the set of all outputs on
which the system is strongly invertible. All these notions
will be developed formally in Section IV but here we give
an example to illustrate their usage.

Example 1: Consider a non-switched nonlinear system
with two inputs and outputs, ẋ1

ẋ2

ẋ3

 =

 x1u1

x3u1

u2

 ,

(
y1

y2

)
=

(
x1

x2

)
, M = R3

We then have

ẏ1 = x1u1 (2a)

ÿ2 =
x3ÿ1 − ẏ1ẏ2 + ẏ1u2

x1
(2b)

So,y1 is in one-to-one correspondence withu1 if x1 6= 0, and
y2 is in one-to-one relation withu2 if ẏ1 6= 0. Consequently,
the setMα = {x ∈ R3 |x1 6= 0} is the inverse submanifold
and the set of singular outputs isYs = {y(t) ∈ R2 | ẏ1(t) =
0}. Note thatẏ1(t) = 0 implies thatx1(t) = 0 or u1(t) = 0;
so, the definition ofYs essentially depends upon the value
of state trajectories and input signals. Ifx(t) ∈ Mα and
y(t) /∈ Ys for all t ∈ [t0, t0 + ε), then there is a one-to-one
relation between the output and input signals provided their
domains are restricted to[t0, t0 + ε). By using Definition 1,
we deduce that the system is strongly invertible. C

From Example 1, it is clear that the system (1) is invertible
at every x ∈ Mα for the class of inputsu such that
along the trajectory of the system (1), the resulting motion
(x(t), y(t)) ∈ Mα × Yα. Hence, invertibility is achieved
when the domain of signals is restricted to[t0, T ) with
T ∈ [t0, t̄) and t̄ := min{t > t0 : (x(t), y(t)) /∈ Mα × Yα}.
In other words, a nonlinear system is invertible atx0 if
for a given outputy over the time interval[t0, T ′], one
can find T ∈ (t0, T ′] and a unique inputu over [t0, T )
such thatΓO

x0
(u[t0,T )) = y[t0,T ). SinceT can be arbitrarily

small, this explains why we require arbitrarily small time
domains in Definition 1. We will generalize this notion of
local invertibility to the switched systems.

B. Switched Systems

A finite family of systems defined by (1) generates a
switched system and in this paper we will consider such
switched nonlinear systems, affine in controls, that have the
following structure:

Γσ :
{

ẋ = fσ(x) + Gσ(x)u = fσ(x) +
∑m

i=1(gi)σ(x)ui,
y = hσ(x)

(3)
whereσ : [0,∞)→ P is the switching signal that indicates
the active subsystem at every time,P is some finite index
set, andfp, Gp, hp, wherep ∈ P, define the dynamics of
individual subsystems. The state spaceM is a connected real
smooth manifold of dimensionn, for exampleRn; fp, (gi)p

are real smooth vector fields onM, andhp : M→ Rm is a
smooth function. A switching signal, as defined in [1], is a
piecewise constant and everywhere right-continuous function



that has a finite number of discontinuitiesτi, which we call
switching times, on every bounded time interval and thus
σ(t) = p ∈ P, ∀ t ∈ [τi, τi+1). We assume that all the
subsystems are equi-dimensional, they live in the same state
spaceM, and that there is no state jump at switching times.
For any initial statex0, a switching signalσ, and a piecewise
continuous inputu on any time domain, a solution of (3)
over the same domain always exists (in Carathéodory sense)
and is unique, provided the flow of the active subsystem is
defined∀ t ∈ [τi, τi+1). In case of no switching this condition
is equivalent to forward completeness of the flow and we
assume that each subsystem satisfies this condition. Forp ∈
P, denote byΓp,x0(u) the trajectory of the corresponding
subsystem with the initial statex0 and the inputu, and the
corresponding output byΓO

p,x0
(u). Since switching signals

are right-continuous, the outputs are also right-continuous
and whenever we take derivative of the output, we assume it
is the right derivative. We will useFpc to denote the space
of piecewise continuous functions, and⊕ for concatenation
of signals.

In case of switched systems (3), the “map”Hx0 has an
augmented domain, that is, now we have a (switching signal
× input)-output mapHx0 : S × U → Y, whereS is a switch-
ing signal set. Let us first extend the definition of invertibility
of non-switched systems to define the invertibility of the map
Hx0 for switched systems.

Definition 2: Consider the interval[t0, T ] and the in-
puts u1 and u2 that are well-defined over this interval. A
switched system is invertible at a pointx0 := x(t0) if
Hx0(σ1[t0,T ], u1[t0,T ]) = Hx0(σ2[t0,T ], u2[t0,T ]) = y[t0,T ],
implies that∃ ε > 0 such thatσ1[t0,t0+ε) = σ2[t0,t0+ε) and
u1[t0,t0+ε) = u2[t0,t0+ε); that is, the pre-image ofHx0 is
unique on some interval for givenx0 and y. A switched
system is strongly invertible at a pointx0 if it is invertible
at eachx ∈ N(x0), whereN is some open neighborhood of
x0. A switched system is strongly invertibleif there exists an
open and dense submanifoldMα of M such that∀x0 ∈Mα,
the system is strongly invertible atx0 for given y ∈ Y. C

The reason we have a different notion of invertibility is
because in switched systems, if a subsystem is invertible at
x0 for a given non-singular outputy, then it is possible that
another subsystem might produce the same output starting
from the same initial condition. This means that the pre-
image of Hx0 at such (x0, y) is not unique and hence
the switched system is not invertible atx0 if such pairs
(x0, y) exist. We call all such pairsswitch-singular pairs3.
The concept of switch-singular pairs for switched systems
basically refers to the ability of more than one subsystem to
produce a segment of the desired output starting from the
same initial condition. The formal definition is given below:

Definition 3: Let x0 ∈ M and y ∈ Y on some time
interval. The pair (x0, y) is a switch-singular pairof the
two subsystemsΓp, Γq if there exist u1, u2 such that
ΓO

p,x0
(u1) = ΓO

q,x0
(u2) = y. C

3This is similar to the concept of singular pairs conceived in [2]. We use
the term “switch-singular pair” to avoid conflict with the singularities of
individual nonlinear subsystems.

The invertibility problem for switched nonlinear systems
is now formally defined as:

The invertibility problem:Consider a (switching signal×
input)-output mapHx0 : S × U → Y for the switched system
(3). Find the largest possible setY, an open dense set in
M and a condition on the subsystems such that for a given
outputy ∈ Y over a finite time interval[t0, T ′], there exist
T ∈ (t0, T ′] and a unique(σ, u) over [t0, T ) having the
property thatHx0(σ[t0,T ), u[t0,T )) = y[t0,T ).

III. CHARACTERIZATION OF INVERTIBILITY

We now give conditions on the subsystem dynamics so
that the mapHx0 is injective for some setsS, U , andY.
We do not explicitly specify what the input setsU and S
are but instead we specify the setY and thenU will be the
corresponding set which, together withS, generatesY.

For all p ∈ P, let Mα
p be the inverse submanifold ofΓp,

Yp be the set of sufficiently smooth4 outputs that can be
generated byΓp, Ys

p be the set of singular outputs ofΓp, and
Yα

p be the set of outputs on whichΓp is strongly invertible.
Define Ys := ∪p∈PYs

p as the collection of all singular
outputs and letYall be the set of outputs generated by all the
possible concatenations of all elements ofYp, ∀p ∈ P. Then
Yα := Yall\Ys is a set of outputs on which every subsystem
is strongly invertible. We consider outputsy ∈ Yα over a
finite interval [t0, T ′] and seek invertibility on a subinterval
[t0, T ) ⊂ [t0, T ′] such that(σ[t0, T ), u[t0, T )) is a unique
preimage ofy[t0, T ). The first main result is about strong
invertibility at somex0 ∈M.

Theorem 1: Consider the switched system (3) and the
output setYα. The switched system is strongly invertible
at x0 ∈ M for given y ∈ Yα if and only if there exists a
neighborhoodN(x0) such that each subsystem is invertible
at everyx ∈ N(x0), and for all x ∈ N(x0), y ∈ Yα, the
pairs (x, y) are not switch-singular pairs ofΓp, Γq for all
p 6= q, and p, q ∈ P.

To get some intuition behind the result, note that for any
outputy that is generated by the switched system, at any time
instantτ , there existsp ∈ P such thaty(τ) ∈ Y ∩Yα

p . Since
each subsystemΓp is invertible, there exists a unique input
which produces that output. Non existence of switch-singular
pairs implies that no other system can produce the same
output even with different input. Hence,H−1

x0
(y) = (σ, u) is

unique.
Proof. Necessity: We show that if any of the subsystems is

not strongly invertible atx0 or if there exist switch-singular
pairs, then the switched system is not invertible.

Suppose that a subsystemΓp, p ∈ P is not invertible at
somex in arbitrary N(x0), then there existy ∈ Yα ∩ Yα

p ,
and inputsu1 6= u2 over time interval[t0, t0 + ε) ⊂ [t0, T ′],
for someε > 0 such thatΓO

p,x(u1) = ΓO
p,x(u2) = y[t0,t0+ε).

This implies thatHx(σp, u1) = Hx(σp, u2) = y, and the map
Hx is not injective for giveny. Hence, the switched system
is not invertible atx. Since there exists suchx in every

4This assumption can be relaxed depending upon the system under
consideration as discussed in Section IV.



neighborhood ofx0, it follows that the switched system is
not strongly invertible atx0.

For necessity of the second condition, suppose that∃x ∈
N(x0), y ∈ Yα ∩ C∞ such that(x, y) is a switch-singular
pair of Γp, Γq, p 6= q. This means that both subsystems,
even though invertible atx, can produce this output over the
interval [t0, t0 + ε) ⊂ [t0, T ′], ∀ε > 0. Consequently,∃ u1,
u2 (possibly same) on the corresponding interval such that
ΓO

p,x(u1) = ΓO
q,x(u2) = y. Hence, we haveHx(σp, u1) =

Hx(σq, u2) = y, that is the preimage ofy is not unique
as σp 6= σq. This implies that the switched system is not
invertible at x for given y ∈ Yα. Since there exists such
x in every neighborhood ofx0, it follows that the switched
system is not strongly invertible atx0.

Sufficiency: Suppose that for givenx0 ∈ M, there exist
some inputsu1, u2 and switching signalsσ1, σ2 such that
Hx0(σ1, u1) = Hx0(σ2, u2) = y ∈ Yα over [t0, T ′].
Initially, we haveσ1(t0) = σ2(t0) = p because(x0, y) is
not a switch-singular pair. Sincey ∈ Yα

p , andΓp is invertible
at everyx ∈ N(x0), ∃ ε1 > 0 such thatu1[t0,t0+ε1) =
u2[t0,t0+ε1) = Γ−1,O

p,x (y[t0,t0+ε1)), the output of the inverse
subsystem. As there are no switch-singular pairs inN(x0),
∃ ε2 > 0 such thatσ1[t0,t0+ε2) = σ2[t0,t0+ε2). Let ε =
min{ε1, ε2}, then it follows from Definition 2 that the
switched system is invertible at everyx ∈ N(x0) and hence
is strongly invertible atx0. �

Based on the result of Theorem 1, the conditions for
strong invertibility of switched systems can be developed.
Let Mα :=

⋂
p∈P Mα

p , thenMα is an open and dense subset
of M because it is a finite intersection of open and dense
subsets. Since, every subsystem is strongly invertible onMα,
we have the following result.

Corollary 1: The switched system (3) is strongly invertible
at every x0 ∈ Mα and for y ∈ Yα if and only if Γp,
∀ p ∈ P, is strongly invertible at everyx0 ∈ Mα

p and the
subsystem dynamics are such that the pairs(x0, y) are not
switch-singular pairs ofΓp, Γq for all p 6= q, p, q ∈ P,
∀x0 ∈Mα, y ∈ Yα. C

It follows from the proof of the sufficiency part in
Theorem 1 that the switched system is strongly invertible
over the interval [t0, T ), where T ∈ [t0, t̄) and t̄ :=
min{t > t0 : (x(t), y(t)) /∈ Mα × Yα}. If the output
y loses continuity over the interval[t0, T ) because of
switching, then(σ[t0,T ), u[t0,T )) = (σ[t0,τ1), u[t0,τ1))⊕ · · · ⊕
(σ[τk,T ), u[τk,T )), wherek is the total number of switches in
the interval[t0, T ) and τi, i = 1, · · · , k, are the switching
instants.

Remark 1: For the switched system (3), if all subsystems
are globally invertible in addition to the hypothesis of Corol-
lary 1, that is,Mα = M andYs = ∅, then the domain of
signals can be arbitrary such as[t0,∞) and the switched
system is strongly invertible on[t0, T ), ∀T > t0. C

Remark 2: If a subsystem has more inputs than outputs,
then it cannot be (left) invertible. On the other hand, if it has
more outputs than inputs, then some outputs are redundant
(as far as the task of recovering the input is concerned).
Thus, the case of input and output dimensions being equal

is, perhaps, the most interesting case. C

IV. CHECKING INVERTIBILITY

In this section, we address the computational aspect of
the concepts introduced in previous sections and develop
algebraic criteria for checking the invertibility of switched
systems. The first condition in Theorem 1 asks for in-
vertibility of subsystems and is verified by the structure
algorithm. To put everything into perspective, we provide
appropriate background related to the invertibility of non-
switched systems and use it to develop the concept of
functional reproducibility. To check if(x0, y) is a switch-
singular pair, we develop a formula using the functional
reproducibility criteria of non-switched systems. Based on
these two mathematical characterizations and the result in
Theorem 1, we will be able to construct a switched inverse
system for recovering the original input and switching signal
uniquely.

A. Single-Input Single-Output (SISO) Systems

We start off with the case when all the subsystems are
SISO because it gives more insight into computations and
helps understand the concepts which we will later generalize
to multivariable systems. To this end, consider a SISO non-
linear system affine in controls (1) withm = 1 and assume
it has a relative degreer at x0 [15], i.e, ∃ a neighborhood
N(x0) such thatLgL

r−1
f h(x) 6= 0 ∀x ∈ N(x0), where

Lk
fh(x) =

∂(Lk−1
f h(x))

∂x f(x) and L0
fh(x) = h(x). To check

if the subsystem is invertible or not, we first derive an
explicit expression for the inputu in terms of the output
y by computing the derivatives ofy as follows:

y(t) = h(x(t)) (4a)

ẏ(t) = Lfh(x(t)) (4b)
...

y(r)(t) = Lr
fh(x) + LgL

r−1
f h(x)u(t) (4c)

From the last equation, we can derive an expression foru(t):

u(t) = −
Lr

fh(x)

LgL
r−1
f h(x)

+
1

LgL
r−1
f h(x)

y(r)(t) (5)

Hence,u can be determined explicitly in terms of measured
output y. On substituting the expression foru from (5) in
equation (1), one gets the dynamics for the inverse system:

ż = f(z) + g(z)
(
−

Lr
fh(z)

LgL
r−1
f h(z)

+
1

LgL
r−1
f h(z)

y(r)(t)
)
,

u(t) = −
Lr

fh(z)

LgL
r−1
f h(z)

+
1

LgL
r−1
f h(z)

y(r)(t) (6)

The dynamics of this inverse subsystem evolve on the set
Mα := {z ∈ M | LgL

r−1
f h(z) 6= 0}. Since the inverse

system dynamics are driven byy(r)(t) which satisfies equa-
tion (4c), it is not hard to see that the state trajectories of the
inverse system satisfy the differential equation of the original
system (1). So if the inverse system is initialized with the



same initial condition as that of the plant, then both of the
systems follow exactly the same trajectory. The discussion
motivates the following result, given in [4]:

Lemma 1: A SISO system is strongly invertible atx0 if
and only if the system has a finite relative degreer at x0.

We developed the proof of the sufficiency part. The
necessity part, although intuitively clear, is proved rigorously
in [4].

For SISO systems, the inputu appears in ther-th deriva-
tive of the output (4). Thus the differentiability/ smoothness
of u will not affect the existence of the firstr−1 derivatives
of y. If u : [0, t) → R is a locally essentially bounded,
Lebesgue measurable function, theny(r)(t) exists almost
everywhere andy(r−1)(t) is absolutely continuous [16].
So for SISO nonlinear non-switched systems,U can be
defined as the space of functions which are locally essentially
bounded and Lebesgue measurable; andY can be the set of
corresponding outputs.

We now turn to the concept of functional reproducibility,
which in broad terms means the ability to follow a given ref-
erence signal. This concept will help us study the existence
of switch-singular pairs. We look at the conditions under
which a system can produce the desired outputyd over some
interval [t0, T ) starting from a particular initial statex0. To
be precise, given the system (1) withm = 1 and initial state
x0, we want to find out if there exists a controlu such that
ΓO

x0
(u) = yd(·). The following result was given in [4]:

Lemma 2: If the system (1), withm = 1 andx(t0) = x0,
has a relative degreer <∞ at x0, then there exists a control
input u such thatΓO

x0
(u) = yd(·) if and only if

y
(k)
d (t0) = Lk

fh(x0) ∀ k = 0, 1, · · · , r − 1 (7)

This result is easy to comprehend by looking at the
expressions for the output derivatives (4). As controlu(t)
does not directly affecty(k)(t), ∀k = 1, · · · , r − 1, their
values att0 are determined by the initial state. The control
u, for which ΓO

x0
(u) = yd(·), is given by (5) with y replaced

by yd in that formula. We can now easily check for the
switch-singular pairs amongΓp,Γq with relative degrees
rp, rq respectively, wherep, q ∈ P.

Lemma 3: For SISO switched systems,(x0, y) is a switch-
singular pair of two subsystemsΓp and Γq if and only if
y ∈ Yp ∩ Yq and

 y
...

y(rκ−1)

 (t0) =

 hκ(x0)
...

Lrκ−1
fκ

hκ(x0)

 , κ = p, q ∈ P

(8)

The example below illustrates the use of these concepts.

Example 2: Consider a SISO switched system with two

modes

Γp :=

 ẋ =

 x1 + x2

x2

x1x2

 +

 0
1
x2

 u, M = R3

y = x1

Γq :=

 ẋ =

 x2

x2x3

−x2

 +

 0
1
x2

 u, M = R3

y = 2x1

If Γp is active, thenẏ = x1 + x2; if Γq is active, thenẏ =
2x2. Both subsystems have relative degree 2 onR3 which
can be verified by taking second derivative of the output. If
there existsx ∈ R3 which forms a switch-singular pair with
y ∈ Yp ∩ Yq, then the following equality must be satisfied(

x1

x1 + x2

)
=

(
2x1

2x2

)
which givesx1 = x2 = 0. This state constraint yieldsy =

ẏ = 0. If we let Yα
:=

{
y ∈ Fpc :

(
y(t)
ẏ(t)

)
6= 0 ∀t

}
,

then there exists no switch-singular pair betweenx ∈ R3 and
y ∈ Yα

. Theorem 1 and Lemma 1 infer that the switched
system generated by{Γp,Γq} is strongly invertible onYα

,
∀x0 ∈ R3. C

We now have the tool set to check for the invertibility
conditions given in Theorem 1. If these conditions are
satisfied and the switched system is strongly invertible, a
switched inverse system can be constructed to recover the
input and switching signalσ from given output and initial
state. For the switched inverse system, define theindex
inversion functionΣ

−1
: Mα × Yα → P as:

Σ
−1

(x0, y) = p : y ∈ Yp and y(k)(t0) = Lk
fp

hp(x0) (9)

wherek = 0, 1, · · · , rp − 1, t0 is the initial time ofy, and
x0 = x(t0). The functionΣ

−1
is well-defined sincep is

unique by the fact that there are no switch-singular pairs.
The existence ofp is guaranteed because it is assumed that
y ∈ Yα is an output. Thus, an inverse switched systemΓ−1

σ

is:

σ(t) = Σ
−1

(z(t), y(t)),

ż = fσ(z) + gσ(z)
(
− Lrσ

fσ
hσ(z)

Lgσ Lrσ−1
fσ

hσ(z)
+ y(rσ)(t)

Lgσ Lrσ−1
fσ

hσ(z)

)
,

u(t) = − Lrσ
fσ

hσ(z)

Lgσ Lrσ−1
fσ

hσ(z)
+ y(rσ)(t)

Lgσ Lrσ−1
fσ

hσ(z)

with the initial condition z(t0) = x0. The notation(·)σ

denotes the object calculated for the subsystem with index
σ(t). The initial conditionσ(t0) determines the initial active
subsystem at the initial timet0, from which time onwards,
the active subsystem indexes and the input as well as the
state are determined uniquely and simultaneously.

B. Multiple-Input Multiple-Output (MIMO) Systems

For multiple-input multiple-output (MIMO) nonlinear sys-
tems affine in controls (1), one uses thestructure algorithm
to compute the inverse. When a system is invertible, the
structure algorithm, or Singh’s inversion algorithm, allows us



to express the input as a function of the output, its derivatives
and possibly some states.

The Structure Algorithm:This version of the algorithm
closely follows the construction given in [10], which is a
slightly modified version of the algorithm in [6].

Step 1:Calculate

ẏ = Lfh(x) + LGh(x)u =
∂h

∂x
[f(x) + G(x)u]

and write it asẏ =: a1(x)+b1(x)u. Defines1 := rank b1(x),
which is the maximal rank ofb1(x) in some neighborhood
of x0, denoted asN1(x0). Permute, if necessary, the com-
ponents of the output so that the firsts1 rows of b1(x) are
linearly dependent. Decomposey as

ẏ =
( ˙̃y1

˙̂y1

)
=

(
ã1(x) + b̃1(x)u
â1(x) + b̂1(x)u

)
where ˙̃y1 consists of the firsts1 rows of ẏ. Since the last
m − s1 rows of b1(x) are linearly dependent upon the first
s1 rows, there exists a matrixF1(x) such that

˙̃y1 = ã1(x) + b̃1(x)u,

˙̂y1 = ĥ1(x, ˙̃y1) = â1(x) + F1(x)( ˙̃y1 − ã1(x)) (10)

where the last equation is affine iñ̇y1. Finally, setB̃1(x) :=
b̃1(x).

Step k+1: Suppose that in steps 1 throughk,
˙̃y1, . . . , ỹ

(k)
k , ŷ

(k)
k have been defined so that

˙̃y1 = ã1(x) + b̃1(x)u,

...

ỹ
(k)
k = ãk(x, {ỹ(j)

i | 1 ≤ i ≤ k − 1, i ≤ j ≤ k})
+ b̃k(x, {ỹ(j)

i | 1 ≤ i ≤ k − 1, i ≤ j ≤ k − 1})u,

ŷ
(k)
k = ĥk(x, {ỹ(j)

i | 1 ≤ i ≤ k, i ≤ j ≤ k})

where all the expressions on the right-hand side are rational
functions of ỹ

(j)
i . Suppose also that the matrix̃Bk :=

[b̃T
1 , . . . , b̃T

k ]T (vertical stacking of the linearly independent
rows obtained at each step) has full rank equal tosk in
Nk(x0). Then calculate

ŷ
(k+1)
k =

∂

∂x
ĥk[f(x) + G(x)u] +

k∑
i=1

k∑
j=i

∂ĥk

∂ỹ
(j)
i

ỹ
(j+1)
i

and write it as

ŷ
(k+1)
k = ak+1(x, {ỹ(j)

i | 1 ≤ i ≤ k, i ≤ j ≤ k + 1})
+ bk+1(x, {ỹ(j)

i | 1 ≤ i ≤ k, i ≤ j ≤ k})u (11)

Define Bk+1 := [B̃T
k , bT

k+1]
T , and sk+1 := rankBk+1.

Permute, if necessary, the components ofŷ
(k+1)
k so that the

first sk+1 rows ofBk+1 are linearly independent. Decompose
ŷ
(k+1)
k as

ŷ
(k+1)
k =

 ỹ
(k+1)
k+1

ŷ
(k+1)
k+1



where ỹ
(k+1)
k+1 consists of the first(sk+1 − sk) rows. Since

the last rows ofBk+1(x, {ỹ(j)
i | 1 ≤ i ≤ k, i ≤ j ≤ k}) are

linearly dependent on the firstsk+1 rows, we can write

˙̃y1 = ã1(x) + b̃1(x)u,

...

ỹ
(k+1)
k+1 = ãk+1(x, {ỹ(j)

i | 1 ≤ i ≤ k, i ≤ j ≤ k + 1})

+ b̃k+1(x, {ỹ(j)
i | 1 ≤ i ≤ k, i ≤ j ≤ k})u,

ŷ
(k+1)
k+1 = ĥk+1(x, {ỹ(j)

i | 1 ≤ i ≤ k + 1, i ≤ j ≤ k + 1})

where once again everything is rational inỹ
(j)
i . Finally, set

B̃k+1 := [B̃T
k , b̃T

k+1]
T , which has full rank equal tosk+1

locally.
End of Stepk + 1.

By construction,s1 ≤ s2 ≤ · · · ≤ m. If for some integer
α we havesα = m, then the algorithm terminates. We callα
the relative order5 of the system. Ifsn < m, then such anα
does not exist. The closed form expression foru is derived
from theα-th step of the structure algorithm which gives an
invertible matrixB̃α := [b̃T

1 , . . . , b̃T
α ]T having full rank equal

to m in a neighborhoodNα(x0) =: N(x0).

u(t) = B̃−1
α




˙̃y1

...
˙̃yα

−
 ã1

...
ãα


 =: B̃−1

α [Ỹα − Ãα]

(12)
Note that the entries of the matrixB̃α are ra-

tional functions of the derivatives of the output and
there may exist an output for which the rank of̃Bα

drops. All such outputs are called singular outputs and
we defineYs

p := {y ∈ Yp | rank B̃α(x, y) < m,x ∈ N(x0)}.
Hence, we work withu such thatΓO

x0
(u) /∈ Ys

p for any
time instant. Comparing to the SISO case, we hadB̃α =
LgL

r−1
f h(x) which is a function of the state only and thus

there exists no singular output for SISO systems. Another
useful class of systems for whichYs

p = ∅ was discussed in[5]
by Hirschorn. As was the case in SISO systems, substitution
of the expression foru from (12) in (1) gives the dynamics of
the inverse system. These dynamics are defined on an open
and dense setMα := {x ∈ M | rank B̃α(x, y) = m, y /∈
Ys

p}.
However, unlike in the SISO case, we need some differen-

tiability assumptions on the input signals to characterize the
input space for MIMO systems. In the structure algorithm,
Step 1 giveṡ̃y1 that has alreadyu on the right-hand side and
the α-th step of the algorithm involves{ỹ(j)

i | 1 ≤ i ≤ α −
1, i ≤ j ≤ α}. Thus ỹ

(α−1)
i must be absolutely continuous

so thatỹ(α)
i exists almost everywhere. For the input space, it

means thatu(α−1) must be Lebesgue measurable and locally
essentially bounded. These constraints characterize the input
spaceU for MIMO case.

Based on the structure algorithm, we now study the
conditions for functional reproducibility of multivariable

5The term was coined in [5] and is weaker than the notion of vector
relative degree.



nonlinear systems. Using the notation derived in the structure
algorithm, denote byZ the vector

Z
(
x, ˙̃y1, · · · , ỹ(α−1)

α−1

)
:=


h(x)

ĥ1(x, ˙̃y1)
...

ĥα−1
(
x, ˙̃y1, · · · , ỹ(α−1)

α−1

)


(13)
and let

ŷ :=


y
ŷ1

...

ŷ
(α−1)
α−1

 , ŷd :=


yd

ŷd1

...

ŷ
(α−1)
dα−1

 (14)

SoZ is basically a concatenation of the expressions appear-
ing at each step of Singh’s structure algorithm which get
differentiated and̂y is the concatenation of the corresponding
expressions on the left-hand side so that

Z
(
x, ˙̃y1, · · · , ỹ(α−1)

α−1

)
− ŷ = 0

The following result is along the same line as Lemma 2.
Lemma 4: If the system given by equation (1) with

x(t0) = x0 has a relative orderα <∞, then there exists a
control inputu such thatΓO

x0
(u) = yd(·) if and only if

ŷd(t0) = Z
(
x0, ˙̃yd1(t0), · · · , ỹ

(k)
dk

(t0)
)
∀k = 0, 1, · · · , α−1

(15)
whereŷd is defined as in (14).
An insightful geometric version of this result in terms of jet
spaces is given in [11]. Similarly to the SISO case, the idea
is that the portion of output which is not directly affected by
u is determined initially by the value of state variables; and
the inputu, for which ΓO

x0
(u) = yd(·), is given by (12) with

y replaced byyd in that formula.
Example 3: Consider the system given in Example 1. The

vector ŷ is the portion of the output that gets differentiated
and therefore,

ŷ =

 y1

y2

ẏ2

 ⇒ ŷd =

 yd1

yd2

ẏd2


and the vectorZ(x, y1, y2, ẏd1) is given by

Z(x, y1, y2, ẏd1) =

 x1

x2

ẏd1(x3/x1)


By Lemma 4 and equation (2), if we havêyd(t0) =
Z

(
(x0, y1(t0), y2(t0), ẏd1(t0)

)
then the control which pro-

ducesyd as an output, on a small interval, is given by

u1 =
ẏd1

x1

u2 =
x1ÿd2 − x3ÿd1 + ẏd1 ẏd2

ẏd1

If yd(t) /∈ Ys for all time instants and the corresponding
state trajectoryx(t) ∈ Mα, then the system can produceyd

as an output over arbitrary time interval. C

This result gives the following condition for the verifica-
tion of switch-singular pairs.

Lemma 5: For MIMO switched systems,(x0, y) is a
switch-singular pair of two subsystemsΓp, Γq if and only
if y ∈ Yp ∩ Yq and

y
˙̂y1

...
ŷακ−1
(ακ−1)

 =


hκ(x0)

ĥ1
κ(x0, ˙̃y1)

...

ĥακ−1
κ (x0, ˙̃y1, · · · , ỹ(ακ−1)

ακ−1 )

 (16)

whereακ denotes the relative order of subsystemsΓκ and
κ = p, q.
The procedure for constructing the inverse from this point
onwards is exactly the same as discussed earlier for the SISO
case.

V. OUTPUT TRACKING

In the previous section, we considered the question of
left invertibility where the objective was to recover(σ, u)
uniquely for all y in some output setYα. In this section,
we address a different problem which concerns with finding
(σ, u) (that may not be unique) such thatHx0(σ, u) = yd

for a given functionyd and a statex0. For the invertibility
problem, we found conditions on the subsystems and the
output setY so that the mapHx0 is injective for all x0

in some subset. Here, we are given one particular(x0, yd)
and wish to find its preimage under the mapHx0 . For the
switched system (3), denote byH−1

x0
the preimage of a

function yd,

H−1
x0

:= {(σ, u) : Hx0(σ, u) = yd} (17)

If yd is not in the image set ofHx0 then by convention
H−1

x0
= ∅. When H−1

x0
(yd) is a singleton, the mapHx0 is

invertible aty. We want to find conditions and an algorithm
to generateH−1

x0
(yd) whenH−1

x0
(yd) is a finite set.

We require the individual subsystems to be strongly in-
vertible because if this is not the case, then the setH−1

x0
(yd)

may be infinite. For a non-invertible non-switched nonlinear
system6, the matrix B̃−1

α in (12) is not defined and the
expression foru is modified to:

u(t) = B̃†
α[Ỹα − Ãα] + K(x, Ỹα−1)v (18)

whereK is a matrix whose columns form a basis for the
null space ofB̃α and B̃†

α := B̃T
α (B̃αB̃T

α )−1 is a right
pseudo-inverse of̃Bα. If an output is generated by some
input u obtained from (18) with some initial state, then
due to arbitrary choice ofv, there always exist infinitely
many different inputs that generate the same output with the
same initial state. Hence to avoid infinite loop reasoning, we
will assume that the individual subsystemsΓp are strongly
invertible for allp ∈ P. However, we do not assume that the
switched system is invertible as the subsystems may have
switch-singular pairs. We will only consider the functions

6A non-switched system is not invertible if it has more inputs than outputs
or it doesn’t satisfy the structure algorithm criteria.



yd(t) over finite time intervals so that there is only a finite
number of switches under consideration.

We now present a switching inversion algorithm for
switched systems similar to the one given in [2]. The
algorithm takes the parametersx0 ∈ M, yd ∈ Fpc (defined
over a finite interval) and returns the setH−1

x0
(yd). It uses

the index-matching map7 Σ−1 : M × Fpc → 2P defined
as Σ−1(x0, yd) := p such thatyd ∈ Yα

p and yd satisfies
(15), obtained via the structure algorithm ofΓp. The index-
matching map returns the indexes of the subsystems that are
capable of generatingyd starting fromx0. If the returned set
is empty, no subsystem is able to generate thatyd starting
from x0. In the algorithm,Γ−1,O

p,x0
(yd) denotes the output of

the inverse subsystemΓ−1
p . The concatenation of an element

η and a setS is η ⊕ S := {η ⊕ ζ, ζ ∈ S}. By convention,
η ⊕ ∅ = ∅, ∀η. Finally, the concatenation of two setsS and
T is S ⊕ T := {η ⊕ ζ, η ∈ S, ζ ∈ T}.
begin H−1

x0
( yd)

Let the domain ofyd be [t0, T ).
Let P := {p ∈ P : yd[t0,t0+ε) ∈ Yα

p andx0 ∈ Mα
p , ε > 0}

Let t∗ := min{t ∈ [t0, T ) : yd[t,t+ε) /∈ Yα
p for some

p ∈ P, ε > 0} otherwiset∗ = T .
Let P∗ := Σ−1(x0, yd[t0,t0+ε)).
if P∗ 6= ∅ then

Let A := ∅
foreach p ∈ P∗ do

Let x := Γ−1
p,x0

(yd[t0,t∗))
if x ∈Mα

p and yd[t0,t∗) ∈ Yα
p then

Let u := Γ−1,O
p,x0

(yd[t0,t∗))
T := {t ∈ (t0, t∗) : (x(t), yd(t)) is a switch-
singular pair ofΓp, Γq for someq 6= p}.
if T is a finite setthen

foreach τ ∈ T do
let ξ := Γp(u)(τ)
A ← A ∪
{(σ[t0,τ), u[t0,τ))⊕H−1

ξ (yd[τ,T ))}
else if T = ∅ and t∗ < T then

let ξ := Γp(u)(t∗)
A ← A∪{(σ[t0,t∗), u)⊕H−1

ξ (yd[t∗,T ))}
else if T = ∅ and t∗ = T then
A ← A∪ {(σ[t0,T ), u)}

else
A := ∅

else
A := ∅

else
A := ∅

return H−1
x0

(yd) := A
end

If the return is a non-empty set, the set must be finite and
contains pairs of switching signals and inputs that generate
the given yd starting from x0. If the return is an empty
set, it means that there is no switching signal and input
that generateyd, or there is an infinite number of possible

7The set2P denotes the set of all subsets of the setP

switching times. Also by our concatenation notation: if at
any instant of time, the return of the procedure is an empty
set, then that branch of the search will be empty because
η ⊕ ∅ = ∅.

Based on the semigroup property for the trajectories of
dynamical systems, the algorithm determines the preimage
on a subinterval[t0, t) of [t0, T ) and then concatenates
these with the corresponding preimage on the rest of the
interval [t, T ). If t is the first switching time aftert0, then
we can findH−1

x0
(yd[t0,t)) by singling out which subsystems

are capable of generatingyd[t0,t) using the index-matching
map. The obvious candidate for first switching time, denoted
by t∗ in the algorithm, is the time at which the output loses
smoothness. Note that in the SISO case,t∗ is the time at
which one of the firstr − 1 derivatives of the output lose
continuity (see Section IV-A). But, it is entirely possible
that we have a switching and the output is still smooth at
that switching time because of a switch-singular pair (see
Example 4). The algorithm takes that into account and uses
a switch at a later time to recover a “hidden switch” earlier
(e.g. a switch at which the output is smooth). This makes the
switching inversion algorithm a recursive procedure calling
itself with different parameters within the main algorithm
(e.g.the functionH−1

x0
(yd) uses the returns ofH−1

ξ (yd[t∗,T ))).
The following example will help understand this algo-

rithm.
Example 4: Consider a switched system with two modes

Γ1 :

 ẋ =
(

x1x2

x2

)
+

(
0
1

)
u, M = R2

y = x2

Γ2 :

 ẋ =
(

0
x1

)
+

(
ex2

ex2

)
u, M = R2

y = x1

We wish to reconstruct the switching signalσ(t) and the
input u(t) which will generate the following output:

yd(t) =
{

cos t if t ∈ [0, t∗)
2 cos t if t ∈ [t∗, T )

where t∗ = π and T = 4.5, with the given initial state
x0 = (0, 1)T .

In this example, any statex lying on the diagonal,∆ :=
{(x1, x2)T : x1 = x2} forms a switch-singular pair with the
output whose corresponding state trajectory hits the same
statex at any time.

We now use the above switching inversion algorithm to
find (σ, u) such thatΓO

x0,σ(u) = yd. We haveP∗ :=
Σ−1(x0, yd[0,t∗)) = {1} by using the index-matching map
with given x0 and yd(0) = 1. The inverse ofΓ1 on [0, t∗)
is

Γ−1
1 :

 ż =
(

z1z2

0

)
+

(
0
1

)
ẏd, Mα

1 = R2

u(t) = −z2 + ẏd



with z(0) = x0, which then gives

z(t) =
(

0
cos t

)
=: x(t)

u(t) = − cos t− sin t
t ∈ [0, t∗). (19)

We want to findT := {t ≤ t∗ : (x(t), yd[t,t∗)) is a switch-
singular pair ofΓ1, Γ2 }, which is equivalent to solving

cos t = x1(t) = 0, t ∈ (0, t∗).

This equation has a solutiont = π/2 =: t1 < t∗, and hence
T = {t1}, a finite set. We haveξ = x(t1) = (0, 0)T and
we repeat the procedure for the initial stateξ and the output
yd[t1,T ) with P∗ := Σ−1(ξ, yd[t1,t∗)) = {1, 2}. We analyze
these two cases:

Case 1: p = 1. This impliest1 is not a switching time and
u(t), x(t) are still given by (19) fort1 ≤ t < t∗. Repeating
the procedure withξ = x(t∗) = (0, 0)T and yd[t∗,T ) and
yd(t∗) = −2, we observe thatyd(t∗) 6= x1(t∗) and also
yd(t∗) 6= x2(t∗), thus the index-matching map returns an
empty set,Σ−1(ξ, yd[t∗,T )) = ∅.

Case 2: p = 2, which means thatt1 is a switching instant.
So we work with the inverse system ofΓ2,

Γ−1
2 :

 ż =
(

0
z1

)
+

(
1
1

)
ẏd, Mα

1 = R2

u(t) = e−z2 ẏd

with initial statez(t1) = ξ, which gives

z(t) =
(

cos t
cos t + sin t− 1

)
=: x(t)

u(t) = −ecos t+sin t sin t
t ≥ t1.

We find T = {t1 < t ≤ t∗ : (x(t), yd[t,t∗)) is a switch-
singular pair ofΓ1, Γ2}, which is equivalent to solving for

cos t = x2(t) = cos t + sin t− 1,
π

2
= t1 < t ≤ t∗ = π

It is easy to see that this equation has no solution and thus
there exist no switch-singular pairs in interval(t1, t∗). So,
we letξ = x(t∗) = (−1, −2)T and repeat the procedure with
ξ and yd[t∗,T ), which gives the unique solutionσ[t∗,T ) = 1
andu[t∗,T ) = −2(cos t + sin t).
Thus, the switching inversion algorithm returns(σ, u), where

(σ, u) =

 (1, − cos t− sin t), if 0 ≤ t < t1
(2, −ecos t+sin t sin t), if t1 ≤ t < t∗

(1, −2(cos t + sin t)), if t∗ ≤ t ≤ T

In this example, the output only loses smoothness att∗ and
t∗ is a switching instant. However, there is another switching
at t1 where the output doesn’t lose smoothness. Without the
concept of switch-singular pairs, one might falsely conclude
that there is no switching signal and input that generates
yd(t) but instead the use of the switching inversion algorithm
allows us to recover the input and switching signal. C

VI. CONCLUSIONS

In this paper, we addressed the invertibility problem of
switched nonlinear systems. The concepts introduced in
[2] for the linear systems were extended to the nonlinear
systems. A necessary and sufficient condition for the invert-
ibility of switched systems was given which required the
invertibility of subsystems and the non-existence of switch-
singular pairs. We developed formulae for checking if(x0, y)
is a switch-singular pair of two subsystems and then gave an
algorithm to recover the input and switching signal from the
given output and initial state.

For future work, one interesting problem is to develop
conditions for checking the existence of switch-singular
pairs which are more constructive as it is in general not
feasible to verify (16) for every output and state. Another
research direction is to approach the problem geometrically
and investigate characterizations equivalent to non-existence
of switch-singular pairs to obtain geometric criteria for left
invertibility of switched systems.
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