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Abstract

This work aims to connect two existing approaches to
stability analysis of switched linear systems: stabil-
ity conditions based on commutation relations between
the subsystems and stability conditions of the slow-
switching type. The proposed sufficient conditions for
stability have an interpretation in terms of commuta-
tion relations; at the same time, they involve only ele-
mentary computations of matrix products and induced
norms, and possess robustness to small perturbations
of the subsystem matrices. These conditions are also re-
lated to slow switching, in the sense that they rely on the
knowledge of how slow the switching should be to guar-
antee stability; however, they cover situations where the
switching is actually not slow enough, by accounting for
relations between the subsystems. Numerical examples
are included for illustration.

1. Introduction

This paper deals with a question that has received
a lot of attention in the last 15 years or so: when is a
switched linear system—i.e., a system defined by a fi-
nite family of linear subsystems and a rule describing
the switching between them—asymptotically stable for
all admissible switching patterns? It is well known that
a necessary and sufficient condition for stability under
arbitrary switching is the existence of a common Lya-
punov function for the family of subsystems; see, e.g.,
[1, Section 2.1]. A sufficient condition that is useful for
computational purposes (but is no longer necessary) is
the existence of a quadratic common Lyapunov func-
tion; such a function, if it exists, can be found by solv-
ing a system of LMIs or by using the method of [2].

∗This work was supported by the NSF CSR program (Embedded
and Hybrid systems area) under grant NSF CNS-0614993.

As far as obtaining readily checkable analytic condi-
tions for the existence of a quadratic common Lyapunov
function, arguably the only available results for general
switched linear systems are those formulated in terms
of commutation relations between the subsystem matri-
ces; see [3, 4, 5, 6, 7, 8] as well as [1, Section 2.2].
However, these sufficient conditions suffer from lack
of robustness, in the sense that they are destroyed by
arbitrarily small perturbations of the subsystem matri-
ces [8, 1]. This is a serious limitation, because both
stability itself and the existence of a quadratic common
Lyapunov function are robust with respect to such small
perturbations.

A closely related problem consists in classifying
those switching patterns that make a given switched lin-
ear system stable. It is well known that a switched linear
system is stable if all individual subsystems are stable
and the switching is sufficiently slow (at least on the av-
erage) so as to allow the transient effects to dissipate af-
ter each switch. The desired slow-switching conditions
can be explicitly derived from the subsystem matrices
or from the corresponding Lyapunov functions; see [9,
Lemma 2], [10], and [1, Section 3.2]. These results
are robust with respect to perturbations of the system
data, and certainly are more practically useful than the
ones based on (fragile) commutation relations. How-
ever, slow-switching conditions tend to be conservative,
and do not take into account possible commutation re-
lations between the subsystems. (The conservatism of
slow-switching conditions can be reduced if the switch-
ing depends on the state, as in [11], but here we assume
no knowledge of such dependence.)

The present work is a preliminary attempt to bridge
the two research directions mentioned above. The suffi-
cient conditions for stability that we have in mind are in-
spired by the ones based on commutation relations, can
be given an appropriate interpretation in terms of these
earlier results, and in fact subsume some of them as spe-
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cial cases. However, they are not explicitly formulated
in terms of commutation relations and, by contrast, are
inherently robust with respect to small perturbations of
the system parameters. On the other hand, our ap-
proach is also related to slow-switching conditions, in
the sense that it relies on the knowledge of how slow
the switching should be in order to guarantee stability of
the switched linear system. However, the proposed con-
ditions cover situations where the switching is actually
too fast for the slow-switching results to apply, by ac-
counting for relations between the subsystems. We can
thus hope to capture the two extreme cases—arbitrary
switching between subsystems with nice commutation
relations and sufficiently slow switching between arbi-
trary subsystems—as well as situations in between, all
within a single framework. Our stability conditions are
also easy to formulate and check, as they involve just
elementary manipulations with matrix products and in-
duced norm computations; we support this claim with
some numerical examples.

2. Motivating example

Suppose that we are switching in discrete time be-
tween two subsystems

x(k +1) = Ax(k), x(k +1) = Bx(k) (1)

where x ∈ R
n and A,B ∈ R

n×n. The (discrete-time, lin-
ear) switched system generated by these two subsystems
is the system x(k + 1) = F(k)x(k) with F(k) ∈ {A,B}
for all k. We assume that the matrices A and B are non-
singular, and hence can be written as exponentials of
some other (possibly complex-valued) matrices:

A = eL, B = eM. (2)

One interpretation of this assumption is that our
discrete-time subsystems (1) actually arise from sam-
pling the continuous-time systems ẋ = Lx and ẋ = Mx,
with the sampling period normalized to 1. Therefore,
our treatment also applies to continuous-time switched
systems whose switching times are integer multiples of
a fixed sampling period.

We assume—as is natural when seeking stability
under arbitrary switching—that both A and B are Schur
stable. This implies that there exists an integer m ≥ 1
such that the induced norms of Am and Bm (with respect
to the Euclidean norm) satisfy

‖Am‖ ≤ ρA < 1, ‖Bm‖ ≤ ρB < 1. (3)

For simplicity we work with the same m for both A and
B, which corresponds to taking the maximum of two

appropriate numbers mA and mB which are in general
different. In fact, to fix ideas we concentrate in this sec-
tion on the case when

m = 2. (4)

Let us now make the following two simple observations.

FACT 1. The switched system generated by the two
subsystems (1) satisfying (3) and (4) is asymptotically
stable for 2-periodic switching.

Here, by 2-periodic switching we mean that switch-
ing takes place every two time steps, so that a typical
solution is

x(k) = A2B2 · · ·A2B2x(0).

The claim is obvious because both A2 and B2 have norm
less than 1, hence the matrix product is contracting to 0
as k → ∞.

FACT 2. If the matrices A and B commute: AB = BA,
then the switched system generated by the two subsys-
tems (1) is asymptotically stable for arbitrary switching.

One way to show this well-known fact is to use (3),
which as we noted holds for some m (not necessarily
equal to 2) whenever A and B are Schur. Using commu-
tativity of A and B, we can rewrite their arbitrary prod-
uct in the form

AmBmAmBm · · ·
and this is clearly contracting to 0 as the number of
terms grows to ∞.

Fact 1 imposes a lower bound on the switching pe-
riod while Fact 2 does not. On the other hand, Fact 1
is robust to small perturbations of A and B while Fact 2
is not. We want to build a bridge between Fact 1 and
Fact 2. To this end, let E be the matrix satisfying

ABAB = A2EB2. (5)

A direct formula for this E is

E = A−1BAB−1. (6)

Then we have:

FACT 3. If
‖E‖ ≤ 1+ ε (7)

where ε is small enough so that

ρA(1+ ε)ρB < 1 (8)

then the switched system generated by the two subsys-
tems (1) satisfying (3) and (4) is asymptotically stable
for 1-periodic switching.
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Indeed, solutions of the system are determined by
matrix products of the form ABABAB · · · which we can
split into products of ABAB. The result then easily fol-
lows from the submultiplicativity of the matrix induced
norm and the formulas (3), (4), (5), (7), (8).

We can think of E as defining the “price” we pay
for shuffling A and B in order to make the matrix
product 2-periodic. When the switching is already 2-
periodic, E = I and we recover Fact 1. When A and
B commute, E = I again and we recover Fact 2. In
this sense, Fact 3 is an improvement on both Fact 1 and
Fact 2; it relies on A and B being “close” to commuting
(i.e., ‖E‖ being close to 1), where the knowledge that
m = 2 and the switching is 1-periodic is used to define
E and quantify the desired closeness.

Combining (2) with (6) and using the Baker-
Campbell-Hausdorff formula eLeM = eL+M+ 1

2 [L,M]+...,
we can show that E is given by the following expres-
sion in terms of L and M:

E = e−LeMeLe−M = e−[L,M]− 1
2 [L,[M,L]]− 1

2 [M,[M,L]]+··· (9)

where [L,M] := LM −ML is the standard Lie bracket.
Thus we see that the bound (7), which requires E to be
close to I, places an indirect bound on the Lie brackets
between L and M.

Before finishing this example, we illustrate it us-
ing specific numerical values. Consider the following
matrices:

A =
(

0.1 −2
0.3 0.1

)
, B =

(
0.2 −1.5
0.3 0.2

)
.

It is straightforward to check that (3) holds with m = 2
(but not with m = 1) and we have ρA = 0.8032, ρB =
0.7856. Computing the matrix E, we obtain

E =
(

1.3111 −0.1255
−0.0151 0.7641

)

and ‖E‖= 1.3215, which yields ρA(1+ε)ρB = 0.8339.
Therefore, the system is asymptotically stable under
1-periodic switching. These matrices can be viewed
as perturbations of the commuting matrices

(0.1 −2
0 0.1

)
and

(0.2 −1.5
0 0.2

)
with the perturbation being given by the

lower-left element 0.3. In this example, it turns out that
the maximal allowable perturbation before the condi-
tion (8) fails is about 0.352. It is a known fact that
when the subsystem matrices commute, there exists a
quadratic common Lyapunov function which can be
used to show stability and also characterize robustness
to small perturbations (see [5] and [1, Section 2.2]).
However, the argument we used here to verify stability
is direct from the given data.

3. More general formulation

As in Section 2, we start with two subsystems (1)
satisfying (2) and (3), but now m can be an arbitrary
positive integer. We assume that the switching is �-
periodic, where � is some positive integer. In other
words, we allow switching that produces solutions of
the form

x(k) = BiA�B� · · ·A�B�A jx(0)

where 0 ≤ i, j ≤ � and the roles of A and B can be inter-
changed. Clearly, for stability analysis it is enough to
study matrix products of the above type with i = j = 0.
We note that the �-periodicity assumption does intro-
duce a loss of generality. There is a general result
that a suitable notion of asymptotic stability under pe-
riodic switching implies asymptotic stability under ar-
bitrary switching; see [6, Theorem 2.3] and a detailed
discussion in [12, Section 4.10]. Hence, the main gap
is between �-periodic switching and arbitrary periodic
switching.

Since (3) guarantees that the switched system is
asymptotically stable under �-periodic switching when
� ≥ m, the case of interest is when � < m. Let r be the
smallest integer such that

r� ≥ m. (10)

Define a matrix E by the formula

A�B� · · ·A�B�︸ ︷︷ ︸
r repetitions

= Ar�EBr� (11)

(this can be solved for E since A and B are nonsingular).
Note that E = I when either � = m or AB = BA. Intu-
itively, E captures both how far A and B are from com-
muting and how large m is compared to �. The follow-
ing result is a straightforward generalization of Fact 3
from Section 2.

Proposition 1 Let the nonsingular matrices A and B
satisfy (3) for some m ≥ 1. For given � and r related
via (10), assume that E defined by (11) satisfies (7) with
ε small enough so that (8) holds. Then the switched
system generated by the two subsystems (1) is asymp-
totically stable for �-periodic switching.

We think of the special case � = 1, m = 2 consid-
ered in Section 2 as the “elementary shuffling” case (cf.
[6]), because in that case the definition of E can be more
simply but equivalently written as

BA = AEB. (12)
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We know that in this case E can be expressed in terms
of Lie brackets of L and M via the formula (9), where L
and M come from (2). In principle, elementary shuffling
can be used to generate an iterative formula for E in
terms of Lie brackets of L and M for arbitrary values
of � and m. However, at present we are not aware of a
general and tractable closed-form expression. There are
of course some other special cases which can be easily
treated. For example, consider the case when � = 2 and
m = 4. Then (11) specializes to

A2B2A2B2 = A4EB4

hence
E = (A−1)2B2A2(B−1)2.

Using (2) and the Baker-Campbell-Hausdorff formula,
we obtain the following close analogue of (9):

E = e−2Le2Me2Le−2M

= e−[2L,2M]− 1
2 [2L,[2M,2L]]− 1

2 [2M,[2M,2L]]+··· (13)

We can always reduce �-periodic switching to 1-
periodic switching by working with the new matrices
Ā := A� and B̄ := B�. If m is not an integer multiple of
�, then we also have to replace m in (3) with r�, but this
does not change the result since we are already using r�
in (11). Thus, the only nontrivial generalization in this
section compared to Section 2 consists of allowing an
arbitrary m. However, we will see in the next section
that keeping � general allows more flexibility in obtain-
ing sufficient conditions for stability.

4. Beyond commutativity: high-order Lie
brackets

In the setting of Section 2, the matrix E is given
by (9) and the condition (7) means that L and M are
close to commuting. However, existing results on sta-
bility of switched linear systems under “nice” commu-
tation relations go far beyond the commuting case. In
particular, we know from [6] that the switched sys-
tem is asymptotically stable for arbitrary switching if
[L,M] �= 0 but

[L, [L,M]] = [M, [L,M]] = 0. (14)

When (14) holds, E in (9) need not be close to I but it
commutes with both A and B; this is a simple conse-
quence of the Baker-Campbell-Hausdorff formula. Let
us consider a matrix product of length 6 arising in 1-
periodic switching, and note that it can be written as
follows:

ABABAB = AAEBBAB = AABBAEB = AABBBA.
(15)

The first equality in (15) follows from the elementary
shuffling formula (12) applied to the underlined prod-
uct BA, the second equality follows from the fact that E
commutes with A and B, and the last equality is obtained
from (12) again, this time applied in the reverse direc-
tion to the underlined product AEB. Now, if we con-
sider an infinite 1-periodic matrix product, split it into
portions of length 6, and use (15), we obtain an equiva-
lent 3-periodic product (because the last A of each por-
tion given by the right-hand side of (15) gets appended
to AA at the beginning of the next portion).

From the previous calculation we deduce the fol-
lowing interesting fact: If L and M are not close to
commuting but satisfy (14), then the “price” of shuf-
fling the terms in a 1-periodic product of A and B to
get a 2-periodic product can be high (since E is not
close to I), but on the other hand we can obtain a 3-
periodic product “for free” (since the right-hand side
of (15) no longer contains E). This implies, in partic-
ular, that the switched system is asymptotically stable
under 1-periodic switching if its subsystem matrices A
and B satisfy (2), (3) with m = 3, and (14). Of course,
this conclusion is not very interesting because it is a
special case of the result of [6] (which does not require
� = 1 or m = 3). However, it suggests a way for us to
capture situations where (14) is satisfied only approxi-
mately. Namely, let r, �,m be as in Section 3 and define
a matrix F by the formula

A�B� · · ·A�B�︸ ︷︷ ︸
r repetitions

= Ar�−1FBr�A. (16)

In the next result, this F plays a role analogous to that
of E in Proposition 1.

Proposition 2 Let the nonsingular matrices A and B
satisfy (3) for some m ≥ 1. For given � and r re-
lated via (10), assume that F defined by (16) satisfies
‖F‖≤ 1+ε with ε small enough so that (8) holds. Then
the switched system generated by the two subsystems (1)
is asymptotically stable for �-periodic switching.

We showed earlier that F = I if � = 1, m = 3,
and (14) holds. Other combinations of values for � and
m satisfying m = 3� can be treated by redefining the sub-
system matrices to be A� and B�, as explained at the end
of Section 3. More interestingly, we also have F = I if
� = 2, m = 4, and (14) holds. A verification of this fact
proceeds along the lines of (15) but is a bit more tricky:

AABBAABB = AABAEBABB = AAAEBEBABB

= AAABEBAEBB = AAABEBBAB

= AAABBBAEB = AAABBBBA
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In the case � = 1, m = 2, the condition (14) does not
guarantee that F = I, but we can still show stability
by applying Proposition 2 with the more conservative
value m = 3. These last two cases also demonstrate
that it is not always advisable to pass from �-periodic to
1-periodic switching by redefining the subsystem ma-
trices, because this induces a loss of “granularity” that
may be helpful in the context of Proposition 2. As we
know, all the cases just mentioned are covered by the
result of [6], but Proposition 2 provides robustness with
respect to small perturbations which destroy the prop-
erty (14).

We end this section with another numerical exam-
ple. Consider the matrices

A =

⎛
⎝1/4 −1 1/2
−ε 1/4 1
0 0 1/4

⎞
⎠ , B =

⎛
⎝1/2 1 −1/2

0 1/2 0
0 ε 1/2

⎞
⎠

where ε := 0.005. The smallest value of m that
makes (3) true is m = 3, and we have ρA = 0.7075,
ρB = 0.8533. The matrix F from (16) with � = 1 and
m = 3 is

F =

⎛
⎝1.0039 0.1702 −0.7808

0.0000 0.9992 −0.0025
0.0000 0.0009 0.9969

⎞
⎠

and its induced norm is ‖F‖ = 1.4771. This gives
ρA(1 + ε)ρB = 0.8917, hence the switched system is
asymptotically stable under 1-periodic switching. The
intuition behind this example—which is not, however,
required for the analysis—is that the matrices A and B
are a small perturbation (of size 0.005) away from being
upper-triangular and satisfying [A, [A,B]] = [B, [A,B]] =
0 as well as (14). The perturbation can be increased to
about 0.0064 before the condition of Proposition 2 fails.

5. Discussion

Propositions 1 and 2 can be viewed as two special
instances of a more general approach to developing new
sufficient conditions for stability of switched linear sys-
tems. In a nutshell, this approach can be described as
follows. Suppose that the subsystem matrices A and B
satisfy (3) for some known m. Suppose also that the
switching is constrained to be �-periodic (or to some
other known switching pattern). Consider the matrix
products describing the solutions of the switched sys-
tem; for the case of �-periodic switching, a typical such
product is A�B�A�B� · · · . The objective then is to rewrite
this product as another product, whose terms are Am,
Bm, and some auxiliary matrix such as E in (11) or F
in (16). Since we know that the induced norms of Am

and Bm satisfy the bound (3), a sufficient condition for
asymptotic stability of the switched system is that the
induced norm of this auxiliary matrix does not exceed
1 + ε where ε satisfies (8). Similar stability conditions
can be formulated for the case of three or more subsys-
tem matrices. Checking the conditions is a matter of
performing elementary matrix calculations.

It must be noted that for a given periodic switch-
ing pattern, the above approach is not necessary. In-
deed, it suffices to check that the matrix product cor-
responding to one period is Schur stable, which guar-
antees that over some number of periods we get a con-
traction. Thus the merit of the results reported here lies
not in the stability conditions themselves but in their
interpretation in terms of Lie brackets between the sub-
system matrices A and B (or, more precisely, their ma-
trix logarithms L and M), as well as their potential for
generalization. To make the approach really useful, we
need to demonstrate that it is capable of yielding con-
ditions that guarantee stability for all periodic switch-
ing patterns (with a given “dwell time,” i.e., minimal
number of steps between switches). It is known that
stability under �-periodic switching does not imply sta-
bility under arbitrary periodic switching. On the other
hand, sufficient conditions of the type given by Proposi-
tions 1 and 2 are stronger, and could in principle lead to
a desired result. Currently, even for �-periodic switch-
ing we do not have an “optimal” method for shuffling
the matrices (especially when m is not an integer mul-
tiple of �). A better understanding of the connection
between the matrices E and F and the Lie brackets of L
and M, besides being of theoretical interest, might also
help render the approach more systematic.

We also currently investigating alternative ap-
proaches to capturing robustness in commutation rela-
tions. These will be reported in a future publication.
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improve the presentation.
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